

गोंय विद्यापीठ ताळगांव पठार गोंय - ४०३ २०६ फोन: +९१-८६६९६०९०४८

Goa University

Taleigao Plateau, Goa - 403 206 Tel : +91-8669609048 Email : registrar@unigoa.ac.in Website: www.unigoa.ac.in

(Accredited by NAAC)

GU/Acad –PG/BoS -NEP/2023/81/3

Date:26.05.2023

Ref: GU/Acad –PG/BoS -NEP/2022/339/8 dated 19.08.2022

CIRCULAR

In supersession to the above referred Circular, the updated approved Syllabus with revised Course Codes of the **Master of Science in Physics** Programme is enclosed.

The Dean/ Vice-Deans of the School of Physical and Applied Sciences are requested to take note of the above and bring the contents of the Circular to the notice of all concerned.

(Ashwin Lawande) Assistant Registrar – Academic-PG

Τo,

- 1. The Dean, School of Physical and Applied Sciences, Goa University.
- 2. The Vice-Deans, School of Physical and Applied Sciences, Goa University.

Copy to:

- 1. The Chairperson, Board of Studies in Physics.
- 2. The Programme Director, M. Sc. Physics, Goa University.
- 3. The Controller of Examinations, Goa University.
- 4. The Assistant Registrar, PG Examinations, Goa University.
- 5. Directorate of Internal Quality Assurance, Goa University for uploading the Syllabus on the University website.

Goa University

M.Sc. Physics	Syllabus from	Academic year	2022-23

The syllabus of M.Sc. Physics consists of five categories of courses:

· ·		3103 001	ISISTS OF TIVE Categ			
Type of Cou	irse		Required Credits	Course Codes		
Discipling S	pecific Core C	ourso	32	PHY-500 to PHY-507		
Discipline		lective	08	PHY-521 to PHY-526		
Course	Specific L	lective	08			
Research	Specific E	lective	12	PHS-601 to PHS-610	PHC-601	to PHC-
Course	Speeme L			607, PHB-601 to PHB		
	ctive Course		12	PHS-621 to PHS-630		to PHC-
				624, PHB-621 to PHB		
Dissertatior	า		16	PHY-651		
Bridge cour	se		Audit	PHY-001 to PHY-005	and PHY-()10
Code			Title		Credits	Hours
<u>PHY-001</u>	Bridge Cour	se in M	athematical Meth	ods	2	30
<u>PHY-002</u>	Bridge Cour	se in Th	ermal Physics		2	30
PHY-003	Bridge Cour	se in Op	otics		2	30
<u>PHY-004</u>	Bridge Cour	se in Qı	uantum Mechanic	S	2	30
<u>PHY-005</u>	Bridge Cour	se in Ele	ectrostatics and N	lagnetostatics	2	30
<u>PHY-010</u>	Introduction	n to Bio	logy and Biophysi	CS	3	45
			Semester	I		
<u>PHY-500</u>		Mather	matical Methods o	of Physics	4	60
<u>PHY-501</u>	Classical Mechanics		4	60		
<u>PHY-502</u>	Electromagnetic Theory		4	60		
<u>PHY-503</u>	Electronics		4	60		
<u>PHY-521</u>	Electronics Practical		2	60		
<u>PHY-522</u>	Computer Programming in Fortran Practical*		2	60		
<u>PHY-523</u>	Computer Programming in C Practical*		2	60		
<u>PHY-524</u>			2	60		
*Any one co	ourse					
	1		Semester		1	
<u>PHY-504</u>			Quantum Mechan		4	60
<u>PHY-505</u>			Statistical Mechan		4	60
<u>PHY-506</u>	Nu	clear ar	nd Elementary Par	ticle Physics	4	60
<u>PHY-507</u>		_	Atomic Physics	#	4	60
<u>PHY-525</u>	General Physics Practical [#]		4	120		
<u>PHY-526</u>		Metho	ds of Experimenta	I Physics"	4	105
[#] Any one course						
	Collel	اہ ۸	Semester			<u> </u>
PHS-601	Solid	Adv	anced Quantum	Molecular	4	60
<u>PHC-601</u> PHB-601	State Physics I		Mechanics	Biophysics		
PHB-601 PHS-602	Solid	۸dv	anced Statistical	Methods of	4	60
PHS-602 PHC-602	State	Auv	Mechanics	Biophysics	4	00
PHE-602 PHB-602	Physics II			υορπγείοε		
	1 11 23163 11			1		

PHS-621	Solid	Numerical Techniques	Biophysics	4	120
<u>PHC-621</u>	State	Practical	Practical		
<u>PHB-621</u>	Physics				
	Practical				
PHS-62x	Generic (Optional Courses (to be chose	sen from Set I or	8	120
PHC-62x	from any other disciplines or from SWAYAM)				
PHB-62x					
		Semester IV			
PHS-60x	Courses wo	orth 4 credits to be chosen f	rom Set II or from	4	60
PHC-60x	SWAYAM in consultation with Dissertation Guide				
PHB-60x					
PHY-651		Dissertation			

Suggested Optional Courses

	Set I – Generic Electives (Sem III)	Credits
<u>PHS-622</u>	Nuclear Reactor Physics	2
<u>PHS-623</u>	Advanced Optics	2
<u>PHS-624</u>	Physics of Energy Materials	2
<u>PHS-625</u>	Physics of Ferroic Materials	2
<u>PHS-626</u>	Nanoscience and Technology	2
<u>PHS-627</u>	Laser Physics and Applications	2
<u>PHS-628</u>	Experimental Techniques in Physics	2
<u>PHS-629</u>	Documentation using Latex (Skill)	2
<u>PHS-630</u>	Astronomy and Astrophysics	2
PHC-622	BEC and Superfluidity	2
PHC-623	Introduction to Quantum information and computing	2
<u>PHC-624</u>	Introduction to Particle Physics	2
<u>PHB-622</u>	Solid State and Biomaterials	4

	Set II – Research Electives (Sem IV)	Credits
PHS-603	X-ray Spectroscopy for Condensed Matter	2
<u>PHS-604</u>	Optical Spectroscopy for Condensed Matter	2
PHS-605	Nuclear Spectroscopy for Condensed Matter	2
PHS-606	Introduction to Crystallography and X-ray Diffraction	2
<u>PHS-607</u>	Magnetism in Condensed Matter Physics	2
PHS-608	Microscopy Techniques for Condensed Matter	2
PHS-609	Thin film Physics	2
<u>PHS-610</u>	Physics of Glasses	2
PHC-603	Simulation Techniques	2
<u>PHC-604</u>	Physics of Quantum Materials	2
PHC-605	Superconductivity	2
PHC-606	Advanced Particle Physics	4
PHC-607	Numerical methods and Fortran parallel programming using	2
	openMP	

Title of the Course: Bridge Course in Mathematical Methods

Number of Credits: 2

Course Code: PHY-001

Prerequisites for the	NIL	
<u>course:</u>		
Course Objectives:	This course develops problem solving capabilities of	
	students. It also helps to revise and understand the	
	concepts based on Integration, differentiation and such	
	other basic topics of mathematics, which are useful in	
	solving problems based on Physics.	
<u>Content:</u>	1. Preliminary Calculus	10 hours
	Differentiation from first principles; products; the chain	
	rule; quotients; implicit differentiation; logarithmic	
	differentiation; Leibnitz' theorem; special points of a	
	function; theorems of differentiation, Integration from	
	first principles; the inverse of differentiation; integration	
	by inspection; sinusoidal functions; logarithmic	
	integration; integration using partial fractions;	
	substitution method; integration by parts; reduction	
	formulae; infinite improper integrals; plane polar	
	coordinates; integral inequalities; applications of	5 hours
	integration	
	2. Partial Differentiation	
	Definition of partial derivative; the total differential and	
	total derivative; Exact and inexact differentials; Useful	
	theorems of partial differentiation; the chain rule; Change	
	of variables; Taylor's theorem for many variable	
	functions; Stationary values of many variable functions;	
	Stationary variables under constraints; Thermodynamic	5 hours
	relations; Differentiation of integrals	
	3. Series and Limits	
	Series; Summation of series (arithmetic, geometric);	F b c c
	convergence of infinite series; Operations with series;	5 hours
	Power series; Taylor series; Evaluation of limits.	
	4. Vector Algebra	
	Scalars and vectors; Addition and subtraction of vectors;	
	Multiplication by a scalar; Basis vectors and components;	
	Magnitude of a vector; Multiplication of vectors;	5 hours
	Equation of lines and planes; Using vectors to find distances; Reciprocal vectors.	5 110015
	5. Ordinary differential equations	
	5. Orumary unreferitial equations	

	Linear equations with constant coefficients; Linear equations with variable coefficients; General ordinary differential equations.
Pedagogy:	Online lectures along with assignments
References/Readings	 K.F. Riley, M.P. Hobson and S.J. Bence, Mathematical Methods for Physics and engineering, Cambridge University Press, Cambridge UK (Reprint 2002).
	 George B. Arfken and Hans J. Weber, Mathematical methods for Physicists, 7/e Elsevier Inc., 2012. Mathematics text books of XI and XII Science prescribed by NTSE/CBSE/Goa Board.
<u>Course Outcomes:</u>	 Student will be able to Understand differentiation, partial differentiation, integration and ODE (Ordinary differential equations) Apply the above techniques to solve the problems in physics. Understand concepts of vector algebra, limits and series. Apply these techniques for solving the problems in physics and day to day life.

Title of the Course: Bridge Course in Thermal Physics

Number of Credits: 2

Course Code: PHY-002

	B. Sc. Levels courses on mechanics and mathematics	
	B. SC. Levels courses on mechanics and mathematics	
<u>Course:</u>		
Course Objectives:	This course aims to introduce basic concepts of	
	thermodynamics, laws of thermodynamics, entropy its	
	applications.	
<u>Content:</u>	1. Zeroth and First Law of Thermodynamics:	6 hours
	Extensive and intensive Thermodynamic Variables,	
	Thermodynamic Equilibrium, Zeroth Law of	
	Thermodynamics & Concept of Temperature,	
	Concept of Work & Heat, State Functions, First Law	
	of Thermodynamics and its differential form,	
	Internal Energy, First Law & various processes,	
	Applications of First Law: General Relation between	
	C_{P} and $C_{V},$ Work Done during Isothermal and	
	Adiabatic Processes, Compressibility and Expansion	8 hours
	Co-efficient.	
	2. Second Law of Thermodynamics: Reversible and	
	Irreversible process with examples. Conversion of	
	Work into Heat and Heat into Work. Heat Engines.	
	Carnot's Cycle, Carnot engine & efficiency.	
	Refrigerator & coefficient of performance, 2nd Law	
	of Thermodynamics: Kelvin-Planck and Clausius	
	Statements and their Equivalence. Carnot's	6 hours
	Theorem. Applications of Second Law of	
	Thermodynamics: Thermodynamic Scale of	
	Temperature and its Equivalence to Perfect Gas	
	Scale.	
	3. Entropy: Concept of Entropy, Clausius Theorem.	
	Clausius Inequality, Second Law of Thermodynamics	
	in terms of Entropy. The entropy of a perfect gas.	
	Principle of Increase of Entropy. Entropy Changes in	
	Reversible and Irreversible processes with	5hours
	examples. Entropy of the Universe. Entropy	
	Changes in Reversible and Irreversible Processes.	
	Principle of Increase of Entropy. Temperature-	
	Entropy diagrams for Carnot's Cycle. Third Law of	
	Thermodynamics. The unattainability of Absolute	
	Zero.	

	4. Thermodynamic Potentials: Extensive and	
	Intensive Thermodynamic Variables.	
	Thermodynamic Potentials: Internal Energy, 5 hours	
	Enthalpy, Helmholtz Free Energy, Gibb's Free	
	Applications. Surface Films and Variation of Surface	
	Tension with Temperature. Magnetic Work, Cooling	
	due to adiabatic demagnetization, First and second	
	order Phase Transitions with examples, Clausius	
	Clapeyron Equation and Ehrenfest equations.	
	5. Maxwell's Thermodynamic Relations: Derivations	
	and applications of Maxwell's Relations, Maxwell's	
	Relations:(1) Clausius Clapeyron equation, (2)	
	Values of Cp-Cv, (3) TdS Equations, (4) Joule-Kelvin	
	coefficient for Ideal and Van der Waal Gases, (5)	
	Energy equations, (6) Change of Temperature	
	during Adiabatic Process	
Pedagogy:	Online lectures and assignments	
<u>References/Reading</u>	1. M.W. Zemansky, Richard Dittman, Heat and	
<u>s</u>	Thermodynamics, 1981, McGraw-Hill.	
	2. Meghnad Saha, and B.N.Srivastava, A Treatise on	
	Heat, 1958, Indian Press	
	3. S. Garg, R. Bansal and Ghosh, Thermal Physics, 2nd	
	Edition, 1993, Tata McGraw-Hill	
	4. Carl S. Helrich, Modern Thermodynamics with	
	Statistical Mechanics, 2009, Springer.	
	5. Sears & Salinger, Thermodynamics, Kinetic Theory &	
	Statistical Thermodynamics, 1988, Narosa.	
	6. S.J. Blundell and K.M. Blundell, Concepts in Thermal	
	Physics, 2nd Ed., 2012, Oxford University Press	
Course Outcomes:	Student will be able to	
	1. Understand basic concepts of thermodynamics	
	2. Understand thermodynamic properties of pure	
	substances	
	3. Formulate and apply the first and second laws of	
	thermodynamics	
	4. Understand concepts of entropy and the third law of	
	thermodynamics.	
	5. Understand thermodynamic potentials and their	
	relations.	
L		

Title of the Course: Bridge Course in Optics

Number of Credits: 2

Course Code: PHY-003

Prerequisites for the	B. Sc. Levels courses on mechanics and mathematics	
Course:		
Course Objectives:	This course aims to understand the various concepts of	
	geometric and wave optics	
Content:	1. Geometric Optics	6 hours
	Brief history, Propagation of light, Scattering, Reflection	
	and Refraction of light, Fermat's principle, Ray equations,	
	Refraction and reflection by spherical surfaces, Paraxial	
	optics, lenses, mirrors, prisms, optical systems, Total	
	internal reflection, thick lenses, Aberrations.	
	Introduction to eyepieces, Ramsden and Huygens	
	eyepieces.	6 hours
	2. Wave Optics	
	Simple harmonic motion, vibrations, origin of refractive	
	index, sinusoidal waves, one-dimensional wave equation,	
	transverse and longitudinal vibrations, Huygen's	
	principle, plane waves, spherical and cylindrical waves.	6 hours
	3. Interference	
	Superposition of Waves, Division of wavefront & division	
	of amplitude, Formation of colors in thin film- reflected	
	system, transmitted system, wedge shaped film,	
	Newton's Rings and its application to determine	
	refractive index of liquid (Normal Incidence only),	
	Interferometry: Michelson interferometer-its principle,	
	working and its application to determine wavelength and	6 hours
	difference between two wavelengths, Coherence.	
	4. Diffraction	
	Fraunhofer diffraction, Single slit and Double slit	
	patterns, Limit of resolution, Diffraction grating, Fresnel	6 hours
	diffraction, zone-plates, Diffraction by circular discs and	
	apertures, Holography.	
	5. Polarization of light	
	Nature of polarized light, Dichroism, Birefringence,	
	Scattering and Polarization, Polarization by reflection,	
	Brewster angle, Circular polarizers, Wave plates.	
Pedagogy:	Online lectures and assignments	
<u>References/Reading</u>	1. Ajoy Ghatak, Optics, 7 th Edition, Tata-McGraw-Hill	
<u>s</u>	(2020).	

	2. Eugene Hecht, Optics, Pearson, 5 th Edition, (2019).
	3. Brij Lal, M N Avadhanulu & N Subrahmanyam, A
	Textbook of Optics, 25 th edition, S. Chand & Company
	(2012).
	4. F.A. Jenkins and H.E. White, Fundamental of Optics,
	Tata McGraw-Hill (1981).
Course Outcomes:	Students will be able to
	1. Understand geometrical and wave optics
	2. Understand phenomena of interference and
	diffraction
	3. Apply these phenomena to problems in Physics
	4. Understand concept of polarization of light.

Title of the Course: Bridge Course in Quantum Mechanics

Number of Credits: 2

Course Code: PHY-004

Prerequisites for the	B. Sc. Levels courses on mechanics and mathematics	
<u>Course:</u>	b. Sc. Levels courses on meenanes and mathematics	
Course Objectives:	This course aims to understand the various phenomena	
	of early quantum physics and develop the essential ideas	
	of the old quantum theory.	
<u>Content:</u>	1. THERMAL RADIATION AND PLANCK'S POSTULATE	3 hours
	Thermal Radiation, Classical Theory of Cavity	
	Radiation, Planck's Theory of Cavity Radiation,	
	Planck's Postulate and Its Implications.	
	2. PHOTONS—PARTICLE-LIKE PROPERTIES OF	2 hours
	RADIATION	
	Introduction, The Photoelectric Effect, Einstein's	
	Quantum Theory of the Photoelectric Effect, The	
	Compton Effect, The Dual Nature of Electromagnetic	
	Radiation.	2 hours
	3. DE BROGLIE'S POSTULATE—WAVE-LIKE PROPERTIES	
	OF PARTICLES	
	Matter Waves, The Wave-Particle Duality, The	
	Uncertainty Principle, Properties of Matter Waves,	
	Some Consequences of the Uncertainty Principle,	
	The Philosophy of Quantum Theory	3hours
	4. BOHR'S MODEL OF THE ATOM	
	Thomson's Model, Rutherford's Model, The Stability	
	of the Nuclear Atom, Atomic Spectra, Bohr's	
	Postulates, Bohr's Model, Atomic Energy States.	5 hours
	5. SCHROEDINGER'S THEORY OF QUANTUM	
	MECHANICS	
	Introduction, Plausibility Argument Leading to	
	Schrödinger's Equation, Born's Interpretation of	
	Wave Functions, Expectation Values, the time-	
	independent Schrödinger Equation, Required	15 hours
	Properties of Eigen functions, Energy Quantization in	
	the Schrodinger Theory.	
	6. SOLUTIONS OF TIME-INDEPENDENT SCHROEDINGER	
	EQUATIONS	
	Introduction, The Zero Potential, The Step Potential	
	(Energy Less Than Step Height), The Step Potential	
	(Energy Greater Than Step Height), The Barrier	

	Potential, Examples of Barrier Penetration by Particles, The Square Well Potential, The Infinite Square Well Potential, The Simple Harmonic Oscillator Potential	
Pedagogy:	Online lectures along with assignments	
<u>References/Reading</u>	1. Robert Eisberg and Robert Resnick, Quantum Physics	
<u>s</u>	 of Atoms, Molecules, Solids, Nuclei, and Particles, John Wiley & Sons (2006) 2. A. Ghatak and S. Lokanathan, Quantum Mechanics, Theory and Applications, Mc Millan (2004). 3. P. M. Mathews, and K. Venkatesan, A Textbook of Quantum Mechanics, 2nd Ed., McGraw Hill (2010) 4. Leonard I. Schiff, Quantum Mechanics, 3rd Edn. Tata McGraw Hill, (2010) 	
Course Outcomes:	Student will be able to	
	 Understand the concept of the wave-particle duality of radiation and particles. Understand energy quantization. Understand wave mechanics in one dimension. Describe the structure of the hydrogen atom. Understand quantization of angular momentum. 	

Course Code:PHY-005Title of the Course:Bridge Course in Electrostatics andMagnetostatics

Number of Credits: 2

Prerequisites for the	B. Sc. Levels courses on mechanics, mathematics, and	
Course:	vector algebra	
Course Objectives:	This course is aimed at revising the electrostatics and	
	magnetostatics	
Content:	1. Electrostatics	15 hours
	Coulomb's law, Electric field and potential, Gauss's law,	10 110 110
	Application of Gauss's law, the electric field in various	
	circumstances, Electrostatic energy, dielectrics.	
	2. Magnetostatics	15 hours
	Electric current, the magnetic field, the magnetic force of	
	a current, Ampere's law, magnetic field of a straight wire	
	and of a solenoid, atomic currents, the relativity of	
	magnetic and electric fields, the magnetic field in various	
	situations, the vector potential, induced currents, the	
	Maxwell equations.	
Pedagogy:	Lectures/tutorials/assignments. Sessions shall be	
	interactive in nature to enable peer group learning	
References/Reading	1. The Feynman lectures on Physics, Vol-2, Pearson	
<u>s</u>	(2013)	
	2. Young and Freedman, University Physics with modern	
	Physics, Pearson (2016)	
	3. H. C. Verma, Concepts of Physics, vol-2, Bharati	
	Bhawan Publishers & Distributors (2019).	
Course Outcomes:	Students will be able to	
	1. Understand concepts like electric field, potential,	
	electrostatic energy, dielectrics.	
	2. Learn applications of Gauss Law	
	3. Understand generation of magnetic field	
	4. Apply Maxwell equations	

Programme: M.Sc (Physics)(Biophysics)

Course Code: PHY-010Title of the Course: Introduction to Biology and BiophysicsNumber of Credits: 3

Prerequisites for the	Understanding of basic concepts in biology, chemistry	
course:	and physics	
Course Objectives:	This is a bridge course for the students for introducing	
	them to the concepts in biology and biophysics.	
Content:	Introduction to Biology	5 hours
	Origin and evolution of life, prokaryotic cells,	
	photosynthesis, eukaryotic cells, elementary building	
	blocks of life	15 hours
	Biochemistry I	
	Chemical components of the cell, energy, catalysis and	
	biosynthesis, cellular membranes, transport across	
	membranes, energy generation in cells, cytoskeletons,	15 hours
	cell division,	
	Biochemistry II	
	Proteins-structure and function, DNA, RNA and	10 hours
	chromosomes, Genes, genetics, carbohydrates, lipids and	
	enzymes	
	Biophysics	
	Biological motion, free energy transduction,	
	chemochemical machines, pumps and motors as	
	chemochemcial machines, flux force dependence,	
	molecular motors, mechanochemistry of molecular	
	motors, biomolecular forces, biomechanics of muscle	
	contraction and cardiovascular system.	
Pedagogy:	Online Lectures/Assignments/Self Study	
	Interactive sessions will be conducted to enable peer	
	group learning.	
References/Readings	1. Geoffrey M. Cooper and Robert E. Hausman, The Cell:	
	A Molecular Approach, Seventh Edition, Oxford	
	University Press (2018).	
	2. Dennis Bray, Karen Hopkin, Alexander D. Johnson,	
	Julian Lewis, Martin Raff, Keith Roberts, and Peter	
	Walter, Essential Cell Biology, Bruce Alberts, Fourth	
	Edition Garland Science (2013).	
	3. David Clark Nanette Pazdernik Michelle McGehee,	
	Molecular Biology, Third Edition, Elsevier (2019).	
	4. Jack A Tuszynski and Michal Kurzynski, Introduction to	
	Molecular Biophysics, First Edition, CRC Press, (2003).	

	5.	Rodney Cotterill, Biophysics: An Introduction, Wiley	
		(2002).	
	6.	Thomas A Weigh, Applied Biophysics, A Molecular	
		Approach for Physical Scientist, First Edition, Wiley,	
		(2007).	
	7.	Mayer & Jackson, Molecular & Cellular Biophysics,	
		Cambridge Press (2006).	
Course Outcomes:	Stu	dent will be able to	
	1.	Learn about biology and biochemistry	
	2.	Understand the basic concepts of molecular	
		biophysics	
	3.	Gain knowledge in the structure and functioning of	
		molecular processes	
	4.	Get exposed to the recent developments in	
		biomechanics and molecular motion.	

Title of the Course: Mathematical Physics

Number of Credits: 4

Course Code: PHY – 500

Droroquisitos for the	Should have studied the courses in Physics at graduation	
Prerequisites for the	Should have studied the courses in Physics at graduation level.	
<u>course:</u>		
Course Objectives:	Students will get exposed to necessary mathematical	
	skills that are essential to understand different	
	phenomena in physics. The course also helps students to	
	understand the theoretical background of other core	
	courses in physics.	
Content:	1. Ordinary Differential Equations	14 hours
	Second order homogeneous and inhomogeneous	
	equation, Wronskian, General Solutions, Ordinary and	
	Singular points, Series Solutions. Polynomial solutions,	
	Legendre's equation, Bessel's equation, Gamma function	
	2. Functions of Complex Variable	15 hours
	Limits, Continuity, Analyticity of Functions of a Complex	
	Variable, Taylor and Laurent Series, Isolated and	
	Essential Singularities, Branch Cuts, Cauchy Formula,	
	Contour Integration, Application of Residue Theorem.	
	3. Linear Vector Spaces	9 hours
	Linear Operators, Matrices, Coordinate Transformations,	
	Eigenvalue Problems, Diagonalization of Matrices,	
	Infinite Dimensional Spaces, Elements of Group Theory.	
	4. Integral Transforms	12 hours
	Fourier Series, Fourier Transforms, Laplace Transforms,	
	Applications of Integral Transforms.	
	5. Boundary Value and Initial Value Problems	10 hours
	Vibrating String in one Dimension, Heat Conduction, and	
	Wave Equation.	
	Lectures/ tutorials or a combination of these. Sessions	
<u>Pedagogy:</u>	shall be interactive in nature to enable peer group	
	learning.	
References/Readings:	1. George B. Arfken and Hans J. Weber, Mathematical	
	methods for Physicists, 7/e Elsevier Inc., 2012.	
	2. K.F. Riley, M.P. Hobson and S.J. Bence, Mathematical	
	Methods for Physics and engineering, Cambridge	
	University Press, Cambridge UK (Reprint 2002)	
	3. J. Mathew and R. L. Walker, Mathematical Methods	
	for Physics, Benjamin Publishers (1973).	
	4. James W. Brown and R. V. Churchill Complex	

	Variables and Applications, 6th Edition
	(international), McGraw - Hill (1996).
	5. L. A. Pipes, Applied Mathematics for Engineers and
	Physicists, 3rd Edition, McGraw-Hill (1971).
	6. W. W. Bell, Special Functions for Scientists and
	Engineers,
	D. Van Nostrand Company Ltd (2004).
	7. Charlie Harper, Introduction to Mathematical
	Physics, PHI.
	8. Murray R. Spiegel, Theory and problems in Complex
	Variables by (Schaum' series) (2009).
	9. Murray R. Spiegel, Theory and problems of advanced
	Mathematics for Engineers and Scientists by
	(Schaum's series) (1980).
Course Outcomes:	Students will be able to
	1. Analyze the necessary mathematical concepts.
	2. Demonstrate proficiency in mathematical skills
	required for a master's in Physics.
	3. Apply the mathematical skills in other courses of
	Physics.
	4. Evaluate the mathematical background of various
	concepts in physics.

Title of the Course: Classical Mechanics

Number of Credits: 4

Course Code: PHY-501

Prerequisites for the	Should have studied basic courses in mechanics in B.Sc.	
<u>course:</u>	and Mathematics.	
Course Objectives:	This course is aimed at understanding intermediate to	
	advanced classical mechanics and to build the necessary	
	framework for other topics that requires classical	
	mechanics such as quantum mechanics, statistical	
	mechanics and electromagnetism.	
Content:	1. Newton's Laws of Motion	6 hours
	Mechanics of a single particle, Mechanics of a system	
	particles, Constraints and their classification, Principle of	
	virtual work, D'Alembert's principle.	
	2. Lagrangian Formulation	10 hours
	Degrees of Freedom, Generalized Coordinates, Calculus	
	of variations, Hamilton's principle, Euler-Lagrange's	
	equations of motion, Application to non-holonomic	
	systems, Advantages of a variational principle	
	formulation, Conservation theorems and symmetry	
	properties.	8 hours
	3. Rigid Body Dynamics	
	Eulerian angles, Inertia tensor, Angular momentum of	
	rigid body. Free motion of rigid body, Motion of	10 hours
	symmetric top.	
	4. Hamilton's equation of motion	
	Legendre transformation and the Hamilton equations of	
	motion, cyclic coordinates and conservation theorems,	
	Routh's procedure and oscillation about steady motion,	
	Derivation of Hamilton's equations from a variational	8 hours
	principle, Principle of least action.	
	5. Canonical Transformations	
	Equations of canonical transformations, Examples of	
	canonical transformations, Poisson brackets and other	
	canonical invariants, Equations of motion, Infinitesimal	
	canonical transformation theorems in Poisson bracket	
	formulation, Angular momentum, Poisson brackets	6 hours
	relations, Lagrange brackets.	
	6. Hamilton - Jacobi Theory	
	H-J equation for Hamilton's principal function, Harmonic	
	oscillator problems, H -J equation for characteristic	7 hours

	function, Action angle, Kepler's problem.	
	7. Two-body Central Force Problem	
	Equations of motion and first integrals, Classification of	
	orbits, virial theorem, Differential equation and 5 hours	
	integrable power law potentials, Kepler's problem.	
	8. Small Oscillations	
	Simple Harmonic Oscillations, Damped Oscillations,	
	Forced Oscillations without and with damping, Coupled	
	Oscillations.	
Pedagogy:	Lectures/ tutorials/ assignments. Sessions shall be	
	interactive in nature to enable peer group learning.	
References/Readings	1. H. Goldstein, Classical Mechanics. McMillan, Bombay,	
	1998.	
	2. J. C. Upadhyaya, Classical Mechanics. Himalaya,	
	Publishing House, Mumbai, 1991.	
	3. M. G. Calkin, Lagrangian and Hamiltonian Mechanics.	
	World Scientific, 1996.	
	4. N. C. Rana, and P. S. Joag, Classical Mechanics. Tata	
	Mcgraw-Hill, 1991.	
	5. P. V. Panat, Classical Mechanics. Alpha Science	
	International Ltd, 2004.	
Course Outcomes:	Students will be able to	
	1. Apply the principles of Lagrange-Hamilton formalism to	
	classify and explain the motion of a mechanical system.	
	2. Create equations of motion for complex mechanical	
	systems in classical mechanics by applying the	
	formalism of Lagrangian and Hamiltonian.	
	3. Analyze the differential equations of orbit and	
	determine the stability of the orbit under central force.	
	4. Evaluate and contrast the differences between	
	Lagrangian and Hamiltonian formalism, Galilean and Lorentz transformation, and various reference frames.	

Title of the Course: Electromagnetic Theory

Number of Credits: 4

Course Code: PHY-502

Prerequisites for the	Should have studied electrostatics and magnetostatics at	
course:	the graduation level.	
Course Objectives:	The aim of this course is to develop understanding of	
	time varying scalar and vector electromagnetic fields	
	and relativity.	
	To inculcate fundamental concepts related to	
	electromagnetic waves, their transmission via wave	
	guides, radiation and plasma.	
Content:	1. Maxwells Equations:	10 hours
	Displacement current, Maxwell's equations, Vector	
	and Scalar potentials, Gauge transformation, Lorentz	
	and Coulomb gauge, Poynting's theorem,	
	Conservation of energy and momentum for charged	
	particles and fields.	9 hours
	2. Electromagnetic Waves	
	Plane electromagnetic waves and their propagation in	
	non- conducting and conducting media, Frequency	
	dispersion in conductors	10 hours
	3. Electromagnetic Radiation	
	Retarded Potentials, Fields and radiation by localized	
	dipole, Lienerd Weichert potentials, Power radiated	
	by an accelerated charge.	9 hours
	4. Physics of Plasmas	
	Electrical neutrality in a plasma, Particle orbits and	
	drift motion in a plasma, Magnetic mirrors, The hydro-	
	magnetic equations, The pinch effect, Plasma	10 h a
	oscillations and wave motion, Reflection from a	10 hours
	plasma (ionosphere). 5. Wave Guides	
	Propagation of Waves between conduction planes, Wave guides in arbitrary cross-section, Wave -guides in	
	Rectangular Cross-section, Coaxial Wave guides in	
	Resonant Cavities, Dielectric wave guides.	12 110013
	6. Relativistic Electrodynamics	
	Lorentz transformation as four dimensional orthogonal	
	transformation, Lorentz matrix, four vectors in	
	mechanics and electrodynamics, Lorentz covariance of	
	Maxwell equations, field tensor, transformation of	

fields, field due to a point charge in uniform motion.	
Pedagogy: Lectures/ tutorials/ assignments. Sessions shall be interactive in nature to enable peer group learning.	
References/Readings Text Books / References:	
1. J. B. Marion, Classical Electromagnetic	
Radiation, Academic Press, New York (1980).	
2. J. R. Reitz and F. J. Milford, Foundations of	
Electromagnetic theory, Addison – Welsey, Reading (1960).	
3. B. B. Laud, Electromagneties, Wiley Eastern Ltd., New Delhi (1983).	
 S. P. Puri, Classical Electrodynamics, Tata McGraw- FEII Publishing Co. Ltd. New Delhi (1997). 	
 David J. Griffiths, Introduction to Electrodynamics, Prentice - Hall of India Pvt. Ltd., New Delhi (1995). 	
6. J. D. Jackson, Classical Electrodynamics, Wiley, New York (1995).	
7. W. H. Panofsky and M. Philips, Classical Electricity	

	and Magnetism, Addison-Wesley Publication, 1962.
Course Outcomes:	Student will be able to
	 Analyse the nature of electromagnetic fields due to time varying charge and current distribution using Maxwell's equations. Describe the properties of plane waves in unbounded space, and understand such concepts
	 as wavelength, phase velocity, and attenuation. 3. Develop fundamental concepts of plasma systems using the concepts of electromagnetic theory. 4. Apply equations of electromagnetism to the
	analysis of waveguides. 5. Develop an understanding of the principles of relativistic electrodynamics.

Title of the Course: Electronics

Number of Credits: 4

Course Code: PHY-503

Prerequisites for	Should have studied the Electronics courses in Physics at	
the course:	graduation level.	
Course Objectives:	The aim of the course is to introduce students to wide	
	range of electronic circuits and their applications in	
	Physics such as OP-AMPs. They also get basic	
	understanding of opto-electronic devices, modulation,	
	signals, microprocessor and memories.	
Content:	1. OP-AMP Applications	15 hours
	OP-AMPS with negative feedback, Voltage controlled	
	voltage source (VCVS), Current controlled voltage	
	source (ICVS), Voltage controlled current source	
	(VCIS), Current controlled current source (ICIS),	
	Inverting and noninverting amplifier circuits, Open-	
	loop frequency and phase response, Closed-loop	
	frequency response, Differential amplifier,	
	Instrumentation amplifier, DC and AC amplifiers,	
	Summing, scaling and averaging amplifier, Voltage to	
	current converter, Current to voltage converter.	15 hours
	2. Opto-electronic devices	
	Radiative and non-radiative transitions, Characteristics	
	of LED, Photoconductor, Photo diode, Photo	
	transistor, Photo detector, Solar cell, Semiconductor	
	laser; Optical fiber, Optical fiber waveguides,	
	Fundamentals of optical communication	15 hours
	3. Communication Electronics	
	Analog and digital signals, Modulation, Types of	
	modulation, Basic principles of amplitude, frequency	
	and phase modulation, Simple circuits for amplitude	
	modulation and demodulation, Digital modulation and demodulation, Microwave Oscillators, Cavity	
		15 hours
	resonators, Standing wave detector.4. Digital Electronics	15 hours
	 Digital Electronics Types of signals, Digital signal processing (DSP) basics, 	
	A/D and D/A conversion methods, DSP applications;	
	Introduction to Microprocessors, Elements of 8-bit	
	Microprocessors (INTEL 8085); Memory and storage,	
	RAM, ROM, PROM and EPROM, Flash memories,	
	Magnetic and optical storage.	

Pedagogy:	Lectures/tutorials/assignments. Sessions shall be
	interactive in nature to enable peer group learning.
Poforoncos/Pooding	
References/Reading	1. Millman, J. and Halkias, C. C., Integrated Electronics,
<u>s</u>	Analog and Digital Circuits and Systems, McGraw – Hill
	Book Co. Tokyo (1997)
	2. Boylestad, R. L. and Nashelsky L., Electronic Devices &
	Circuit Theory, XI Edn. Prentice-Hall of India (2015).
	3. Floyd, T. L., Electronic Devices, V Edn. Pearson
	Education Asia (2001).
	4. Gayakwad, R, A., Op-Amps and Linear Integrated
	Circuits, IV Edn. Prentice-Hall of India (2002).
	5. Chen, Chin-Lin, Elements of Optoelectronics and Fiber
	Optics, McGraw-Hill Book Co. New Delhi (2014).
	6. Kennedy, G., Electronics Communication Systems, IV
	Edn, Tata McGraw-Hill Book Co. New Delhi (2003).
	7. Shrader, R., Electronic Communication, Glencoe
	Division of MacMillan (1993).
	8. Kasap, S. O., Optoelectronics and Photonics: Principles
	and Practices, Dorling Kindersley India (2009)
	9. Floyd, T. L., Digital Fundamentals, VII Edn. Pearson
	Education (2002).
	10. Smith, S. W., Digital Signal Processing, Elsevier India
	(2006).
Course Outcomes:	Student will
	1. Understand the principles and circuits in
	electronics and use them in various applications.
	2. acquire knowledge about working principles of
	opto-electronic devices and communication
	electronics.
	3. get exposure to microprocessor and memory
	devices.
	4. Be able to analyse process of AM and FM
	communication.

Title of the Course: Electronics Practical

Number of Credits: 2

Course Code: PHY-521

Prerequisites for the	Nil	
<u>course:</u>		
Course Objectives:	This course provides laboratory training in designing, and constructing electronics circuits commonly used in a Physics laboratory.	
<u>Content:</u>	 Experiments are to be performed on following topics (minimum 8) with emphasis on designing and constructing the circuit on a bread board. Operational Amplifier parameters Design and Construction of Wien Bridge Oscillator Design and Construction of phase shift oscillator Design and Construction of Astable Multivibrator Design and Construction of Monostable Multivibrator Design and Construction of Monostable Multivibrator Schmitt Trigger circuit and its use as a zero crossing detector and squaring circuit Voltage Regulator Constant Current Source Design and Construction of Function generator Design and construction of Negative nonlinear resistor J. K. flip-flop counter: Scale of 16 and 10 using IC Adder and Subtractor Circuits 	60 hours
Pedagogy:	Laboratory Experiments	
References/Readings	 D. P. Leach, A. P. Malvino and G. Saha, Digital Principles and Applications. Tata Mc Graw Hill 7e, 2011. J. Millman and C. C. Halkias, Integrated Electronics: Analog and Digital Circuits and Systems. McGraw Hill International Student Ed., 1972. LM317 – 3 Terminal Adjustable Voltage regulator datasheet Rev. X, Texas Instruments Wikibooks – Negative resistance, Negative differential resistance. https://en.wikibooks.org/wiki/Circuit_Idea 	

Course Outcome:	Student will be able to
	1. Prepare for laboratory work, by reading from books /
	laboratory manual / datasheet.
	2. Design and construct electronic circuits by identifying
	and fetching different components.
	3. Record observations from different measuring
	instruments and record them neatly.
	4. Plot graphs and analyze the results.
	5. Demonstrate the ability to maintain a laboratory
	notebook.
	6. Prepare lab reports in standard scientific format.

Title of the Course: Computer Programming in Fortran 95

Number of Credits: 2

Course Code: PHY-522

Effective from AY: 2022 Prerequisites for the	Nil	
<u>course:</u>		
Course Objectives:	This course develops concepts of computer programming	
	in general and introduces programming language	
	FORTRAN 95.	
Content:	1. Fundamentals of Computer Programing	15 hours
	Programming Languages, Fortran Evolution, Character Set, Intrinsic Types, Numeric Storage, Literal Constants, Names, Significance of Blanks, Implicit Typing, Numeric and Logical Type Declarations, Character Declarations, Initialisation, Constants (Parameters), Comments, Continuation lines, Expressions, Assignment, Intrinsic Numeric Operations, Relational and Intrinsic Logical Operators, Intrinsic Character Operations, Operator Precedence, Mixed Type Numeric Expressions, Mixed Type	
	 Assignment, Integer Division, Formatting input and output, WRITE Statement, READ Statement, Prompting for Input, Reading and writing to a file, How to Write a Computer Program, Statement Ordering, Compiling and Running the Program, Practical Exercise 1 2. Logical Operations and Control Constructs Relational Operators, Intrinsic Logical Operations, Operator Precedence, Control Flow, IF Statement, IF THEN ELSE Construct, IF THEN ELSEIF Construct, Nested and Named IF Constructs, SELECT CASE Construct, The DO construct, Conditional Exit 	15 hours
	 Loop, Conditional Cycle Loops, Named and Nested Loops, Indexed DO Loops, Practical Exercise 2 3. Arrays Declarations, Array Element Ordering, Array Sections, Array Conformance, Array Syntax, Whole Array Expressions, WHERE statement and construct, COUNT, SUM, MOD, MINVAL, MAXVAL, MINLOC and MAXLOC functions, Array Constructors, The RESHAPE Intrinsic Function, Array Constructors, The RESHAPE Intrinsic Function, Named Array Constants, 	15 hours 15 hours

	1		1
		Allocatable Arrays, Deallocating Arrays, Vector and	
		Matrix Multiplication, Practical Exercise 3.	
	4.	Procedures	
		Program Units, Introduction to Procedures, Intrinsic	
		Procedures, Intrinsic statement Mathematical	
		Intrinsic Function Summary, Numeric Intrinsic	
		Function Summary, Character Intrinsic Function	
		Summary, Main Program Syntax, Functions,	
		Subroutine and Functions, Practical Exercise 4	
Pedagogy:	Le	ctures/Laboratory work/self-study	
References/Readings	1.	V. Rajaraman, Computer Programming in FORTRAN	
		90 and 95, Prentice-Hall of India, New Delhi 1999.	
	2.	Martin Counihan, Fortran 95, UCL Press Limited	
		University College London (1996).	
	3.	Stephen Chapman, Fortran 95/2003: for Scientists	
		and Engineers, McGraw-Hill (2007).	
Course Outcomes:	Stu	dent will be able to	
	1.	Understand programming in general;	
	2.	Understand FORTRAN programming language;	
	3.	Write and run simple programs.	
	4.	Compose programs for regression analysis and error	
		analysis	

Title of the Course: Computer programming with C

Number of Credits: 2

Course Code: PHY-523

Prerequisites for the	Nil	
course:		
Course Objectives:	This course develops concepts of computer programming	
	in general and introduces programming language C.	
Content:	1. Introductory Concepts	7 hours
	Introduction to computers, Introduction to Linux OS,	
	Linux basics, Introduction to C, writing a C Program,	
	Compiling and Executing the Program, Error	
	Diagnostics, Some simple C Programs, Desirable	
	Program Characteristics.	
	2. C Fundamentals	10 hours
	The C character set, Identifiers and Keywords, Data	
	types, Constants, variable and Arrays, Declarations,	
	Expressions, Statements, Symbolic Constants	
	3. Operators and Expressions	10 hours
	Arithmetic Operators, Unary Operators,	
	Relational Logical Operators, Assignment	
	Operators, the Conditional Operators, Library	
	Functions.	7 hours
	4. Data Input and Output	
	Preliminaries, Single character input and output,	
	entering Input data, writing output data, Opening	
	and closing data file, format statements.	10 hours
	5. Control Statements	
	Preliminaries, Branching statements, Looping	
	statements, nested control structure, switch, break,	
	continue, go to statements. Practical Exercise	8 hours
	6. Functions	
	Defining functions, accessing functions, Passing	
	arguments to a function. Practical Exercise	8 hours
	7. Arrays	
	Defining an array, processing an array, passing arrays	
	to functions, multidimensional arrays. Practical	
	Exercise	
Pedagogy:	Lectures/ Laboratory work/self-study	
References/Readings	1. Byron Gottfried, Programming with C, Tata McGraw-	
	Hill (1996).	

Course Outcomes:	Student will be able to	
	1. Understand programming in general;	
	2. Understand C programming language;	
	3. Write and run simple programs.	
	4. Compose programs for regression analysis and error	
	analysis	

Programme: M. Sc. (Physics) Course Code: PHY-524

Title of the Course: Computer programming with Python

Number of Credits: 2

Prerequisites for the	Nil		
<u>course:</u>			
Course Objectives:	Th	is course develops concepts of computer programming	
	in (general and introduces programming language Python.	
Content:	1.	Fundamentals of Python:	8 hours
		Introduction to programming in Python, installation	
		and writing, and running Python programs on Windows and Linux	
	2.	Handling data:	8 hours
		Data types and variables, user input and output,	
		mathematical operators	
	3.	Decision making and looping:	12 hours
		Logical expressions and operators, conditional	
		operators, lists, for loop, while loop	
	4.	Arrays and Functions:	12 hours
		Lists, tuples, sets, special arrays, writing and calling	
		user-defined functions,	
	5.	Data plotting and fitting:	10 hours
		scattered plots, bar plots, histograms, reading data and	
		plotting, linear or quadratic least square fitting	
	6.	Error analyses:	10 hours
		Propagation of errors, significant figures, Gaussian	
		distribution, mean, median, standard deviation,	
		variance, weighted average.	
Pedagogy:	Leo	ctures/ Laboratory work/self-study	
References/Readings	1.	"Python Cookbook: Recipes for Mastering Python	
		3" by by David Beazley and Brian K. Jone, O'Reilly	

	N	1edia (2013)	
	2. "I	Python: The Complete Reference" by Martin C.	
	В	rown, McGraw Hill (2018)	
Course Outcomes:	Studer	nt will be able to	
	1.	Understand programming in general;	
	2.	Understand Python programming language;	
	3.	Write and run simple programs.	
	4.	Compose programs for plotting, regression analysis	
		and error analysis	

Title of the Course: Quantum Mechanics

Number of Credits: 4

Course Code: PHY-504

Prerequisites for the	Studied Physics, including an introductory course on	
	Quantum Mechanics at graduate level	
<u>course:</u>		
Course Objectives:	1. To develop basic formalisms of non-relativistic	
	Quantum Mechanics.	
	2. To illustrate the concepts for analyzation of simple	
	quantum mechanical systems	
<u>Content:</u>	1. Schrodinger's Equation and Hermitian operators	8 hours
	(a) Time-dependent Schrodinger equation, continuity	
	equation, expectation values, Ehrenfest's theorems, time-	
	independent Schrodinger equation and stationary states.	
	(b) Hermitian operators, eigenvalues and eigenstates of	
	Hermitian operators, momentum eigenfunctions,	
	orthogonality and completeness of wave functions,	
	Computability and compatibility of observables, parity	
	operation.	
	2. The Schrodinger equation in three dimensions	12 hours
	Separation of the Schrodinger equation in Cartesian	
	coordinates, Central potential, separation of the	
	Schrodinger equation in spherical polar coordinates, The	
	free particle, The three-dimensional square well	
	potential, The hydrogen atom, The three-dimensional	
	isotropic oscillator.	5 hours
	3. Vector space formulation of quantum mechanics	
	Dirac Notation, representation of states and observables,	
	bra and ket vectors, linear operators, relation with wave	
	mechanics, algebra of Hermitian operators, matrix	
	representation, unitary operators, Schrodinger and	
	Heisenberg representations, linear harmonic oscillator	
	problem by operator method.	10 hours
	4. Angular Momentum theory	
	Angular Rotations in Classical and Quantum Mechanics,	
	Rotational Symmetry and conservation of angular	
	momentum, Treatment of general angular momentum by	
	operator method, eigenvalues and eigenvectors, Eigen	
	values and eigenfunctions of L^2 and Lz operators, ladder	
	operators L^+ and L^- , spin angular momentum, algebra of	
	Pauli matrices, Pauli representation of angular	
	momentum operators. Addition of two angular momenta,	
<u> </u>	mementum operators / aution of two angular momenta,	

	spin-orbit interaction, Clebsch Gordon coefficients.	8 hours
	5. Approximation methods for stationary problems	0 110013
	Time-independent perturbation theory for a non-	
	degenerate energy level, Time-independent perturbation	
	theory for a degenerate energy level, The variational	
	method, The WKB approximation.	7 hours
	6. Approximation methods for time-dependent	
	problems	
	Time-dependent perturbation theory, General features,	
	Time-independent perturbation, periodic perturbation,	10 hours
	The adiabatic approximation, The sudden approximation	
	7. Quantum Collision Theory	
	Scattering experiments and cross-sections, potential	
	scattering and general features, the method of partial	
	waves, Application of the partial-wave method, the	
	integral equation of potential scattering, The Born	
	approximation, Collision between identical particles,	
	Collision involving composite systems.	
Pedagogy:	lectures/ tutorials/ assignments. Sessions shall be	
<u>r cuugogy</u> .	interactive in nature to enable peer group learning.	
	interactive in nature to enable peer group learning.	
References/Readings	Text Books / References	
	1. A. K. Ghatak and S. Lokanathan, Quantum	
	Mechanics: Theory and Applications, Springer	
	(2004)	
	2. P. M. Mathew and K. Venkatesan, A Text Book of	
	Quantum Mechanics, 2/e, Tata McGraw Hill (2017)	
	3. L. I. Schiff and Jayendra Bandhyopadhyay, Quantum	
	Mechanics, 4/e, McGraw-Hill (2017).	
	4. V. K. Thankappan, New Age International Publishers	
	(2012)).	
	5. V. Devanathan, Quantum Mechanics, 2/e Narosa	
	Publishing House (2015).	
	6. David J. Griffiths, Introduction to Quantum	
	Mechanics 2/e, Cambridge India, (2016).	
	7. J. J. Sakurai Modern Quantum mechanics, Addition-	
	Wesley Publishing Company, (1994).	
	8. R. Eisberg and R. Resnick, Quantum Physics of	
	atoms, molecules, solids, nuclear and particles, 2/e,	
	John Wiley and Sons, (1985).	
	9. W. Greiner, Introductory Quantum mechanics,	
	Springer Publication, (2001).	

	 R. L. Liboff, Introductory Quantum Mechanics, 4e, Pearson Education Ltd (2003). Nouredine Zettili, Quantum Mechanics: Concepts and Applications 2/e, Wiley India (2016)
<u>Course Outcomes:</u>	 Students will be able to 1. solve wave equations for simple three- dimensional systems. 2. Acquire knowledge and skills to describe the structure of the hydrogen atom and show an understanding of quantisation of angular momentum and spin as well as the rules for quantisation and addition of these. 3. understand the concepts of approximation methods for solving Schrodinger equations 4. gain the knowledge about fundamental scattering of quantum particles.

Title of the Course: Statistical Mechanics

Course Code: PHY-505 Number of Credits: 4

Duous quisites fourths	Chauld have studied Dhusics or Mathematics at	
Prerequisites for the	Should have studied Physics or Mathematics at	
<u>course:</u>	graduation level. It is assumed that students have a basic	
	working knowledge of classical and quantum mechanics,	
	including Hamiltonian formulation and density matrices.	
Course Objectives:	This course develops concepts in classical laws of	
	thermodynamics and their application, postulates of	
	statistical mechanics, statistical interpretation of	
	thermodynamics, microcanonical, canonical and grant	
	canonical ensembles; the methods of statistical	
	mechanics are used to develop the statistics for Bose-	
	Einstein, Fermi-Dirac and photon gases.	
Content:	1. Kinetic Theory and Equilibrium state of Dilute Gas	12 hours
	Formulation of problem, binary collisions, Boltzmann	
	transport equation, Boltzmann's H theorem, Maxwell-	
	Boltzmann distribution, Method of the most probable	
	distribution, analysis of the H theorem, recurrence	
	and reversal paradoxes, Validity of the Boltzmann	
	transport equation.	
	2. Classical Statistical Mechanics	12 hours
	Review of laws of thermodynamics, Entropy,	12 110 010
	Thermodynamic Potentials, Postulate of Classical	
	Statistical Mechanics, Microcanonical ensemble,	
	derivation of thermodynamics, equipartition theorem,	
	Classical ideal gas, Gibbs paradox.	
	3. Canonical and Grand Canonical Ensembles	12 hours
	Canonical ensemble, energy fluctuations in canonical	
	ensemble, grand canonical ensemble, density	
	fluctuations in grand canonical ensembles,	
	equivalence of canonical and grand canonical	
	ensembles, behaviour of W(N), meaning of Maxwell	
	construction.	8 hours
	4. Quantum Statistical Mechanics	onours
	Postulates of quantum statistical mechanics, density	
	matrix, ensembles in quantum mechanics, third law of	
	thermodynamics, ideal gases in microcanonical and	
	grand canonical ensembles, foundations of statistical	8 hours
	mechanics.	0 110015
	5. Ideal Fermi Gas	
	5. IUEAI FEITIII UAS	

		I
	Equation of state of Ideal Fermi Gas, theory of white dwarfs, Landau diamagnetism, de Hass-Van Alphen effect, Pauli paramagnetism. 6. Ideal Bose Gas Photons, phonons, Bose-Einstein condensation.	8 hours
Pedagogy:	Lectures/ tutorials/assignments. Sessions shall be	
	interactive in nature to enable peer group learning.	
References/Readings	 Kerson Huang, Statistical Mechanics, 2/e, Wiley India 2008. 	
	2. B. B. Laud, Fundamentals of Statistical Mechanics, New Age International Ltd. New Delhi 1998.	
	 F. Reif, Fundamentals of Statistical and Thermal Physics, Waveland Press 2009. 	
	 L. D. Landau and E. M. Lifshitz, Statistical Mechanics, Pergamon Press 1969. 	
	 R. P. Feynmann, Statistical Physics, The Benjamin Cummings Publishing Co 1981. 	
	 S. K. Sinha, Introduction to Statistical Physics, Narosa Publishing House, New Delhi 2007. 	
	 Tony Guenault, Statistical Physics, New Age International 	

	8. Francis W. Sears and Gerhard Salinger,
	Thermodynamics,
	Kinetic Theory, and Statistical Thermodynamics,
	Addison-
	Wesley Principles of Physics Series, 1975.
Course Outcomes:	Students will be able to:
	1. Connect between statistics and thermodynamics.
	2. differentiate between different ensemble theories
	used
	to explain the behaviour of the systems.
	3. differentiate between classical statistics and
	quantum
	statistics.
	4. explain the statistical behaviour of ideal Bose and
	Fermi
	systems.
	5. Apply techniques from statistical mechanics to a
	range of situations.

Programme: M. Sc. (Physics) Course Code: PHY-506

Title of the Course: Nuclear and Elementary Particle Physics

Number of Credits: 4

Prerequisites for the	Concepts like Radioactivity, Nuclear fission, and	
course:	knowledge of solution of 1 dimensional Schrodinger	
	Equation	
Course Objectives:	To introduce students to the fundamental principles and	
<u>course objectives.</u>	concepts governing nuclear and particle physics and have	
	a working knowledge of their application to real-life	
	problems.	
<u>Content:</u>	1. Basic Properties of Nuclei:	8 hours
	 a. Nuclear mass, charge, radius, binding energy, nuclear spin, and parity. 	
	b. Magnetic moments and electric quadrupole	
	moments.	
	2. Two-Body Problem:	12 hours
	a. Brief review of quantum mechanics tools, properties	
	of deuteron, theory of the ground state of deuteron,	
	magnetic moment, and electric quadrupole moment	
	of deuteron.	
	b. Theory of nucleon-nucleon scattering at low energy,	
	phase shift and scattering length, effective range	
	theory, experimental determination of low energy	
	parameters.	
	c. Nature of nuclear forces and Meson theory of	
	nuclear force.	10 hours
	3. Nuclear Models:	
	a. Liquid drop model, Weizsacker's mass formula,	
	stable and unstable nuclei, mass parabolas.	
	b. Nuclear shell model, energy levels in a three-	
	dimensional harmonic oscillator well potential, spin	
	orbit interaction, prediction of magic numbers,	
	ground state spins and parities, c. Magnetic moments, Schmidt lines, nuclear	
	quadrupole moments, and collective model.	
	4. Nuclear Transformations:	10 hours
	a. Alpha decay, barrier penetration problem, Gamow's	
	theory of alpha decay, Geiger-Nuttal law, alpha	
	spectra and nuclear energy levels.	
	b. Beta decay, experiments in beta spectra, neutrino	
	hypothesis, Fermi's theory of beta decay, Kurie plots,	
	ft values, allowed and forbidden transitions,	
	selection rules, electron capture, parity violation in	
	beta decay, experimental verification, measurement	
	of neutrino helicity.	
	c. Gamma transitions, multipole radiations, quantum	

	theory of the transition probability, selection rules,	
	angular correlation, calculations of transition rates	
	and comparison with experiments, internal	
	conversion.	4 hours
	5. Nuclear Reactions:	
	d. Rutherford scattering, cross-sections, decay rates,	
	resonances, Breit-Wigner formula, nuclear fission	
		10 hours
	6. Elementary Particles:	
	a. Classification of elementary particles; properties of quarks and leptons, properties of mesons and	
	baryons. Classification of fundamental forces;	
	Strong, Weak and Electromagnetic interactions.	
	b. Introduction to Feynman diagrams, relativistic	
	kinematics, quark model and eightfold way.	
	c. Particle quantum numbers; charge, isospin,	
	strangeness and parity, Gell-Mann Nishijima	
	formula, conservation laws and symmetries.	
		6 hours
	a. Introduction to modern accelerators, event rates	
	and luminosity. Large detector systems at electron-	
	positron, electron-proton and hadron colliders.	
	b. Interaction of particles with matter, principle of gas chambers, silicon detectors, scintillators, time-of-	
	flight detectors, and calorimetry.	
Pedagogy:	Lectures / tutorials/assignments. Sessions shall	
	be interactive in nature to enable peer group	
	learning.	
References/Readings	1. H. Enge, Introduction to Nuclear Physics, Addison-	
<u>Nererences/Neadings</u>		
	Wesley (1974).	
	2. E. Segre, Experimental Nuclear Physics, John Wiley	
	(1960).	
	3. V. Devanathan, Nuclear Physics, Alpha Science	
	International Ltd, (2011).	
	4. S. N. Ghoshal, Nuclear Physics, S. Chand and Co. (2019)	
Course Outcomes:	Student will be able to	
	1. Apply the models describing the basic nucleon and	
	nuclear properties.	
	2. Describe the properties of strong and weak interaction.	
	3. Explain the different forms of radioactivity and	
	account for their occurrence.	
	4. Classify elementary particles and nuclear states	
	in terms of their quantum numbers.	

Title of the Course: Atomic Physics

Programme: M. Sc. (Physics) Course Code: PHY-507

Number of Credits: 4

Prerequisites for the	Knowledge of concepts like Bohr model of atom,	
Course:	Electronic transition in atoms and atomic spectra.	
Course Objectives:	This course is aimed at understanding the atomic	
-	structure and atomic spectra	
Content:	1. Early Atomic Physics	6 hours
	Atomic spectra of hydrogen, The Bohr's theory,	
	Relativistic effects, Moseley and atomic number,	
	Radiative decay, Einstein A and B coefficients, The	
	Zeeman effect.	
	2. One-electron atoms:	12 hours
	The Schrödinger equation for one-electron atoms,	
	energy levels, the Eigen functions of the bound states,	
	expectation values. Transitions, selection rules, parity,	
	spin of the electron, the spin-orbit interaction, Fine	
	structure of hydrogenic atoms, The Lamb shift,	12 hours
	transitions between fine-structure levels.	
	3. Two-electron atoms:	
	The Schrödinger equation for two-electron atoms, The	
	ground state of two-electron atoms, Excited states of	15 hours
	two-electron atoms. Doubly excited states of two	
	electron atoms.	
	4. Many-electron atoms:	
	Shell structure and the periodic table, The central field	
	approximation, The Hartree-Fock method and the self-	15 hours
	consistent field, Corrections to the central field	
	approximation. Correction effects, L-S coupling and j-j	
	coupling. Fine structure in the alkalis.	
	5. Interaction of atoms with electromagnetic radiation	
	and with static and magnetic field:	
	Many electron atoms in an electromagnetic field,	
	selection rules for electric dipole transitions, Oscillator	
	and line strengths, Retardation effects, Magnetic dipole	
	and electric quadrupole transitions, The spectra of the	
	alkalis, Helium and the alkaline earths, Atoms with	
	several optically active electrons, Multiplet structure, X-	
	ray spectra, The stark effect, The Zeeman effect.	
Pedagogy:	Lectures/tutorials/assignments. Sessions shall be	
	interactive in nature to enable peer group learning	

References/Reading	C. J. Foot, Atomic Physics, Oxford Master Series in
s	Physics (2005)
	B. H. Bransden, C. J. Joachain, Physics of Atoms and
	Molecules, Pearson (2004)
	D. C. Jones, Atomic Physics, CRC Press/Sarat Book
	House (2018)
	S. N. Ghoshal, Atomic Physics, S. Chand Publishing
	(2007)
Course Outcomes:	Students will be able to
	1. understand electronic structure of single electron and
	multielectron atoms
	2. calculate fine structure of atoms
	3. deduce the atomic spectra of simple atoms
	4. understand the interaction of atoms with electric and
	magnetic fields.

Programme: M. Sc. (Physics) Course Code: PHY-525

Title of the Course: General Physics Practical

Number of Credits: 4

Prerequisites for the	Nil	
<u>course:</u>		
Course Objectives:	This course provides laboratory training in performing	
	experiments that verify important physical laws and using	
	modern and novel techniques of measurements.	
Content:	Short Lecture Course on – Theory of errors, Treatment of	120
	Errors of observation, linear least squares fitting and Data	hours
	analysis.	
	The experiments on the following topics (any 12) are to	
	be performed with emphasis on the estimation and	
	calculation of errors.	
	1. Types of Statistical Distributions	
	2. Analysis of Sodium Spectrum – Quantum defect and	
	Effective quantum number	
	3. Michelson Interferometer/Fabry-Perot	
	Interferometer	
	4. Diffraction experiments using laser- single slit,	
	double slit, grating	
	5. Polarization experiments using laser –linearly and	
	elliptically polarized light	
	6. Statistical Distribution of radioactive decay	
	7. Verification of Inverse Square Law using GM counter	
	8. Linear Absorption Coefficient of Aluminium using	
	GM counter	
	9. Verification of Debye Relaxation Law and	
	measurement of thermal relaxation of serial light	
	bulb	
	10. Thermal diffusivity of Brass	
	11. Thermometry – measurement of thermoemf of Iron-	
	Copper (Fe-Cu) thermocouple as a function of	
	temperature and verification of law of intermediate	
	metals	
	12. Calibration of Lock-in Amplifier	
	13. Measurement of mutual inductance of a coil using	
	lock-in amplifier	
	14. Measurement of low resistance using lock-in	
	amplifier	
	15. X-ray Emission – characteristics lines of a W target	

	16. Experiments using Strain Gauge
	17. Ultrasonic Interferometer
	18. Nonlinear dynamics – Feigenbaum circuit
	19. Nonlinear dynamics – Chua's circuit
	20. Verification of Percolation phenomena
	21. Measurement of electrical resistance of Ni wire to
	verify para to ferromagnetic phase transition
	22. Measurement of electrical resistance of NiTi based
	shape memory alloy
	23. Measurement of Young's modulus of Brass by
	Flexural vibrations
Pedagogy:	Lectures and Laboratory Experiments.
References/Readings	1. P. R. Bevington and D. K. Robinson, Data Reduction
	and Error Analysis for the Physical Sciences. McGraw
	Hill (Indian Edition), 2015.
	2. R. Srinivasan, K. R. Priolkar, and T. G. Ramesh, A
	Manual on Experiments in Physics. Indian Academy
	of Sciences, 2018.
Course Outcomes:	Student will be able to
	1. Employ proper techniques when making scientific
	measurements.
	2. Demonstrate the ability to use selected pieces of
	measuring devices including the multimeter,
	oscilloscope, and AC and DC power supplies, Lock-in
	Amplifier.
	3. Apply the appropriate physics to the physical
	situation presented.
	4. Estimate and translate errors and report quantities
	up to last significant digit.
	5. Formulate and report scientific conclusions based on
	data analysis.

Programme: M. Sc. (Phy Course Code: PHY-526	/sics)	Title of the Course: Methods of Experimental Physic	~s
Number of Credits: 4(1)	+3P)	The of the course. Methods of Experimental Hysk	
Effective from AY: 2022	•		
Prerequisites for the	Nil		
<u>course:</u>			
Course Objectives:	This o	course seeks to develop understanding of principles	
		easurement of various fundamental quantities in a cs laboratory.	
Content:	1.	Measurement of temperature	1 hours +
		Thermocouple, diode and semiconductor sensors,	15 hours
		RTD, pyrometer, Langmuir probes,	
	2.	Measurement of resistance	
		Two probe measurement and four probe	1 hours +
		measurement using constant current source and	15 hours
		constant voltage source, Lock-in amp, discharge of	
		capacitance	1 hours +
	3.	Measurement of capacitance	15 hours
		RC circuit, DC bridges, AC Bridges	1 hours +
	4.	Measurement of radiation	15 hours
		GM counter, ionization chambers, scintillation	
		detector, solid state detectors, CCD detectors	1 hours +
	5.	Measurement of magnetic flux	15 hours
		Force methods, induction methods (including	
		SQUID), Hall probe, indirect methods (MOKE)	1 hours +
	6.	Measurement of frequency	15 hours
		Resonance methods	9 hours
	7.	Estimation of errors in measurement.	
		Precision and accuracy, estimation of errors,	
		propagation of errors, general formula, least square	
		fitting, non-linear least square	
Pedagogy:	Lectu	res and Laboratory Experiments.	
References/Readings	1.	P. R. Bevington and D. K. Robinson, Data Reduction	
		and Error Analysis for the Physical Sciences,	
	2	McGraw Hill (Indian Edition) 2015. R. Srinivasan, K. R. Priolkar and T. G. Ramesh, A	
	2.	Manual on Experiments in Physics, Indian Academy	
		of Sciences, 2018.	
Course Outcomes:	Studer	nt will be able to	
	1.	Understand the advantages and disadvantages of	
		using a technique or probe for making scientific	
	_	measurements.	
	2.	Demonstrate the ability to use selected pieces of	

	macuring devices	
	measuring devices.	
	3. Estimate and translate errors and report quantities	
	up to last significant digit	
	4. Construct scientific apparatus for measurement of	
	physical quantities.	
Programme: M. Sc. (Ph	ysics) (Solid State Physics)	
Course Code: PHS-601	Title of the Course: Solid State Physics I	
Number of Credits: 4		
Effective from AY: 202	3-24	
Prerequisites for the	Should have basic knowledge of Quantum Mechanics and	
course:	Statistical Mechanics	
Course Objectives:	1. To introduce fundamental concepts of solids like	
	crystalline order, symmetry in solids, simple crystal	
	structures and their properties.	
	2. To acquaint with the concept of reciprocal lattice and	
	its importance in structure determination using x-rays.	
	3. To introduce different types of crystal bindings and	
	elastic properties of solids.	
	4. To familiarize the concept of lattice vibration and their	
	role in thermal and optical properties of solids.	
Contonti		20 hours
<u>Content:</u>	Crystal Structure	20 nours
	Crystals - Lattice, Bravais lattice, primitive unit cell,	
	symmetry of molecules and crystals, symmetry operations	
	and symmetry elements, Lattices in one, two and three	
	dimensions, Space groups, definitions of directions,	
	coordinates and planes.	
	Simple crystal structures: NaCl, CsCl, diamond, hexagonal	
	close-packed structure, cubic ZnS structure and their	
	properties, Non ideal crystal structures – random stacking	
	and polytypism	
	Reciprocal Lattice - Diffraction of waves by crystals, Bragg	
	law, Scattered wave amplitude - Fourier analysis, reciprocal	
	lattice vectors, diffraction conditions, Laue equations,	
	Brillouin zones, Geometric structure factor, Atomic	
	Structure factor	13 hours
	Point Defects General Thermodynamic Features, Color	
	centres, Line Defects: Dislocations	
	Crystal Binding and Elastic Constants	
	Crystals of inert gases - Van der Waals - London interaction,	
	repulsive interaction, equilibrium lattice constants,	
	cohesive energy, Ionic Crystals - Electrostatic or Madelung	
	Energy, evaluation of Madelung constant, covalent crystals,	
	bonding in metals and Hydrogen bonds, Atomic Radii,	15 hours
	Analysis of elastic strains, elastic compliance and stiffness	13 110013
	constants, elastic waves in cubic crystals	
	Thermal Properties	
	Vibrations of a one -dimensional monatomic lattice, first	
	Brillouin zone, group velocity, long wavelength limit,	

	derivation of force constant from experiment. Vibrations of	
	a one-dimensional diatomic lattice. Quantization of elastic	
	waves, phonon momentum, Inelastic scattering by	
	Phonons, Phonon Heat capacity, Planck distribution,	
	normal mode enumeration, density of states in one	
	dimension, density of states in three dimensions Debye	12 hours
	model for density of states, Debye T ³ law, Einstein model of	
	the density of states, Thermal conductivity - Thermal	
	resistivity of phonon gas, Umklapp process	
	Optical and Dielectric Properties	
	Macroscopic electric field, local electric field at atom,	
	dielectric constant and polarizability, Complex dielectric	
	constant, Classical theory of electronic polarization and	
	optical absorption, Structural Phase transitions,	
	Ferroelectric Crystals and Displacive transitions	
	Optical reflectance, Excitons, Raman effect in crystals.	
	Luminescence and Luminescence centres	
Pedagogy:	Lectures/ tutorials/ assignments.	
	Sessions will be interactive in nature to enable peer group	
	learning.	
<u>References/Readings</u>	1. C. Kittel, Introduction to Solid State Physics, Wiley India	
	(2019)	
	2. M. A. Omar, Elementary Solid State Physics; Principles	
	and Applications, Addison Wesley (2000)	
	3. Niel W. Ashcroft, N. David Mermin, Solid State Physics,	
	Harcourt Asia Pte Ltd. (2001)	
	4. G. Bums, Solid State Physics, Academic press, Inc.	
	London (1985)	
	5. A. J. Dekker, Solid State Physics, McMillan, India (1985)	
	6. J. S. Blakemore, W. B. Sauders, Solid State Physics,	
Course Outcomocu	Philadelphia (1969) Student will be able to	
Course Outcomes::	1. Understand the fundamental aspects related to	
	structure of solids and lattice symmetry.	
	2. Determine crystal structure of simple systems using x-ray	
	diffraction.	
	3. Differentiate between different types of crystal binding	
	and the elastic properties of solids	
	4. Formulate the idea of vibrating lattice, its quantization	
	and the role of phonons in thermal and optical	
	properties of solids.	

Course Code: PHS-602Title of the Course: Solid State Physics IINumber of Credits: 4

Prerequisites for the	Should have basic knowledge of Quantum mechanics and	
<u>course:</u>	statistical mechanics	
Course Objectives:	 To introduce electronic properties of solids To introduce the concept of formation of bands in solids. To acquaint with techniques associated with measurement of band structure and transport phenomena in solids. To introduce students to different types of magnetic order and superconductivity in solids 	
<u>Content:</u>	Metals: Drude and Sommerfeld models Free electron theory – Drude model - assumptions, failures of Drude model, Sommerfeld model, Successes and failures of the Sommerfeld model, Electrical conductivity, Experimental electrical resistivity of metals, Heat capacity of electron gas, Experimental heat capacity.	7 hours
	Nearly Free electron model Periodic potential, born – von Karman boundary conditions, Schrodinger equation in a periodic potential, Bloch's theorem, electronic band structure, single electron energy state, degenerate electron levels, Consequences of the nearly free electron model, Fermi surface. Tight binding model Band arising from a single electronic level, electronic	7 hours 7 hours
	wavefunctions, General points about the formation of tight binding bands, Group I and II metals, Group IV elements, transition metals, comparison of tight binding and nearly free electron band structure, crystal momentum, effective mass, holes. Semiconductors and Insulators	7 hours
	Band structure of Si and Ge, Band structure of direct gap III-V and II-VI semiconductors, Optical absorption and excitons, Thermal population of bands in semiconductors, Intrinsic carrier density, Impurities and extrinsic carrier density, degenerate semiconductors.	
	Measurement of Band structure Lorentz force and orbits, Landau levels, electronic density of states in a magnetic field, quantum oscillatory phenomena, de Hass – van Alphen effect, Cyclotron resonance, interband magneto optics, electron spectroscopy – angle resolved photoelectron spectroscopy, Some case studies – Copper, Sr ₂ RuO ₄ .	7 hours
	Transport Properties	7 hours

		1
	Thermal and electrical conductivity of metals, electron- electron scattering – Fermi liquid behaviour, Electrical conductivity of semiconductors, Disordered systems and hopping conduction, Hall effect, magnetoresistance in metals, magnetophonon effect, magnetoresistance in two dimensional systems, quantum Hall effect, fractional quantum Hall effect. Magnetic Properties Magnetic moments, Quantum mechanics of spin, Atom in mangetic field, Magnetic susceptibility, Diamagnetism, Paramagnetism, Semiclassical treatment, Quantum Theory of Paramagnetism, Hund's Rules, Crystal field, Paramagnetic Susceptibility of Conduction electrons, Van Vleck paramagnetism, Adiabatic demagnetization Ferromagnetism, The Weiss model of a ferromagnet, Origin of molecular field, Magnons, Domains, Antiferromagnetism, Neel's theory, Ferrimagnetism Superconductivity Experimental survey- Occurrence of Superconductivity, Destruction of superconductivity by magnetic fields, Meissner effect, Heat capacity, Energy gap, microwave and infrared properties, Isotope Effect Theoretical Survey - Thermodynamics of the transition, London equation, Coherence length, BCS theory, Flux	12 hours 6 hours
	London equation, Coherence length, BCS theory, Flux	
	quantization, Type II superconductors, Tunnelling, Josephson effects, High Tc superconductivity (introduction)	
Pedagogy:	Lectures/ tutorials /assignments. Sessions will be interactive in nature to enable peer group	
	learning.	
<u>References/Readings</u>	1. J. Singleton, Band theory and Electronic Properties of	
	Solids, Oxford University Press, (2014) 2. C. Kittel, Introduction to Solid State Physics, Wiley India	
	(2019)	
	3. Niel W. Ashcroft, N. David Mermin, Solid State Physics,	
	Harcourt Asia Pte Ltd. (2001)	
	4. M. A. Omar, Elementary Solid State Physics; Principles	
Course Outcomes::	and Applications, Addison Wesley (2000) Student will be able to	
	1. learn about electronic properties of solids	
	2. understand formation of bands, their importance in	
	classification of solids and theoretical models of	
	calculation of band structure.	
	3. get familiarized with some the techniques of band	
	structure measurement and comprehend the effect of band structure on electronic transport properties of	
	solids.	
	4. recognize diverse types of magnetic orders in solids	
	and phenomenon of superconductivity.	

Course Code: PHS-621Title of the Course: Solid State Physics PracticalNumber of Credits: 4

Prerequisites for the No	one	
course:		
Course Objectives: Th ex ex op ph	is course aims at developing advanced level perimental skills and competence in the analysis of perimental data on structural, magnetic, transport and otical properties of solids and relate them to different pysical concepts studied in the theory courses, PHS-601 d PHS-602.	
11 12 13 14 15	cubic crystal structures to determine their lattice constant, intensity ratios, and lattice type Measurement of dispersion relation of monoatomic and diatomic lattices using electrical equivalent circuits. Measurement of Resistivity of a metal and a Semiconductor by Four Probe Method Measurement of Thermoelectric Power of a metal Determination of Magnetic Susceptibility and Magnetic Moment of a Paramagnetic Material by Gouy's Method. Determination of Magnetic Susceptibility and Magnetic Moment of a Paramagnetic Liquid by Quinke's Method. Study of Hysteresis loop of magnetic materials. Determination of Lande's Splitting Factor, g, in an organic radical.	120 hours

	material.	
	A minimum of 12 experiments are expected to be done by the students.	
Pedagogy:	Laboratory experiments, self-study	
References/Readings	 Experimental Manuals assigned to each experiment. C. Kittel, Introduction to Solid State Physics, 7th Edition, John Wiley & Son, Inc. New York (1997). B.L. Worsnop & H.T. Flint, Advanced Practical Physics for Students, (1927). A. J. Dekker, Solid State Physics, McMillan, India (1985). Jerry D. Wilson, Physics Lab. Experiments 7/e, D. C. Heath and Company (2009). 	
<u>Course Outcomes:</u>	 Student will be able to Perform quantitative measurements and evaluation of various properties and constants introduced in the theory courses of Physics. Verify different laws and concepts learned in the theory courses of Physics Develop fine and intensive experimental skills. Interpret results, perform error analysis, analyze data and write reports. 	

Programme: M. Sc. (Physics) (Computational Physics)

Course Code: PHC-601Title of the Course: Advanced Quantum MechanicsNumber of Credits: 4

Prerequisites for	Should have knowledge of Quantum Mechanics	
thecourse:		
Course Objectives:	To introduce advanced topics in the field of quantum	
	mechanics such as many-body systems, relativistic wave	
	equations and relativistic fields	
<u>Content:</u>	Second Quantization	8 hours
	Identical Particles, Many-Particle States, and Permutation	
	Symmetry, Completely Symmetric and Antisymmetric	
	States, Bosons: States, Fock Space, Creation and	
	Annihilation Operators, The Particle-Number Operator,	
	General Single- and Many-Particle Operators, Fermions: States, Fock Space, Creation and Annihilation Operators,	
	Single- and Many-Particle Operators, Field Operators:	
	Transformations Between Different Basis Systems, Field	
	Operators, Field Equations, Momentum Representation:	
	Momentum Eigen functions and the Hamiltonian, Fourier	
	Transformation of the Density, The Inclusion of Spin.	
	Spin-1/2 Fermions	10 hours
	Noninteracting Fermions, The Fermi Sphere, Excitations,	
	Single-Particle Correlation Function, Pair Distribution	
	Function, Density Correlation Functions, and Structure	
	Factor, Ground State Energy and Elementary Theory of the	
	Electron Gas, Hamiltonian, Ground State Energy, in the	
	Hartree–Fock Approximation, Modification of Electron	
	Energy Levels due to the Coulomb Interaction, Hartree-	
	Fock Equations for Atoms.	10 hours
	Bosons	
	Free Bosons, Pair Distribution Function for Free Bosons,	
	Two-Particle States of Bosons, Weakly Interacting, Dilute	
	Bose Gas, Quantum Fluids and Bose–Einstein	
	Condensation, Bogoliubov Theory of the Weakly	10 hours
	Interacting Bose Gas, Superfluidity.	
	Green's Function	
	Interaction representation, driven harmonic oscillators,	
	Wick's theorem and generating functionals. Green's	
	functions, Green's function for free fermions, Green's	
	function for free bosons. Adiabatic concept, Gell-Mann	10 hours
	Low theorem, generating functions for free fermions,	10 hours
	spectral representation. Many particle Green's function Relativistic Wave Equations	
	Klein-Gordon equation, Plane wave solution, charge and	
	current densities, hydrogen atom. Dirac equation, algebra	
	of Dirac matrices, covariance of Dirac equation, algebra	
	or brac matrices, covariance of briac equation, plane	

	wave colutions equation in an electromagnetic field	
	wave solutions, equation in an electromagnetic field. Properties of Dirac electron. The spin of the Dirac particle,	
	Magnetic dipole moment of electron, Velocity operator,	
	Expectation value of the velocity. Parity, Charge	
	conjugation and time reversal operations, Parity	12 hours
	operation, Charge conjugation, and Time	12 110 010
	reversal operation. Dirac's hole theory, Feynman's theory	
	of Positrons.	
	Quantization of Fields and Radiation Theory	
	Wave equation for a field, Conjugate field momentum,	
	Hamiltonian, density conservation laws, quantum	
	condition and quantization of scalar field, quantization of	
	complex scalar and Schrodinger fields, Quantization of	
	electromagnetic fields, Interaction of radiation with	
	matter spontaneous and induced emission, Thomson	
	scattering, cross-section for photoelectric effect,	
	Heisenberg-Kramer formula, Rayleigh and Raman	
	scattering. Quantization of Schrodinger field by	
	anticommutator, Atomic level shift, Lamb shift.	
<u>Pedagogy</u> :	Lectures/ tutorials/assignments. Sessions will be	
	interactive in nature to enable peer group learning.	
References/Readin	1. Franz Schwabl, Advanced Quantum mechanics,	
gs	Springer (2005)	
	2. J. J. Sakurai, Advanced Quantum mechanics, Addison-	
	Wesley (1967).	
	3. B. H. Bransden and C. J. Joachain, Quantum	
	Mechanics, Pearson (2004)	
	4. S. N. Biswas, Quantum Mechanics, Books and Allied	
	Pvt. Ltd. (2015)	
	5. A. K. Ghatak and S. Lokanathan, Quantum Mechanics:	
	Theory and Applications, Springer (2004)	
	6. P. Coleman, Introduction to Many Body Physics,	
	Cambridge University Press (2015)	
Course Outcomes:	Student will be able to	
	1. learn second quantization.	
	Apply second quantization to weakly interacting electron gas and Bose gases.	
	3. Interpret the Klein-Gordon and Dirac equation.	
	4. Develop relativistic equations for electrons and	
	radiation fields.	

Programme: M. Sc. (Physics) (Computational Physics)

Course Code: PHC-602Title of the Course: Advanced Statistical MechanicsNumber of Credits: 4

Prerequisites for	Should have attended Quantum Mechanics and Statistical	
the course:	Mechanics courses.	
Course Objectives:	To introduce advanced statistical methods to study phase	
	transition and critical phenomena.	
Content:	Phase Transition and Critical Phenomena	8 hours
	First and second-order transitions, critical phenomena,	
	morphology, fluctuation and correlation and response,	
	Critical exponents, scaling inequalities, how to study	
	critical phenomena.	
	Models and Universality	6 hours
	Ising models and its ground state, Ising models and its	
	applications, other models and their ground states,	
	Universality in different models.	
	Mean Field theory	12 hours
	Mean field theory for fluids, critical exponent of a fluid	
	system, Mean field theory for magnetic systems, Mean	
	field equation of state and its solution, Mean field critical	
	exponents, correlation length and correlation function,	
	Bethe approximation, Bethe approximation for 2D Ising	
	model, Landau theory of Phase transition, Critical	
	exponents from Landau theory.	6 hours
	Transfer Matrix method	
	Transfer matrix and 1D Ising model, Determination of	
	magnetization, susceptibility, specific heat, and correlation	
	length. Spin-1 Ising model and potts model, 2D Ising	6 hours
	model.	
	Series expansion method (Perturbation method)	
	High-temperature expansion and 1-D Ising model, High	0 h a
	and low-temperature expansions for 2D Ising model,	8 hours
	Duality and critical temperature, approximation techniques	
	Monte Carlo method (Numerical method)	
	Ensemble average in Monte Carlo method, Ergodicity,	14 hours
	Detailed balance, and Metropolis algorithm, Monte Carlo	14 110013
	Simulation for 2D Ising model, Measurements and errors.	
	Scaling and renormalization	
	Homogeneous function, Homogeneity of free energy and	
	scaling, Renormalization group, Renormalization Group,	
	Renormalization operation, Free energy function,	
	correlation length, Critical exponents, fixed point, and	
	universality.	
Pedagogy:	lectures/ tutorials/ seminars/ assignments/	
	presentations/ etc. or a combination of some of these.	

References/Readin	1. R. K. Pathria and P. D. Beale, Statistical Mechanics,
gs	Elsevier, London, 2011.
	2. L. D. Landau and E. M. Lifshitz, Statistical Physics, Third
	Edition, Part 1: Volume 5 (Course of Theoretical
	Physics, Volume 5), Butterworth-Heinemann, 1980.
	3. J. M. Yeomans, Statistical Mechanics of Phase
	Transitions, Oxford University Press, New York, 1994.
	4. H. E. Stanley, Introduction to Phase Transitions and
	Critical Phenomena, Oxford University Press, New York,
	1987.
	5. P. M. Chaikin and T. C. Lubensky, Principles of
	Condensed Matter Physics, Cambridge University
	Press, Cambridge 2013.
	6. S. B. Santra and P. Ray, Statistical Mechanics and
	Critical Phenomena: A brief overview, in Computational
	Statistical Physics, edited by S. B. Santra and P. Ray,
	Hindustan Book Agency, New Delhi, 2011.
Course Outcomes:	Students will be able to
	1. Acquire insights into various types of phase transitions,
	2. Understand different models to describe these phase
	transitions.
	3. Describe phase transition theoretically using analytical
	and numerical methods.
	4. Get insight into scaling laws in phase transition.
	5. understand the scaling behaviour using
	renormalization group theory.
L	renormalization group theory.

Programme: M. Sc. (Physics) (Computational Physics)

Course Code: PHC-621Title of the Course: Numerical Techniques PracticalsNumber of Credits: 4

Prerequisites for	Basic knowledge of Computer programming	
<u>the course:</u> Course Objectives:	To introduce the methods of solving mathematical problems that occur in physics using numerical techniques.	
<u>Content:</u>	 Finding Errors: its sources, propagation and analysis Find Roots of functions: bisection, Newton- Raphson,secant method, fixed-point iteration. Solution of Linear equations: Gauss and Gauss- Jordan elimination, Gauss-Seidel, LU decomposition. Eigenvalue Problems. Least square fitting of functions. Interpolation. Numerical differentiation. Solutions of ODE by initial value problems, Euler's method, second and fourth order Runge-Kutta methods. Boundary value problems by finite difference method. Random number generation and Monte Carlo simulation. Optimization techniques. 	120 hours
Pedagogy:	Lectures/Laboratory practicals. Sessions shall be interactive in nature to enable peer grouplearning.	
References/Readin gs	 W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, 1986. W. Cheney and D. Kincaid, Numerical Mathematics and Computing. Thomson Higher Education, USA, 2012 A. L. Gercia, Numerical methods for Physics, Create Space Independent Publishing, 2015. S. E. Koonin, and D. C. Meredith, Computational Physics, Westview Press, 1998. S. Chapra, R. Canale, Numerical Methods for Engineers, McGraw Hill Education, 7th edition, 2016. 	
<u>Course Outcomes:</u>	 Students will be able to Understand efficient numerical techniques. Develop algorithms and implement them using computer programming. Apply the algorithms to solve physical problems. Analyze the accuracy and stability of the techniques. 	

Programme: MSc (Physics) (Biophysics)Course Code: PHB-601Title of the Course: Molecular BiophysicsNumber of Credits: 4

Prerequisites for the course:	PHY-010	
Course Objectives:	This course is intended to enrich the students with the basics of molecular biophysics. The students will learn about the different physical process occurring in biological systems.	
Content:	Cellular Biophysics General organization of the cell, Structure of biomolecules, cellular mechanics and transport, Chemical bonding, ionization energy, electron affinity, electron negativity, strong bonds and weak, bond energies in biomolecules, Interatomic potentials for strong and weak bonds, cellular	8 hours
	mechanics, transport mechanism Structure of Proteins, DNA and Enzymes Kinetics Basics aspects of protein structure, Polypeptide chain geometrics, estimates of potential energy, results of potential energy calculations, hydrogen bonding, hydrophobic & hydrophilic interactions and water as universal solvent in biological systems, Primary structure sequencing of polypeptide, haemoglobin, homologies in proteins, Secondary structure alpha and beta conformation, collagen structure, stability of alpha helix, Ramchandran plot, Tertiary structure, structure of myoglobin and hemoglobin, Quaternary structure, symmetry consideration, Analysis of subunits and chain arrangement of subunits, stability of globular quaternary structure. Protein folding rules, pathways and kinetics Nucleic acids, purines and pyrimides, double helical structure of DNA, polymorphism of DNA, RNA structure, thermodynamics of DNA supercoiling, chromosome structure	20 hours
	 Inhibitors, kinetics of competitive, non-competitive and uncompetitive inhibitors Membrane Biophysics Fundamental aspects of biological membrane, Various membrane models, Carbohydrate, Lipids & Proteins, Components of cell membrane, Composition of biological membranes- lipid molecules, proteins, glycoprotein, membrane, skeletons, forms of lipids and proteins, electrical properties of lipids and proteins, principles of membrane organization & stability, Biogenesis of cell membrane, Molecular motion in membrane & membrane 	20 hours

	fluidity, Protein lipid interactions, Electric properties of membranes: electric double layer, Poisson-Boltzmann theory of electric double layer, Gouy- Chapman model of electric double layer, free energy of electric double layer, bonds and adhesion of electrified molecules on the surface of a membrane, Hodgkin Huxley equation, membrane impedance, Zeta, Stern & total electrochemical potential, Helmholtz-Smoluchowski equation; it's correction by Debye-Huckle theory, transmembrane potential & it's measurement by microelectrodes. Neurobiophysics Transport across membranes: diffusion and osmosis, Selectivity & ion specificity of biomembrane, Ion channel structure and gating function, Ion channel types and characterization, transport of macromolecules with & without vesiculation & by intermediate mechanism, Transport and communication between cells and organelles. Molecular biomechanics Biological motion, free energy transduction, chemochemical machines, pumps and motors as chemochemical machines, flux force dependence, molecular motors, mechanochemistry of molecular motors, biomolecular forces, biomechanics of muscle	12 hours
	contraction and cardiovascular system.	
Pedagogy:	Lectures/Tutorials/Assignments. Sessions shall be interactive in nature to enable peer group learning.	
References/Readings	 Jack A Tuszynski and Michal Kurzynski, Introduction to Molecular Biophysics, First Edition, CRC Press (2003). Rodney Cotterill, Biophysics: An Introduction, Wiley (2002). Applied Biophysics, A Molecular Approach for Physical Scientist, Thomas A Weigh Wiley (2007). Mayer B. Jackson, Molecular & Cellular Biophysics, Cambridge University Press (2006). Vasantha Pattabhi and N. Goutham Biophysics, First Edition, Narosa (2002). D. Chapman, Eds, Biomembrane structure and Function, Macmillan, (1983). R. K. Jain, Introduction to Biological Membrane, John Wiley& Sons (1988). J. E. Hall and M. E. Hall, Guyton & Hall Text Book of Medical Physiology, 12th Edition, Elsevier (2010). M. Schliwa, Molecular motors, Wiley-VCH Verlag GmbH & Co (2003). 	
Course Outcomes:	Student will 1. Get familiarized with the basic concepts of molecular	

2	biophysics. Gain sufficient knowledge in the structure and	
	functioning of molecular processes.	
3.	Understand physics of membranes, membrane structure and functions.	
4.	Get exposed to the recent developments in biomechanics and molecular motion.	

Programme: M.Sc (Physics) (Biophysics)Course Code: PHB-602Title of the Course: Methods in BiophysicsNumber of Credits: 4

Prerequisites for the	PHY-010	
course:		
Course Objectives:	The aim of course is to introduce various experimental	
• • •	techniques used in biophysical systems.	. = 1
Content:	Separation techniques I	15 hours
	Electrokinetics methods: electrophoresis, electrophoretic	
	mobility (EPM), factors affecting EPM, Paper, PAGE, SDS-	
	PAGE, Disc gel, gradient gel, electrophoresis of nucleic	
	acid and its application, Pulse field electrophoresis, single	
	cell gel electrophoresis, Isolectrophoresis, preparative	
	electrophoresis, 2-D gel electrophoresis, Capillary, Iso-	
	Electric focusing, applications in biology and medicine. Chromatography, TLC, adsorption, partition, ion	
	exchange, gel filtration, affinity and FPLC, GLC,	
	Separation techniques II	15 hours
	HPLC: mobile phase systems, modes of operations,	15 110015
	application, Hydrodynamics method: fundamental	
	principles' Centrifugation: principle, preparative	
	centrifuge, analytical, ultracentrifuge, sedimentation and	
	diffusion, Ultracentrifugation and their applications in	
	molecular weight, size determination. Viscosity and its	
	application, dialysis, solvent fractionation, isoelectric	
	precipitation,	15 hours
	Spectroscopic methods	15 110015
	Principles of spectroscopic techniques, Ultraviolet-visible	
	spectroscopy, circular dichroism and optical rotatory	
	dispersion, fluorescence spectroscopy, infrared	
	spectroscopy, Raman spectroscopy, Atomic Absorption	
	spectroscopy- Inductively coupled plasma atomic	
	emission spectrophotometry. Electron spin resonance,	15 hours
	Nuclear Spin resonance, X-ray spectroscopy	
	Microscopic Techniques	
	Principle, instrumentation and application of optical	
	microscopy, image formation, magnification, resolving	
	power. optimum resolution, image defects, different	
	types of Microscopy: Dark field, Phase contrast,	
	polarization microscopy, Interference microscopy,	
	Fluorescence microscopy, Electron microscopy: Electron	
	guns, Electron lens, electrostatic focusing, magnetic	
	focusing, SEM, STEM, Atomic force microscopy.	
Pedagogy:	Lectures/Tutorials/Assignments.	
	Sessions shall be interactive in nature to enable peer	
	group learning.	

References/Readings	1. Igor N S, N Zaccai & J Zaccai, Methods in Molecular
References/Reduings	Biophysics, First Edition, Cambridge (2007).
	2. D Voet, J Voet and CW Pratt, Principle of Biochemistry,
	Third Edition, John Wiley and Sons, (2008).
	3. D. M. Glover DNA Cloning, Vol. I, II, III, First Edition,
	Oxford (1987).
	4. Vasantha Pattabhi and N. Goutham, Biophysics First
	Edition, Narosa (2002).
	5. Brigitte Wittmann-Liebold, Johann Salnikow, Volker A.
	Erdmann, Eds, Advanced Methods in Protein
	Microsequence Analysis, First Edition, Springer (1986).
	6. C. J. Banwell, Fundamentals of Molecular
	Spectroscopy, Fourth Edition, McGraw Hill (1994).
	7. P.Narayanan Essential Biophysics, First Edition, New
	Age Publications (2000).
	8. Henrik G Bohr, Handbook of Molecular Biophysics
	(Methods & Application) First Edition, Wiley (2009).
Course Outcomes:	Students will be able to
	1. Familiarize with the basic experimental techniques
	used in biophysics.
	2. Expand their knowledge on various spectroscopic and
	microscopic methods in characterization.
	3. Understand different concepts in biophysics and relate
	them to experiments.
	4. Demonstrate knowledge in separation and
	microscopic methods.

Programme: M.Sc (Physics)

Title of the Course: Biophysics Practical

Course Code: PHB-621 Number of Credits: 4

Prerequisites for the course: PHY-010, basic knowledge in experimental techniques in chemistry and biology Course Objectives: This laboratory course is intended to provide basic laboratory training in the experiments in biophysics. Important biophysical phenomena will be tested and studied. The experiments will start from familiarization of basic characterization tools and protocols followed by advanced experiments. Content: Short lectures on general protocols of biophysics experiments. 120 hours Experiments. The following experiments are to be performed/demonstrated: 120 hours Experiments to be performed 1. Microscopic techniques: The study of biological samples/cells using fluorescence /DIC microscopy 2. Protein-protein interaction using spectroscopy (fluorescence/UV visible) techniques 3. Study of DNA-Protein interaction using fluourimetry 4. Study of fluorescence sensitivity and quenching, fluorescence recovery after photobleaching (FRAP) 5. PAGE and SDS PAGE Demonstrations 6. Classification of gram -ve & +ve organisms, observe cell growth/ survival by colony forming assay, estimation of cell viability by dye exclusion and colony formation assay, observe cell death by physical and chemical agents 7. Preparation of buffers and pH analysis 8. Determination of the titration curve of Proteins, amino acids & calculation of the pKa values 9. Isolation of Proteins- Casein from milk, Hb from RBC.
Course Objectives: This laboratory course is intended to provide basic laboratory training in the experiments in biophysics. Important biophysical phenomena will be tested and studied. The experiments will start from familiarization of basic characterization tools and protocols followed by advanced experiments. Content: Short lectures on general protocols of biophysics experiments. The following experiments are to be performed/demonstrated: Experiments to be performed 1. Microscopic techniques: The study of biological samples/cells using fluorescence /DIC microscopy 2. Protein-protein interactions using spectroscopy (fluorescence/UV visible) techniques 3. Study of DNA-Protein interaction using fluourimetry 4. Study of fluorescence sensitivity and quenching, fluorescence recovery after photobleaching (FRAP) 5. PAGE and SDS PAGE Demostrations 6. Classification of gram →e & +ve organisms, observe cell growth/ survival by colony forming assay, estimation of cell viability by dye exclusion and colony formation assay, observe cell death by physical and chemical agents 7. Preparation of buffers and pH analysis 8. Determination of the titration curve of Proteins, amino acids & calculation of the pKa values
Iaboratory training in the experiments in biophysics. Important biophysical phenomena will be tested and studied. The experiments will start from familiarization of basic characterization tools and protocols followed by advanced experiments.Content:Short lectures on general protocols of biophysics experiments. The following experiments are to be performed/demonstrated:120 hoursExperiments to be performed 1. Microscopic techniques: The study of biological samples/cells using fluorescence /DIC microscopy (fluorescence/UV visible) techniques 3. Study of DNA-Protein interaction using fluourimetry3. Study of DNA-Protein interaction using fluorescence recovery after photobleaching (FRAP) 5. PAGE and SDS PAGE Demonstrations6. Classification of gram -ve & +ve organisms, observe cell growth/ survival by colony forming assay, estimation of cell viability by dye exclusion and colony formation assay, observe cell death by physical and chemical agents 7. Preparation of buffers and pH analysis 8. Determination of the titration curve of Proteins, amino acids & calculation of the pKa values 9. Isolation of Proteins- Casein from milk, Hb from
 experiments. The following experiments are to be performed/demonstrated: Experiments to be performed Microscopic techniques: The study of biological samples/cells using fluorescence /DIC microscopy Protein-protein interactions using spectroscopy (fluorescence/UV visible) techniques Study of DNA-Protein interaction using fluourimetry Study of fluorescence sensitivity and quenching, fluorescence recovery after photobleaching (FRAP) PAGE and SDS PAGE Demonstrations Classification of gram -ve & +ve organisms, observe cell growth/ survival by colony forming assay, estimation of cell viability by dye exclusion and colony formation assay, observe cell death by physical and chemical agents Preparation of buffers and pH analysis Determination of the titration curve of Proteins, amino acids & calculation of the pKa values Isolation of Proteins- Casein from milk, Hb from
 The following experiments are to be performed/demonstrated: Experiments to be performed Microscopic techniques: The study of biological samples/cells using fluorescence /DIC microscopy Protein-protein interactions using spectroscopy (fluorescence/UV visible) techniques Study of DNA-Protein interaction using fluourimetry Study of fluorescence sensitivity and quenching, fluorescence recovery after photobleaching (FRAP) PAGE and SDS PAGE Demonstrations Classification of gram -ve & +ve organisms, observe cell growth/ survival by colony forming assay, estimation of cell viability by dye exclusion and colony formation assay, observe cell death by physical and chemical agents Preparation of the titration curve of Proteins, amino acids & calculation of the pKa values Isolation of Proteins- Casein from milk, Hb from
 Microscopic techniques: The study of biological samples/cells using fluorescence /DIC microscopy Protein-protein interactions using spectroscopy (fluorescence/UV visible) techniques Study of DNA-Protein interaction using fluourimetry Study of fluorescence sensitivity and quenching, fluorescence recovery after photobleaching (FRAP) PAGE and SDS PAGE Demonstrations Classification of gram -ve & +ve organisms, observe cell growth/ survival by colony forming assay, estimation of cell viability by dye exclusion and colony formation assay, observe cell death by physical and chemical agents Preparation of buffers and pH analysis Determination of the titration curve of Proteins, amino acids & calculation of the pKa values Isolation of Proteins- Casein from milk, Hb from
 samples/cells using fluorescence /DIC microscopy Protein-protein interactions using spectroscopy (fluorescence/UV visible) techniques Study of DNA-Protein interaction using fluourimetry Study of fluorescence sensitivity and quenching, fluorescence recovery after photobleaching (FRAP) PAGE and SDS PAGE Demonstrations Classification of gram -ve & +ve organisms, observe cell growth/ survival by colony forming assay, estimation of cell viability by dye exclusion and colony formation assay, observe cell death by physical and chemical agents Preparation of buffers and pH analysis Determination of the titration curve of Proteins, amino acids & calculation of the pKa values Isolation of Proteins- Casein from milk, Hb from
 3. Study of DNA-Protein interaction using fluourimetry 4. Study of fluorescence sensitivity and quenching, fluorescence recovery after photobleaching (FRAP) 5. PAGE and SDS PAGE Demonstrations 6. Classification of gram -ve & +ve organisms, observe cell growth/ survival by colony forming assay, estimation of cell viability by dye exclusion and colony formation assay, observe cell death by physical and chemical agents 7. Preparation of buffers and pH analysis 8. Determination of the titration curve of Proteins, amino acids & calculation of the pKa values 9. Isolation of Proteins- Casein from milk, Hb from
 4. Study of fluorescence sensitivity and quenching, fluorescence recovery after photobleaching (FRAP) 5. PAGE and SDS PAGE Demonstrations 6. Classification of gram -ve & +ve organisms, observe cell growth/ survival by colony forming assay, estimation of cell viability by dye exclusion and colony formation assay, observe cell death by physical and chemical agents 7. Preparation of buffers and pH analysis 8. Determination of the titration curve of Proteins, amino acids & calculation of the pKa values 9. Isolation of Proteins- Casein from milk, Hb from
 Demonstrations 6. Classification of gram -ve & +ve organisms, observe cell growth/ survival by colony forming assay, estimation of cell viability by dye exclusion and colony formation assay, observe cell death by physical and chemical agents 7. Preparation of buffers and pH analysis 8. Determination of the titration curve of Proteins, amino acids & calculation of the pKa values 9. Isolation of Proteins- Casein from milk, Hb from
 6. Classification of gram -ve & +ve organisms, observe cell growth/ survival by colony forming assay, estimation of cell viability by dye exclusion and colony formation assay, observe cell death by physical and chemical agents 7. Preparation of buffers and pH analysis 8. Determination of the titration curve of Proteins, amino acids & calculation of the pKa values 9. Isolation of Proteins- Casein from milk, Hb from
 10. Study of interaction of acridine orange with DNA 11. Enzyme Assays (LKH, beta galactosidase, acid phosphatase, arginase, Succinic De –hydrogenase): Time, Temp, enzyme concentration, cofactors. LKH:
Km & Vmax Demonstrations via online videos
12. Gel filtrations chromatography
13. DEAE cellulose chromatography of DNA
14. Study of phase transition of membrane

	 phospholipids and Study of the membrane potential using fluorescence spectroscopy. 15. To study the charge characteristics of cells through micro Electrophoresis 16. Osmolarity: Determination of osmotic pressure of salts. 17. Study of diffusion of biomolecules/ions (Fick's Law)
Pedagogy:	Laboratory work, Presentations, demonstrations.
References/Readings	 Jay Nadeau, Introduction to Experimental Biophysics: Biological Methods for Physical Scientists, CRC Press (2012). D. T. Plummer, Introduction to Practical Biochemistry, 3rd edition. McGraw-Hill Publishing Co. (1987). M. Holtzhauer, Basic Methods for the Biochemical Lab, 1st English edition. Springer (2006). Stanley R. Maloy, Experimental techniques in bacterial genetics, John and Bartlett (1989).
Course Outcomes::	Students will be able to
	 Perform basic experimental methods in biophysics. Gain sufficient knowledge in the various
	characterization and spectroscopic tools.
	 Understand some of the advanced techniques in experimental biophysics.
	 Interpret results, perform error analysis, analyse data and write reports.

Course Code: PHS-622

Title of the Course: Nuclear Reactor Physics

Number of Credits: 2

Prerequisites for the	Should have basic knowledge of nuclear physics,	
<u>course:</u>	thermodynamics, quantum mechanics, and solid state	
<u>course.</u>	physics	
Course Objectives:	To introduce students to the fundamental principles of	
course objectives.	neutron and their interaction with matter. To understand	
	the phenomenon of diffusion and slowing down of	
	neutron and waste disposal.	
Contonto		2 h ouro
<u>Content:</u>	Introduction:	2 hours
	Discovery of neutron, Fundamental properties of	
	neutron, decay of neutron, moment of the neutron,	
	Classification of neutron energy: slow neutrons, thermal	
	neutrons, Epithermal neutrons, Resonance neutron,	
	Intermediate neutrons, Fast neutrons.	4 h a
	Interaction of Neutrons with Matter:	4 hours
	Interaction of neutrons with matter, cross-section,	
	variation of cross section with neutron energy. Neutron	
	flux, Maxwellian distribution, Fissile and fertile materials,	
	Neutron life cycle, Fermi four factor formula k _{eff} .	5 h a sa
	Neutron Diffusion:	5 hours
	Diffusion theory approximation, neutron leakage,	
	diffusion equation. Thermal diffusion length, One group	
	critical equation for bare reactor. Boundary conditions	
	and extrapolation distance, measurement of diffusion	
	length	5 h a sa
	Slowing down of Neutrons:	5 hours
	Slowing down length, lethargy, slowing down in a	
	mixture. Moderations.	5 h a sa
	Calculation of Critical Size of Reactors:	5 hours
	Critical equation, One group model, four factor formula	
	and calculation of parameters. Critical size of sphere.	
	Effect of reflector.	
	Power Operation:	5 hours
	Reactor kinetics, prompt neutron lifetime, stable reactor	
	period, the Inhour equation, Fission product poisoning.	
	Fuel burn-up. Measurement or reactor power and period.	
		2 h a
	Radiological Protection:	2 hours
	Units of radiation and radioactivity, Radiation protection	
	standards, Radiation monitoring instruments.	2 hours
	Reactor Fuels and Materials:	2 hours
	Uranium resources and requirements. Isotope separation.	
	(one method), reprocessing of spent fuel, Nuclear fuel	
	management.	

Pedagogy:	Lectures / tutorials/assignments. Sessions shall be
	interactive in nature to enable peer group
	learning.
References/Readings	1. S. Glasstone and A. Sesonske, Nuclear Reactor
	Engineering, Van Nostrand Reinhold Co., (1963).
	2. E. E. Lewis, Fundamentals of Nuclear Reactor
	Physics, Elsevier (2008).
	3. L.F. Curtiss, Introduction to neutron Physics, D.
	Van Nostrand Co., (1969).
	4. G. L. Squires, Introduction to the theory of
	Thermal Neutron scattering, Dover Publication,
	Inc. (1996).
	5. Safe Handling of Radioisotopes (Safety Series no.1)
	(1958).
Course Outcomes:	Students will be able to
	1. Understand neutron interaction with matter
	2. Familiarise with the main features of a nuclear
	reactor and conditions that determine its criticality.
	3. Understand neutron diffusion and slowing down
	4. Gain insight on the management of nuclear waste

Course Code: PHS-623Title of the Course: Advanced OpticsNumber of Credits: 2

Prerequisites for the	PHY-003	
<u>course:</u>		
Course Objectives:	This course is aimed at understanding intermediate to advanced optics. This course includes fundamental theoretical optics to applied optics and a brief introduction to quantum optics.	
Content:	1. Light Waves	7 hours
	Eikonal equations, laws of reflection and refraction, guided optics, Lagrange and Hamiltonian formulation of optics, ABCD matrix, thin lens formula, Gaussian optics, Aberrations.	
	2. Coherence of light and Fourier Optics Fourier transforms in one and two dimensions, convolution operations, spatial frequency filtering, phase contrast microscopy, Correlation function, The Wiener–Khinchin Theorem, Linewidth, Spatial coherence, Interference spectroscopy, Temporal coherence, Stellar intereferometers, Fourier transform properties of lenses.	8 hours
	 3. Optical Modulation and nonlinear optics Electro-optical effects, acousto-optical effect, Raman-Nath diffraction, Magneto-optics. Nonlinear optical media, second-order and third order optical effects, Kerr optical effect, self-focussing, optical bistability, second and third harmonic generation, coupled mode equations, Ultrafast optics. 	8 hours
	4. Introduction to Quantum Optics Quantum states of electromagnetic fields, coherent and squeezed states, Operators, ordering procedures and star products, <i>Q</i> , <i>P</i> and Wigner functions of a density operator, Correlation functions and quantum coherence, Nonclassical light, Quantum entanglement, Bell's inequalities, Cavity QED, Quantum cryptography.	7 hours
<u>Pedagogy</u> :	Lectures/ tutorials/ term papers/assignments/. Sessions shall be interactive in nature to enable peer group learning.	
References/Readings	 B. D. Guenther, Modern Optics, Oxford University Press, 2015 Ajoy Ghatak and K. Thyagarajan, Optical Electronics, Cambridge University Press, 2017. Sharma K. K., Optics- Principles and Applications, Academic Press, Elsevier 2006 Yariv and Yeh, Photonics-Optical Electronics in Modern Communications, Oxford University Press, 2007 	

	 B.E.A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley and Sons, 2019 J. Goodman, Introduction to Fourier Optics, Roberts and Company Publishers; 3rd edition (December 10, 2004) R. W. Boyd, Nonlinear Optics, Elsevier 4th Edition, 2020 Marc Fox, Quantum optics: an introduction, Oxford University Press, 2009
Course Outcomes:	 Students will be able to understand advanced theoretical concepts in optical physics. gain knowledge in the phenomenon of coherence Fourier optics. familiarize with methods in optical modulation and nonlinear optics. learn recent progress in quantum optics.

Course Code: PHS-624 Title of the Course: Physics of Energy Materials Number of Credits: 2

Prerequisites for the course: Course Objectives: Content:	 Student should have basic understanding of the physics concepts related to thermodynamics and electrodynamics. 1. To develop the understanding of different energy materials, their properties and how to make use of them for energy extraction 2. To understand the basic principle of different energy extraction phenomenon. Photovoltaic Energy materials 	7 hours
	Sources of energy: renewable and non-renewable sources, solar power and photovoltaic materials, photovoltaic devices Energy Storage materials Electrochemical energy conversion and storage, Battery materials, fuel cells, supercapacitors, metal-organic framework for hydrogen storage, materials for water splitting.	8 hours
	Thermoelectric Materials Introduction, The Seebeck and Peltier effects, thermoelectric figure of merit, Measuring the thermoelectric properties, Heat conduction by the crystal lattice, Materials for Peltier cooling, Generator materials, Thermoelectric refrigerators and generators. Magnetocaloric materials Magnetocaloric effect in the phase transition region, Methods of investigation of magnetocaloric properties, Magnetocaloric effect in different types of materials, Magnetocaloric effect in nanosized materials, Magnetic refrigeration	8 hours 7 hours
Pedagogy:	lectures/ tutorials /viva/ seminars/ term papers/assignments/ presentations	
References/Reading	 Ram Gupta Eds, Handbook of Energy Materials, Springer Singapore, 2022 Duncan W. Bruce, Dermot O'Hare, Richard I. Walton, Energy Materials, Wiley, 2011 Stephen J Fonash, Solar Cell Device Physics, 2nd Edition, Academy Press, 2010. R. Rajasekar, C. Moganapriya, A. Mohankumar, Eds, Materials for Solar Energy Conversion: Materials, Methods and Applications, Wiley, 2022. H Julian Goldsmid, The Physics of Thermoelectric Energy Conversion, Morgan & Claypool Publishers, 	

	 2017. 6. A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and its Applications, CRC press (Taylor and Francis group), 2016.
Course Outcomes:	 Students will be able to Understand different properties of energy materials Understand basic principles of energy extraction devices such as solar cells. Understand the physics of thermoelectric and magnetocaloric effects for energy applications.
	 Apply concepts of electrochemistry for energy storage applications.

Course Code: PHS-625Title of the Course: Physics of Ferroic MaterialsNumber of Credits: 2

Prerequisites for the course:	Basic knowledge of Solid State Physics/Chemistry	
Course Objectives:	To introduce various types of ferroic materials and its applications to the students.	
<u>Content:</u>	Phase Transition Landau Theory of phase transition – first order and second order.	4 hours
	Ferroelectrics P-E Loop, Relationships Between Dielectric, Piezoelectric, Pyroelectric, and Ferroelectric, Origin of Ferroelectrics, Structure-Induced Phase Change from Paraelectric to Ferroelectric, Soft Phonon Mode, Ferroelectric Domains and Domain Switching, Domain Structure, Ferroelectric Switching, Ferroelectric Materials – BaTiO ₃ , PbTiO ₃ , Antiferroelectric PbZrO ₃ , Pb(Zr _x Ti _{1-x})O ₃ (PZT), Relaxor Ferroelectrics.	
	Ferromagnetics General Introduction to Ferromagnetics, Domain and Domain Wall, Magnetoresistance Effect and Device, Anisotropic Magnetoresistance (AMR), Giant Magnetoresistance (GMR), Colossal Magnetoresistance (CMR), Tunnelling Magnetoresistance (TMR), Spin-Transfer Torque Random-Access Memory (STT-RAM), Magnetostrictive Effect and Device Applications, Magnetostrictive Properties of Terfenol-D, Magnetostrictive Ultrasonic Transducer, Magnetoelastic Effect, Magnetomechanical Strain Gauge, Multiferroics, Magnetoelectric Effect, Why Are There so Few Magnetic Ferroelectrics? Single Phase Multiferroic Materials, ME Composite Materials, Multilayered Heterostructures.	
	Ferroelastics Shape Memory Alloy, SMA Phase Change Mechanism, Nonlinearity in SMA, One-Way and Two-Way Shape Memory Effect, Superelastic Effect (SE), Application Examples of SMAs, Ferromagnetic Shape Memory Alloys, Formation of Twin Variants, Challenges for Ni–Mn–Ga SMA, Device Application of MSMA.	8 hours
Pedagogy:	lectures/ tutorials/ seminars/ assignments/ presentations/ etc. or a combination of some of these.	
References/Reading <u>s</u>	 Jian Dai, Ferroic Materials for Smart Systems: From fundamentals to device applications, Wiley VCH (2020) V. K. Wadhavan, Introduction to Ferroic Materials, 	

	Taylor & Francis (2000)
	3. Jörg Schröder, Doru C. Lupascu, Ferroic Functional
	Materials: Experiment, Modeling and Simulation,
	Springer (2018)
Course Outcomes:	Students will be able to
	1. learn about different Ferroic phase transitions.
	 gain knowledge about characteristics of ferroic materials
	 develop an understanding of different applications of ferroelectric, ferromagnetic and ferroelastic materials.
	 Understand about concepts of multiferroicity, glassy behaviour in different ferroic materials.

Title of the Course: Nanoscience and Technology Course Code: PHS-626 Number of Credits: 2

Prerequisites for the	Basic knowledge of Solid-State Physics / Solid State	
<u>course:</u>	Chemistry	
Course Objectives:	This course is aimed at introducing different concepts of nanoscience and technology. It aims at presenting the recent developments in the field of nanomaterials including synthesis and characterization methods.	
Content:	Introduction to Nanomaterials	7 hours
<u>content.</u>	Introduction to Nanoscience, Physics and Chemistry of solid surfaces, Size effect on thermal, electrical, electronic, mechanical, optical and magnetic properties of nanomaterials- surface area and aspect ratio- band gap energy- quantum confinement size. Classifications of nanomaterials - Zero dimensional, one-dimensional and two-dimensional nanostructures- Kinetics in nanostructured materials- multilayer thin films and superlattice clusters of metals, semiconductors and nanocomposites. Nanoparticles through homogeneous and heterogeneous nucleation- Oswald ripening process Synthesis of nanostructures Top down and bottom-up approaches–Mechanical alloying and mechanical ball milling Mechanical and chemical process, Inert gas condensation technique – Arc plasma and laser ablation. Sol gel processing-Solvothermal, hydrothermal, precipitation, Spray pyrolysis, Electro spraying and spin coating routes, Selfassembly, self-assembled monolayers (SAMs). Langmuir-Blodgett (LB) films, micro emulsion polymerization-templated synthesis, pulsed electrochemical deposition Vapor deposition and different types of epitaxial growth techniques (CVD, MOCVD, MBE, ALD)- pulsed laser deposition, Magnetron sputtering - lithography:	8 hours
	Photo/UV/EB/FIB techniques, Dip pen nanolithography, Etching process: Dry and Wet etching, micro contact printing	
	Characterization tools in Nanoscience Optical microscopy: Use of polarized light microscopy – Phase contrast microscopy –Interference Microscopy – hot stage microscopy - surface morphology – Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), HRTEM use in nanostructures. Atomic Force Microscopy (AFM) Scanning Force Microscopy-Shear force Microscopy-Lateral Force Microscopy-Magnetic Force microscopy.	8 hours

	Scanning Tunnelling Microscopy: Principle- Instrumentation- importance of STM for nanostructures – surface and molecular manipulation using STM -3D map of electronic structure. Applications of Nanoscience Nanomaterials for energy applications, Nanoelectronics, Nanomagnetism and devices, Nanophotonics, Surface plasmons, Nanobio applications, Environmental issues.	7 hours
Pedagogy:	Lectures/ tutorials/ term papers/assignments/. Sessions shall be interactive in nature to enable peer group learning.	
References/Readings	 G. Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, 2004. Murthy. B.S. Murty, P. Shankar, James Murday and Baldev Raj, Textbook of Nanoscience and Nanotechnology, University Press, Springer Berlin (2013) L. Novotny and B. Hecht, Principles of nano-optics, Cambridge University Press, 2009. M. Baker et al., Lithographic pattern formation via metastable state rare gas atomic beam, Nanotechnology, 15, 1356, 2004. Helmut Schift, Sunggook Park, Bokyung Jung, Choon-Gi Choi, Chul-Sik Kee, Sang-Pil Han, Keun-Byoung Yoon and Jens Gobrecht, Fabrication of polymer photonic crystals using nanoimprint lithography, Nanotechnology 16, 261, 2005. R.D. Piner, Nanolithography- Dip-Pen, Science 283, 661, 1999. Barnes, W., Dereux, A. & Ebbesen, T.,Surface plasmon subwavelength optics, Nature 424, 825, (2003) Heinz Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings Springer Tracts in Modern Physics, Vol. 111, Springer Berlin 1988. Stefan Maier, Plasmonics: Fundamentals and Applications, Springer 2007. 	
<u>Course Outcomes:</u>	 Student will be able to Gain knowledge in Nanoscience and Nanotechnology. Understand various techniques in cutting-edge nanoscience. develop awareness of recent advances in nanotechnology and its applications. demonstrate knowledge in application of nanoscience in different areas. 	

Course Code: PHS-627 Title of the Course: Laser physics and applications Number of Credits: 2

Prerequisites for the	Student should have basic knowledge of Atomic Physics.	
<u>course:</u>		
Course Objectives:	 To develop understanding of construction and operation of different Laser systems. To understand advances in laser physics and its Applications 	
<u>Content:</u>	Introduction to lasers: Definition, brief history of Lasers, unique Properties of laser, coherence, fundamental wave and quantum properties of light, Laser Safety: Various hazards due to laser radiation-eye, skin, chemical etc., safety measures and standard ANSI	6 hours
	Laser Amplifiers and Resonators: Conditions for producing a laser – population inversions, Gain and gain saturation, Development and growth of laser beam, Requirements for obtaining population inversion, laser pumping requirements and techniques. laser cavity modes: longitudinal and Transverse, Q switching, mode- locking, pulse shortening techniques, ultrashort - pulsed laser and amplifier system, Ring lasers, Cavities for producing spectral narrowing of laser output.	8 hours
	Laser systems and their applications He -Ne laser, Ar ion laser, Molecular Gas lasers: CO ₂ laser, Excimer lasers, Laser systems involving high-density gain media: Organic dye lasers, solid state lasers: Ruby laser, Nd-YAG and glass lasers. Applications of lasers in materials engineering (cutting, welding, cladding, peening, surface engineering), communication, LIDAR, Medical Applications (dentistry, LASIK, laser lithotripsy, dermatology etc), Laser Cooling and Trapping of Atoms, Spectroscopic applications (RAMAN, LIBS).	16 hours
Pedagogy:	Lectures/ tutorials/laboratory work/project work/ vocational training/viva/ seminars/ term papers/assignments/ presentations/ self-study/ Case Studies etc. or a combination of some of these. Sessions will be interactive in nature to enable peer group learning.	
References/Reading <u>s</u>	 William T. Silfvast, Laser Fundamentals, second edition Cambridge publication, 2004 Joseph T. Verdeyen, Laser Electronics, third edition, 	

	Prentice Hall series, 1994.
	3. Karl F. Renk, Basics of laser physics, second edition,
	Springer, 2012.
	4. Tarasov. L, Laser Physics and application, Mir
	Publication, 1987.
	5. Bakefi, George, Principles of Laser Plasmas, John Wiley
	& Sons Inc., 1977.
	6. William V. Smith, Laser application, Artech House
	Publishers, 1970.
	7. K. Thyagarajan, Ajoy Ghatak, Lasers: Fundamentals and
	Applications (Graduate Texts in Physics), second
	edition, Springer publication, 2012.
	8. Ross Monte, Laser application, Academic press New
	York, 1974.
Course Outcomes:	Students will be able to
	1. understand the basic principle and operation of
	different types of Lasers.
	2. get exposure to applications of Lasers in different
	fields.
	3. Gain insights of intricacies involved in laser
	construction and design.
	4. Develop understanding of laser pulsing techniques.

Course Code: PHS-628Title of the Course: Experimental Techniques in PhysicsNumber of Credits: 2

Prerequisites for	Students enrolling for this course should have knowledge	
the course:	in basic mathematical concepts	
Course Objectives:	This course introduces the concepts in experimental	
On all and	physics, instrumentation and error analysis	45 h a
<u>Content:</u>	Data Interpretation and Error Analysis	15 hours
	Data interpretation and analysis. Uncertainties, Statistical	
	analysis of uncertainties, Precision and accuracy, Parent	
	and Sample Distributions, Mean and Standard Deviation of	
	Distributions, Binomial Distributions, Poisson Distribution,	
	Gaussian or Normal Error Distribution, Lorentzian	
	Distribution; Approximation and Errors in Computing:	
	Significant Digits, Numerical Errors, Modelling errors,	
	Conditioning and Stability, Convergence of Iterative	
	Processes. Error analysis, propagation of errors. Least	
	squares fitting, Linear and nonlinear curve fitting, chi-	
	square test	
	Measurements and Instrumentation	15 hours
	Transducers (temperature, pressure/vacuum, magnetic	
	fields, vibration, optical, and particle detectors), low	
	current and voltage measurements, High and low	
	temperature measurements, thermocouples,	
	photoresistors, thermal and electronic conduction	
	measurements, optical measurements, photon counting	
	techniques, low and high magnetic field measurements,	
	Measurement and control. Signal conditioning and	
	recovery. Impedance matching, amplification (Op-amp	
	based, instrumentation amp, feedback), filtering and noise	
	reduction, shielding and grounding. Fourier transforms,	
	lock-in detector, box-car integrator, modulation	
	techniques. High frequency devices (including generators	
	and detectors)	
Pedagogy:	lectures/ tutorials/ seminars/ assignments/	
	presentations/ etc. or a combination of some of these.	
References/Readin	1. Philip R Bevington and D Keith Robinson, Data	
gs	Reduction and Error Analysis for the Physical Sciences	
	3rd Ed. McGraw – Hill (2003)	
	2. John R. Taylor, An Introduction to Error Analysis: The	
	Study of Uncertainties in Physical Measurements, 2nd	
	Ed. University Science Books (1997)	
	3. M. I. Pergament, Methods of Experimental Physics,	
	CRC Press (2019)	
	4. R. Srinivasan, K. R. Priolkar and T. G. Ramesh,	
	Experiments in Physics, Indian Academy of Sciences	

	 (2018) 5. G. L. Squires, Practical Physics, 4th Edition, Cambridge University Press, (2015) 6. A. K. Ghosh, Introduction to Measurements and Instrumentation, PHI Learning Pvt. Ltd., (2012)
Course Outcomes:	Students will be able to
	1. understand the basics concepts in measurement
	techniques.
	2. Understand about different types of sensors and
	detectors used to measure different physical
	quantities.
	3. Estimate and translate errors and report
	quantities up to last significant digit
	4. Apply statistical tools in data interpretation and
	analysis

Course Code: PHS-629

Number of Credits: 1T + 1P

Effective from AY: 2023-24

Title of the Course: Documentation using Latex

Droroquisitos for	Nil	
Prerequisites for the course:		
Course Objectives:	This course provides an introduction to technical	
	writing with Latex.	
Content:	Introduction	5 hours
	Introduction and Installation of the software LaTeX.	
	Understanding Latex compilation.	
	Module 1.	6 hours
	Basic Syntax of Latex, Writing equations, Matrix, Tables	
	Module 2.	7 hours
	Page Layout – Titles, Abstract, Chapters, Sections,	
	References, Equation references, citation. List-making	
	environments, Table of contents, generating new	
	commands, Figure handling, numbering, List of figures,	
	List of tables, Generating index.	
	Module 3.	6 hours
	Packages: Geometry, Hyperref, amsmath, amssymb,	
	algorithms, algorithmic graphic, color, tiles listing Model 4.	3 hours
	Classes: article, book, report, beamer, slides.	5 110015
	Module 5.	18 hours
	Applications to:	10 110013
	Writing Resume	
	Writing question paper	
	Writing articles/ research papers	
	Presentation using beamer.	
	Preparing Poster.	
<u>Pedagogy</u> :	lectures/ tutorials/ seminars/ assignments/	
	presentations/ etc. or a combination of some of these.	
References/Reading	1. Dilip Datta, LaTeX in 24 Hours: A Practical Guide for	
<u>s:</u>	Scientific Writing, Springer, (2017).	
	2. Leslie Lamport, LaTeX: A Document Preparation	
	System, Addison-Wesley Professional (1994).	
	3. Frank Mittelbach, Michel Goossens, Johannes Braams,	
	David Carlisle and Chris Rowley, The LaTeX Companion, 2nd edition (TTCT series), Addison-	
	Wesley Professional, 2004	
Course Outcomes:	Student will be able to	
	1. Create basic types of LaTeX documents (article,	
	report, letter, book).	
	2. Format words, lines, and paragraphs, design pages,	
	create lists, tables, references, and figures in LaTeX.	

3. Create tables, typeset mathematical equations,	
import graphics, etc.	
4. Develop large documents like books and thesis and	
professional presentations using LaTeX.	

Title of the Course: Astronomy and Astrophysics

Course Code: PHS-630 Number of Credits: 2

Prerequisites for	Should have basic knowledge of electromagnetic theory,	
the course:	classical mechanics, thermodynamics	
<u>Course Objectives:</u>	The objective of this course is to develop an understanding of the scale, constituents, radiative process and stellar astronomy. A descriptive course includes the methods astronomy in different bands of electromagnetic radiation.	
<u>Content:</u>	Fundamentals of Astrophysics Major contents of universe, Black body radiation, specific intensity, flux density, luminosity, Magnitudes, Color index, Color temperature, effective temperature, Brightness temperature, Excitation temperature, kinetic temperature, stellar atmospheres	4 hours
	Astronomical Scales and techniques Units of measurement, celestial coordinates, precession, Mass, length and time scales in Astrophysics, Parallax method. Standard Candle method. Cepheid variable method. RedShift.	5 hours
	Astronomy in different bands of electromagnetic radiation Electromagnetic radiation, Optical astronomy, Radio astronomy, Infrared, UV and X-ray astronomy.	5 hours
	Radiative Processes Basics of theory of radiation field, radiation transfer equation, thermal radiation, radiative diffusion, basics of radiative transfer, elementary stellar atmospheres, relativistic electrodynamics, emission of electromagnetic radiation, scattering, Brehmstrahlung, synchrotron radiation, inverse-Compton process, plasma effects.	6 hours
	Stellar Physics Electromagnetic spectrum, spectral classification of stars, HR diagram, stellar opacities, Energy Generation in Stars: Calculation of thermonuclear reaction rates, the various reaction chains: PP chain and CNO cycle, He-burning, C- burning, Si-burning, photo-dissociation, neutrino emission	5 hours
	from stars, Chandrashekhar limit. Physics of Compact Objects Properties of black holes, white dwarfs, and neutron stars, formation of compact objects, equilibrium configurations, equations of state, stability criteria, and mass limits, the influence of rotation and magnetic fields, pulsar phenomena, black hole spacetimes, Hawking radiation,	5 hours

	mass flow in binary systems, spherical and disk accretion, high-temperature radiation processes, pulsar spin-up, compact x-ray sources and x-ray bursts, supermassive black holes in star clusters and galactic nuclei, gravitational and neutrino radiation from supernova collapse and binary coalescence.
Pedagogy:	Lectures / tutorials/assignments. Sessions shall be
	interactive in nature to enable peer group learning.
References/Readings	
	 A. E. Roy and D. Clarke, Astronomy Principles and Practice, 4th ed., Institute of Physics, 2003.
	 A R Choudhuri, Astrophysics for Physicist, Cambridge press,2010
	 J.V. Narlikar, The Structure of the Universe, Oxford University Press, 1977
Course Outcomes:	Student will be able to
	 Recognize the content of the universe, distances, mass, colour and temperature of stars.
	 Understand the astronomical measurement units and techniques.
	 Gain knowledge about light emitted by stars in the electromagnetic spectrum.
	4. Gain awareness of different radiative processes.
	Gain knowledge about compact objects and their formations.

Programme: M. Sc. (Physics) (Computational Physics)

Course Code: PHC-622Title of the Course: BEC and SuperfluidityNumber of Credits: 2

Prerequisites for	Should have basic knowledge of electrodynamics,	
	thermodynamics and quantum mechanics, and solid-state	
the course:		
Course Objections	physics	
Course Objectives:	To introduce up-to-date experimental and theoretical	
	progress in BEC and superfluidity.	
<u>Content:</u>	Superfluid Helium-4	8 hours
	Introduction, Classical and quantum fluids, the	
	macroscopic wave function, Superfluid properties of He II,	
	Flow quantization and vortices, the momentum	
	distribution, quasiparticle excitations.	
	Superfluid Helium-3	5 hours
	Introduction, The Fermi liquid normal state of He-3, the	
	pairing interaction in liquid He-3, Superfluid phases of He-	
	3.	
	Bose-Einstein Condensates-Theory	10 hours
	Ultracold atomic gases. Bose-Einstein condensation in an	
	ideal gas. Interacting Bose-Einstein condensates. Dynamics	
	of Bose-Einstein condensates. Elementary excitations.	
	Bose-Einstein condensates at finite temperatures. Two-	
	dimensional Bose gases. Quantum vortices in Bose-	
	condensed gases. True and quasi condensates in one-	
	dimensional trapped gases. Solitons in 1D Bose-condensed	
	gases. Strongly interacting 1D Bose gases. Rapidly rotating	
	Bose gases.	
	Bose-Einstein Condensate-: Experiment	7 hours
	Ultracold quantum gases: What? Why? How? Atom-laser	
	interaction, Bloch sphere Dressed state picture, Optical	
	Bloch equations Light forces, Molasses cooling, Sisyphus	
	cooling	
	Atomic beam oven, Zeeman slower, Magneto-optical trap	
	Optical dipole trap, Magnetic trap, Technology,	
	Evaporative cooling, Characterizing a BEC.	
Pedagogy:	lectures/ tutorials/ seminars/ assignments/	
	presentations/ etc. or a combination of some of these.	
<u>References/Readin</u>	1. James F. Annett, Superconductivity, Superfluids and	
gs	Condensates Oxford Series in Condensed Matter	
	Physics (2004).	
	2. R.P. Feynman, Statistical Mechanics, Westview Press,	
	(1972).	
	3. K. Huang, Statistical Mechanics, Wiley Eastern	
	Limited, (1988).	
	4. Ph. Nozieres and D. Pines, Theory of quantum	
	liquids, Vol II, CRC. (2019).	

	5. S. Stringari and L. Pitaevskii, Bose-Einstein
	condensation, Clarendon Press, (2003).
	6. C.J. Pethick and H. Smith, Bose-Einstein
	condensation in dilute gases, Cambridge University
	Press, (2011).
	7. H. J. Metcalf and P. van der Straten, Laser Cooling
	and Trapping, Springer (1999).
	8. D. Jervis and J. H. Thywissen, Making an ultracold
	gas, arXiv:1401.7659, (2014).
Course Outcomes:	Students will be able to
	1. understand the basics of superfluidity.
	2. Understand the different process of laser cooling and
	trapping techniques.
	3. Differentiate between BEC and superfluid state.
	4. characterize ultracold quantum gases.

Programme: M. Sc. (Physics) (Computational Physics)

Course Code: PHC-623Title of the Course: Introduction to Quantum Information and ComputingNumber of Credits: 2

Prerequisites for	Basic knowledge of Quantum mechanics.	
the course:	This course provides an introduction to the theory	
Course Objectives:	and practice of quantum computation.	
<u>Content:</u>	Introduction	8 hours
	Need of Quantum Computing, Postulates of Quantum Mechanics, Qubits, Bloch sphere representation,	
	Multiple Qubit States, Quantum Gates, and Quantum	
	Circuits.	
	Quantum measurement and communication	5 hours
	protocols	
	No-Cloning Theorem and Quantum Teleportation,	
	Super Dense Coding, Density Matrix, Bloch Sphere,	
	Measurement Postulates.	7 hours
	Quantum Algorithms Deutsch Algorithm, Simon Problem. Grover's Search	7 nours
	Algorithm, Grover's Search Algorithm, Quantum	
	Fourier Transform, Shor's Factorization Algorithm.	
	Quantum Information theory	7 hours
	Classical Information Theory, Shannon Entropy,	
	Shannon's Noiseless Coding Theorem, Von Neumann	
	Entropy, EPR and Bell's Inequalities, Cryptography	
	and RSA Algorithm, Quantum Cryptography	2 h a
	Quantum error correction and experimental aspects	3 hours
	Quantum error correction, Experimental Aspects of Quantum Computing.	
Pedagogy:	lectures/ tutorials/ seminars/ assignments/	
<u> </u>	presentations/ etc. or a combination of some of these.	
References/Reading	1. Michael A. Nielsen and Issac L. Chuang, Quantum	
<u>s:</u>	Computation and Information, Cambridge University Press (2002).	
	 Mikio Nakahara and Tetsuo Ohmi, Quantum 	
	Computing, CRC Press (2008).	
	3. N. David Mermin, Quantum Computer Science,	
	Cambridge University Press (2007)	
	4. Mark M. Wilde, Quantum Information theory,	
	Cambridge University Press (2017)	
	5. HK. Lo, T. Spiller and S. Popescu, Introduction to	
	Quantum Computation and Information, World	
	Scientific, (1998).	
	6. G. Benenti, G. Casati and G. Strini, Principles of	

	Quantum Computation and Information., World Scientific (2004).	
<u>Course Outcomes:</u>	 Students will be able to Differentiate between classical and quantum computer. Identify key quantum mechanical properties as computational resource. understand basic quantum gates, circuits, and algorithms. understand the basics of Quantum Information Theory and the importance of Quantum error correction. 	

Programme: M. Sc. (Physics) Course Code: PHC-624 Title of the Course: Introduction to Particle Physics Number of Credits: 2 Effective from AY: 2023-24

Prerequisites for the course:	Basic knowledge of Quantum Mechanics	
<u>Course Objectives:</u>	To introduce students the fundamental principles and concepts in particle physics and particle accelerators	
<u>Content:</u>	Introduction to Elementary Particles: Historical introduction, Mesons, Baryons, antiparticles, neutrinos, strange particles, The eightfold way and the quark model	4 hours
	Cross-section and decay rates: Cross-sections, decay rates, resonances, Breit-Wigner formula	3 hours
	Relativistics Kinematics: Lorentz Transformations and Four-vectors Energy and Momentum conservations Classical and Relativistic Collisions, examples and applications	5 hours
	Elementary Particle Dynamics: Introduction to Feynman diagrams and four forces Quantum Electrodynamics (QED), Quantum Chromodynamics (QCD), and Weak interactions Weak and Electromagnetic couplings of W and Z Decays and conservation law, and unification schemes.	7 hours
	Symmetries Symmetries, groups, and conservation Laws Angular momentum and addition of angular momenta Flavor Symmetries, Discrete Symmetries, Parity, Charge Conjugation and CP symmetries Neutral Kaons, CP Violation and Time Reversal and the TCP Theorem	7 hours
	Particle accelerators: Introduction to modern accelerators LHC at CERN and and RHIC and BNL, event rates and luminosity. Large detector systems at electron-positron, electron-proton and hadron colliders.	4 hours
Pedagogy:	Lectures/tutorials/assignments. Sessions shall be interactive in nature to enable peer group learning.	

<u>References/Reading</u> <u>s</u>	 David Griffiths, Introduction to Elementary Particles, Wiley (2008) M. Thomson, Modern Particle Physics, Cambridge University Press India (2016) F. Halzen and A. D. Martin, Quarks and Leptons, John Wiley (1984) 	
<u>Course Outcomes:</u>	 Student will be able to Classify elementary particles and fundamental forces, Construct Feynman diagrams for reactions. Learn particle states and their quantum numbers, conservation laws, and symmetries in nature. Learn modern particle accelerators and its working 	

Programme: M.Sc (Physics)(Biophysics)

Course Code: PHB-622 Title of the Course: Solid state and Biomaterials

Number of Credits: 4

Prerequisites for the	None	
<u>course:</u>		
<u>Course Objectives:</u>	This course is intended to introduce the concepts in biomaterials. The students will have a good understanding of the different bio materials and their properties. A brief introduction to new and advanced materials for biological applications will also be covered in the course.	
<u>Content:</u>	Introduction to Solid State	15 hours
	Crystal structure, Crystal Binding, Phase changes, crystal imperfections, defects and dislocations, non-crystalline solids, surface energy, contact angle, surface tension, Types of materials-ceramics, metals, semiconductors, polymers, composites, Impact of biomaterials	
	Properties of Materials	15 hours
	Mechanical properties-elasticity, stress, strain, tensile strength, plastic deformation, hardness, thermal properties, optical properties,	
	Biomaterials I	15 hours
	Introduction to biomaterials, property requirements for biomaterials, concept of biocompatibility, structure of cells and biological tissues, cell material interaction and response to foreign bodies, histocompatibility, genotoxicity.	
	Biomaterials II	15 hours
	Important biometallic alloys: Ti-based, stainless steels, Co-Cr-Mo alloys, Nitinol, Tantalum and magnesium, Bioinert, Bioactive and bioresorbable ceramics, Processing and properties of different bioceramic materials silicates, aluminates, Zirconia, hydroxyapatite tricalcium phosphatecalcium sulfate, bioactive glasses, Synthesis of biocompatible coatings on structural implant materials, Microstructure and properties of glass-ceramics, common biocompatible polymers and their properties, biodegradable polymers, Natural biomaterials, design concept of developing new materials for bioimplant applications, Nanobiomaterials	
Pedagogy:	Lectures/Tutorials/Assignments Sessions shall be interactive in nature to enable peer	
Poforoncos /Poodings	group learning.	
References/Readings	1. Ratner, Hoffman, Schoet and Lemons Eds, Biomaterials Science: An introduction to Materials in	

Medicine, Third Edition, Elsevier Academic Press
(2012).
2. Mauli Agrawal, Ong, Appleford and G. Mani,
Introduction to Biomaterials: Basic Theory with
Engineering Applications, First Edition, Cambridge
Press, (2013).
3. Fredrick H. Silver and David L. Christiansen,
Biomaterials Science and Biocompatability,
Piscataway, First Edition, Springer (1999).
4. John B Park and Roderik S Lakes, Biomaterials: An
Introduction, Third Edition, Springer, (2007).
5. Wang, M. Ramalingam, X. Kong L. Zhao, Eds.,
Nanobiomaterials: Classification, Fabrication and
Biomedical Applications, First Edition, Wiley (2018).
6. Roger Narayan, Nanobiomaterials, First Edition,
Elsevier (2017).
Student will be able to
1. Get familiarized with the basic types of biomaterials
and their properties.
2. Gain sufficient knowledge in the biomaterials and
their applications.
3. Acquire knowledge of recent developments in
biomaterial engineering and nanobiomaterials.
4. Develop an understanding of biocompatible materials.

Course Code: PHS-603Title of the Course: X-ray Spectroscopy

Number of Credits: 2

Duene mulative feet	Perio Imperio de la Calid Chata Dia da Alchandaria	
Prerequisites for	Basic knowledge of Solid State Physics/Chemistry and	
the course:	Electromagnetic waves	
Course Objectives:	To introduce students to various techniques in x-ray	
	spectroscopy and their applications to condensed matter	
	physics, chemistry and material science.	
Cantanti	V rever Courses and Interestion with mother	Chaura
<u>Content:</u>	X-rays: Sources and Interaction with matter	6 hours
	X-rays: Waves and photons, Scattering, Absorption,	
	Refraction and Reflection.	
	X-ray tubes, Synchrotron radiation, Bending magnet	
	sources, Undulator radiation, Wiggler radiation. X-ray	
	detection	
	Scattering of X-Rays	8 hours
	Scattering from an electron, scattering from an atom,	
	scattering from a molecule, scattering from liquids and	
	glasses, small angle x-ray scattering, scattering from a	
	crystal, Debye-Waller factor, measured intensity from a	
	crystallite.	
	X-ray Absorption	8 hours
	Absorption coefficient, absorption edge, Definition: x- ray	
	absorption fine structure (XAFS), x-ray absorption near	
	edge structure (XANES), extended x-ray absorption fine	
	structure (EXAFS), History, Theory of XAFS, XAFS	
	Experiment, Beamline and optics, Data acquisition,	
	treatment and modelling, XANES as fingerprint technique,	
	x-ray magnetic circular dichroism.	
	Photoelectron Spectroscopy	8 hours
	Photoelectric Effect, history of x-ray photoelectron	
	spectroscopy (XPS), theoretical model – three step model,	
	instrumentation, the electron mean free path, Auger	
	electrons, core level binding energies in atoms, molecules	
	and solids, final state effects, valence band in solids, band	
	structure, angle resolved photoelectron spectroscopy	
	(ARPES).	
Pedagogy:	lectures/ tutorials/ seminars/ assignments/ presentations/	
<u></u>	etc. or a combination of some of these.	
References/Readings	1. Jens Als-Nielsen and Des Mc Morrow, Elements of	
	Modern X-ray Physics, 2 nd Edition, Wiley 2011.	
	2. B.D.Cullity and S. R. Stock, Elements of X-ray Diffraction,	
	3rd edition, Pearson Education, 2014.	
	3. Grant Bunker, Introduction to XAFS, Cambridge	
	University Press, 2010.	
	0111VC131Cy 11C33, 2010.	

	4. Stefan Hufner, Photoelectron Spectroscopy, Principles
	and Applications, Springer 2003.
Course Outcomes:	Students will be able to
	1. gain knowledge about characteristics of different X-ray
	sources, especially synchrotron radiation sources.
	2. understand the principles, experimental equipment,
	basic data analysis methods with respect to X-ray
	diffraction (XRD), X-ray photoemission and X-ray
	absorption spectroscopy,
	3. understand the kind of structural information obtained
	from the three x-ray spectroscopic methods.
	4. Analyse the spectroscopic data to extract physical
	information.

Course Code: PHS-604 Title of the Course: Optical Spectroscopy					
Number of Credits: 2					
Effective from AY: 2023-24					
Prerequisites for the	Should have studied courses in classical mechanics,				
<u>course:</u>	electromagnetism, elementary quantum mechanics and				
	nuclear physics.				
Course Objectives:	To introduce different optical spectroscopic techniques				
	that can be used for characterization of materials,				
	especially in condensed matter.				
Content:	Electronic Spectroscopy	15 hours			
	One-electron and two-electron atoms: spectrum of				
	hydrogen, helium and alkali atoms; Many electron atoms:				
	Hund's rule, L-S and j-j coupling, Spectroscopic terms,				
	Lande interval rule; Interaction with Electromagnetic				
	fields: Zeeman, Paschen Back and Stark effects, electron				
	spin resonance spectroscopy, Hyperfine structure and				
	isotope shift, selection rules; Lamb shift, Electromagnetic				
	radiation, Absorption and Emission of radiation, Line				
	width and its broadening mechanisms, Spontaneous and				
	stimulated emissions, Einstein coefficients, Introduction				
	to lasers and laser spectroscopy				
	Molecular Spectroscopy	15 hours			
	Microwave spectroscopy, Infrared spectroscopy, the	10 110 410			
	vibrating diatomic molecule – simple harmonic oscillator,				
	the anharmonic oscillator, the diatomic vibrating rotator,				
	Interaction of rotation and vibrations, the vibrations of				
	polyatomic molecules, Raman spectroscopy- Electronic				
	spectra of diatomic molecules – Born-Oppenheimer				
	approximation, vibrational coarse structure –				
	progressions. Intensity of vibrational transitions – the				
	Franck-Condon principle. Optical absorption: Free carrier				
	absorption-optical transition between bands-direct, and				
	indirect-excitons, Luminescence in crystal - excitation and				
	emission - decay mechanism, Fluorescence,				
	Phosphorescence, Crystal Field Theory, Spectroscopy of				
	transition metals complexes, Fluorescence spectroscopy,				
Pedagogy	Introduction to time-resolved spectroscopy Lectures/ tutorials/seminars/ term papers/assignments/				
Pedagogy:	presentations/ self-study. Sessions shall be interactive in				
	nature to enable peer group learning.				
References/Readings	1. B. H. Bransden and C. J. Joachain, Physics of Atoms				

		and Molecules, 2 nd Edition, Pearson; 2008.
	2.	C. N. Banwell and E. M. McCash, Fundamentals of
		Molecular Spectroscopy, 4 th Edition, Tata McGraw,
		2004
	3.	H. E. White, Introduction to Atomic Spectra, Tata
		McGraw Hill, 1934.
	4.	K. Thayagarajan and A.K Ghatak, Lasers Theory and
		Applications, Macmillan (Tata McGraw Hill) 1995.
	5.	D. Satyanarayana Handbook of Molecular
		Spectroscopy, International Publishing House, 2015,
		1st edition
	6.	A. H. Kitai, Solid State Luminescence, Chapman and
		Hall London; 1993.
	7.	D. R. Vij, Eds, Luminescence of Solids, Plenum Press,
		New York, 1998.
Course Outcomes:		1. Understand different optical spectroscopic
		techniques
		2. Learn concepts of atomic and molecular physics
		3. Apply the techniques for the experimental
		characterisation of materials.
		4. Demonstrate knowledge in recent developments
		in optical spectroscopy.
l	1	- I

Programme: M. Sc. (Physics) (Solid State Physics) Course Code: PHS-605 Title of the Course: Nuclear Spectroscopy for Condensed Matter Number of Credits: 2 Effective from AY: 2023-24

Prerequisites for	Should have studied classical mechanics,	
the course	electromagnetism, elementary quantum mechanics and	
	nuclear physics.	
Objectives	To introduce the concept of methods that uses properties	
Objectives	of a nucleus to probe material properties	
Content	Properties of a nucleus:	4 hours
content	Nuclear magnetic dipole moment, nuclear electric dipole	1 Hours
	moment, nuclear decays, magnetic and electric hyperfine	
	interactions	
	Nuclear Magnetic Resonance (NMR) Spectroscopy:	6 hours
	Principles, classical treatment of NMR (Bloch equations),	
	quantum theory of NMR, experimental methods, Chemical	
	shift, Knight shift in metals, spin-lattice relaxation, spin-	
	spin relaxation, applications.	
	Mossbauer Spectroscopy:	6 hours
	Principles, The Debye-Waller Factor, Mossbauer Sources	
	and Experimental Apparatus, Isomer Shifts, Electric	
	quadrupole interaction, Magnetic Dipole Interaction,	
	Quadratic Doppler effect, Results from Mossbauer	
	spectroscopy.	
	Neutron Scattering:	6 hours
	Neutrons and Neutron Sources, neutron spectrometer and	
	detectors, the process of neutron scattering, response	
	function and correlation function for inelastic neutron	
	scattering, results from neutron scattering.	
	muon spin rotation (μSR) spectroscopy:	4 hours
	Muons and muon spin rotation, influence of internal fields,	
	results from μSR	
	Positron annihilation spectroscopy (PAS):	4 hours
	Positrons in solids, positron sources and spectrometers,	
	results from PAS	
<u>Pedagogy</u>	lectures/ tutorials/ seminars/ assignments/ presentations/	
	etc. or a combination of some of these.	
Reference/Readings	Text Books/References:	
	1. G. Schatz and A. Weidinger, Nuclear condensed matter	
	physics: nuclear methods and applications, John Wiley;	
	1997.	
	2. H. Kuzmany, Solid-state spectroscopy, Springer, 1998.	
	3. A. Beiser, Concepts of Modern Physics, McGraw Hill	
	Education, 6 th Edition, 2003	
	4. R. Schafer and P. C. Schmidt, Methods in Physical	
	Chemistry, Wiley-VCH Verlag GmbH & Co. 2012	

Course Outcomes:	Student will be able to
	1. Learn NMR, Mossbauer, neutron scattering, μSR, and
	PAS spectroscopic techniques
	2. Apply the techniques in experimental characterization
	of materials.
	3. Know applications of these techniques in different fields
	4. gain knowledge about hyperfine interactions.

Course Code: PHS-606Title of the Course: Introduction to Crystallography and X-rayDiffraction

Number of Credits: 2

Prerequisites for the	Basic knowledge of Solid State Physics / Solid State	
course:	Chemistry	
Course Objectives:	This course is designed to familiarize students with	
	general aspects of symmetry, crystal structure and X-ray	
	diffraction and use the basic understanding in the	
	characterization of materials.	
Content:	Introduction to Symmetry and Crystal Structures	7 hours
	Symmetry elements and their operations, Unit cell and	
	crystal systems, Bravais lattice, Point groups and space	
	groups and their stereographic representations,	
	Herrmann-Mauguin and Schoenflies notations, Group-	
	subgroup-supergroup relationships, Equivalent points,	
	General and special positions, Deriving general positions	
	of space groups, Wyckoff notations and site symmetry,	
	Shifting of origin in lattice, Crystal directions and planes,	
	Miller indices, Real space vs reciprocal lattice, Close	
	packed structures, Octahedral and tetrahedral sites,	
	Asymmetric unit, Concept of Z and Z', Metric matrix,	
	Deriving bond length and bond angles, Introduction to	
	quasicrystals and their importance	
	X-ray Scattering and Structure Factors	8 hours
	White and Characteristic X-rays, Laboratory and	
	synchrotron X-ray sources and their properties, Coherent	
	and incoherent scattering, Scattering of X-rays by an	
	electron, atom and crystal, Atomic scattering factor,	
	Structure factor, Fourier transform, Electron density,	
	Laue's equations, Bragg's law, Ewald's sphere, Limiting	
	sphere and reflecting sphere, Bragg's law in reciprocal	
	space, Systematic absences, Deriving conditions for	
	systematic absences, Phase problem in crystallography,	
	Solution to the phase problem, Direct method, Patterson	
	method, ∇F synthesis, L-P corrections, Temperature	
	factors, Absorption and extinction of X-rays, Friedel's law	
	and Absolute configuration determination, Anomalous	
	scattering, Laue method, X-ray detectors	E bours
	Single Crystal X-ray Diffraction (SCXRD)	5 hours
	Pros and cons of single crystal and powder X-ray	
	diffraction, Single crystal growth and selection, Indexing	
	of crystals, Data collection, Data reduction, Space group	
	determination, Structure solution and refinement,	
	Parameters/constraints/restraints, Anisotropic	

	displacement parameters (ADPs), Reliable (R) factor, Twining, Treatment of disordered structures, Introduction structure refinement software: OLEX2 and WinGX, Crystal structure analysis, CIF preparation, Validation of structures, Examples: X-ray data of aspirin and KHSO ₄ Powder X-ray Diffraction (PXRD) Importance of PXRD method, Background of methodology, Geometrical basis of PXRD, Sample preparation, background noise determination, Indexing powder pattern, Le-bail profile fitting, Rietveld refinement, phase identification and quantification, Crystallite size and strain determination, Example: PXRD of CeO ₂	5 hours
	Total X-ray Scattering and Pair Distribution Function (PDF) Short- and long-range order, Bragg and diffuse scattering concepts, atomic scattering amplitude, Debye's scattering intensity, Total scattering structure function, atomic PDF, Structure and reaction mechanism, Examples: Ni and WO ₃ nanoparticles	5 hours
Pedagogy:	Lectures/tutorials/term	
	papers/assignments/presentations/self-study	
References/Readings	 C. Giacovazzo, Fundamentals of Crystallography, Oxford Science Publications, 2011. G. H. Stout and L. H. Jensen, X-ray Structure Determination: A Practical Guide, John Wiley and Sons, New York, 1989. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd edition, Pearson Education, 2014. C. Hammond, The Basics of Crystallography and Diffraction, Oxford Science Publications, 2015. Jens Als-Nielsen and Des Mc Morrow, Elements of Modern X-ray Physics, 2nd Edition, Wiley 2011. W. Massa, Crystal Structure Determination, Springer, 2000. R. A. Young, The Rietveld Method, Oxford University Press, 1993. T. Egami and S. J. L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials, Pergamon Materials Series, Volume 16, 2012 	
Course Outcomes:	Student will be able to	
	 acquire basic understanding of crystallography and X- ray diffraction in the solid state. Gain knowledge of single crystal, powder X-ray diffraction and PDF methods. apply X-ray scattering methods as an experimental 	

tool for materials characterization.	
4. Evaluate the structural details from x-ray data.	

Course Code: PHS-607 Title of the Course: Magnetism in Condensed Matter Physics Number of Credits: 2

Number of Credits: 2

Prerequisites for the	Basic knowledge of Solid-State Physics / Solid State	
course:	Chemistry	
Course Objectives:	This course is designed to familiarize students with general and specific aspects of magnetic interaction in condensed matter and methods of magnetic measurements.	
<u>Content:</u>	Magnetic structures and interactions	11 hours
	Diamagnetism, Paramagnetism, Ferromagnetism,	
	Antiferromagnetism, Effect of magnetic field,	
	Ferrimagnetism, Dipolar interactions, Exchange	
	interactions – origin, direct and indirect exchange, Indirect	
	exchange in ionic solids, indirect exchange in metals,	
	Double exchange, Anisotropic exchange	
	Measurement of magnetic order	4 hours
	Magnetic fields, Atomic scale magnetism, Domain scale	
	measurements, Bulk magnetism measurements –	
	magnetization and magnetic susceptibility, Neutron	
	scattering, other techniques	
	Order and broken symmetry	8 hours
	Broken symmetry, Landau theory of ferromagnetism,	
	Heisenber and Ising models (1D and 2D), Consequences of	
	broken symmetry, Phase transitions, Rigidity, Excitations –	
	magnons, Domains, Domain walls, Magnetocrystalline	
	anisotropy, Domain wall width, Magnetization process, Observation of domain wall, small magnetic particles,	
	Stoner-Wohlfarth model, Soft and hard materials	
	Magnetism in metals	3 hours
	Pauli paramagnetism, spontaneously spin-split bands,	5 110015
	spin- density functional theory, Landau levels, Landau	
	diamagnetism	
	Competing interactions and low dimensionality	4 hours
	Frustration, Spin glasses, Superparamagnetism, One	4 110013
	dimensional and two-dimensional magnets – spin chains,	
	Spinons Haldane chains, Spin-Peierls transitions, spin	
	ladders, Magnetoresistance, Magneto-optics	
Pedagogy:	Lectures/ tutorials/ seminars/ assignments/	
<u>caabob II</u>	presentations/ etc. or a combination of some of these.	
References/Reading	1. D. C. Mattis, Theory of Magnetism. Springer Verlag,	
<u>.</u>	1981.	
	2. J. M. D. Coey, Magnetism and magnetic materials.	
	Cambridge University Press, 2010.	
	3. Stephen Blundell, Magnetism in Condensed Matter.	
	=	

Course Outcomes:	Students will be able to	
	 acquire basic understanding of Magnetism and magnetic interactions in solids. Distinguish between different types of magnetic order and magnetically frustrated states. Gain knowledge of different experimental methods of measuring magnetization at bulk, domain size and atomic level. Understand magnetic order in low dimensional systems. 	

Course Code: PHS-608

Title of the Course: Microscopy Techniques for Condensed Matter

Number of Credits: 2

Prerequisites for the course	Basic knowledge of Solid State Physics	
<u>Objectives</u>	Student will be able to gain knowledge about working principle, instrumentation, material imaging and data analysis using imaging techniques such as Transmission electron microscopy, scanning electron microscopy and scanning probe microscopy.	
<u>Content</u>	Transmission Electron Microscopy (TEM) Interaction of electrons with matter, elastic and inelastic scattering, secondary effects, Instrumentation: Electron sources, pumps and holders, lenses, apertures, and resolution, Diffraction in TEM: Selected area diffraction, specimen preparation, Imaging and interpretation. Scanning Electron Microscopy (SEM) Electron beam -specimen interaction, Backscattered	10 Hours 10 Hours
	electrons, Secondary electrons, SEM instrumentation, specimen preparation, Image formation and interpretation, Image defects, data analysis using Image J, Energy Dispersive Spectroscopy (EDS).	
	Scanning Probe Microscopy (SPM) Introduction, principle, Atomic Force Microscope instrumentation (AFM), Forces Between Tip and Sample, Technical Aspects of Atomic Force Microscopy, Calibration of AFM Measurements, Static Atomic Force Microscopy, Amplitude Modulation (AM) Mode in Dynamic Atomic Force Microscopy, Intermittent Contact Mode/Tapping Mode, Frequency Modulation (FM) Mode in Dynamic Atomic Force Microscopy—Non-contact Atomic Force Microscopy, AFM image artefacts, Applications of AFM, Scanning Tunnelling Microscopy (STM): Overview, Experimental Realization of Spectroscopy with STM, Normalized Differential Conductance, Relation Between Differential Conductance and the Density of States, Asymmetry in the Tunnelling Spectra, Energy Resolution in Scanning Tunneling Spectroscopy, Barrier Height Spectroscopy, Spectroscopy with the STM, Principles of Inelastic Tunneling Spectroscopy with the STM, Examples of Vibrational Spectra Obtained with the STM	10 Hours

1. David B. Williams and C. Barry Carter, Transmission
Electron Microscopy-A Textbook for Materials
Science, Springer US, 2nd edition, 2009.
 Joseph I. Goldstein, Dale E. Newbury, Joseph R.
Michael, Nicholas W.M. Ritchie, John Henry J. Scott,
David C. Joy, Scanning Electron Microscopy and X-Ray
Microanalysis, Fourth Edition, Springer
3. Peter Eaton, Atomic Force Microscopy, Oxford
University Press, 2010
4. Bert Voigtlander, Scanning Probe Microscopy: Atomic
Force Microscopy and Scanning Tunneling
Microscopy, Nano Science and Technology, Springer,
2015,
5. C. Julian Chan, Introduction to Scanning Tunnelling
Microscopy, Second Edition, Oxford Science
Publication, 2007
6. Thomas G., Transmission electron microscopy of
metals, John Wiley, 1996.
Student will be able to
1. understand basic principle of electron microscopic
techniques
2. learn concepts of force microscopy.
3. Gain knowledge of working, data capturing and data
analysis using TEM, SEM and SPM.
4. Apply microscopic techniques to different physical
systems.

Course Code: PHS-609 Title of the Course: Thin film Physics

Number of Credits: 2

Prerequisites for	Basic knowledge of concepts in physics, chemistry,	
the course:	electrochemistry and experimental techniques.	
Course Objectives:	To introduce various types of thin films techniques,	
	growth mechanisms and their applications.	
Content:	Introduction to Thin Films	4 hours
	Definition of thin films, Comparison of thin and thick	
	films, Theory of growth of thin films: Nucleation,	
	condensation, Capillarity model, Atomistic model,	
	comparison of models, various stages of film growth.	
	Physical, Electrochemical, Chemical Deposition	8 hours
	Techniques	
	Overview of vacuum techniques, physical vapour	
	deposition, chemical vapour deposition, molecular beam	
	epitaxy, sputtering, electron –beam deposition, pulsed	
	laser ablation.	
	Electrodeposition: deposition mechanism and	
	preparation of compound thin film, anodization, chemical	
	bath deposition, successive ionic layer adsorption	
	reaction method (SILAR) method	
	Spray pyrolysis: deposition mechanism and preparation	
	of compound thin films, sol-gel method, hydrothermal	
	method. Characterization of Thin Films	10 hours
	Thickness measurement - Tolansky technique, Talystep	TO HOULS
	(styles) method, Quartz crystal microbalance, Stress	
	measurement by optical method, Gravimetric method.	
	Influence of thickness on the resistivity of thin films, Hall	
	Effect & Magneto-resistance in thin films, Fuch-	
	Sondhemir theory, TCR and its effects.	
	Mechanical properties: Contact angle (hydrophobicity	
	and hydrophillicity), Adhesion and its measurement with	
	mechanical and nucleation methods, stress measurement	
	by using optical method.	
	Structural characterization: X-ray diffraction (GI-XRD)	
	Emerging Thin Film Materials and Applications	8 hours
	Patterning techniques (Photolithography), Diamond	
	Films, Thin film resistors, capacitors, Junction devices	
	(Diodes, Transistors, Solar cells), ICs, Thin film sensors	
	(gas and humidity), Thin films for information storage	
	(Magnetic and optical recording), Metallurgical	
	applications, Photo thermal converters, Optical coatings,	
	Electro acoustics and telecommunication	

Pedagogy:	lectures/ tutorials/ seminars/ assignments/ presentations/
	etc. or a combination of some of these.
References/Reading	1. Maissel and Glang, Hand book of Thin Film Technology,
<u>s</u>	Mc Graw Hill 1970.
	2. K. L. Chopra Thin Film Phenomena, Mc Graw Hill, 1969.
	3. M. Ohring, Material Science of Thin Films, Academic
	Press, 2nd edition, 2001.
	4. J. L. Vossen and W Kern, Thin Film Process, Academic
	Press 1st edition, 1991.
	5. A. Roth, Vacuum Technology, 3rd updated and revised
	edition, Elsevier, North Holland, 1990
	 Joy George Properties of Thin Films, , 1st edition Marcel
	and Decker, 1992
	7. R.K. Pandey, S.N. Sahu, S. Chandra, Handbook of
	semiconductor electrodeposition, Marcel Dekker, 1996.
Course Outcomes:	Students will be able to
	1. Learn about different techniques and growth
	mechanism of thin films.
	2. Gain knowledge about characteristics of thin film
	materials.
	3. Understand structural and mechanical properties of
	thin films
	4. Comprehend applications of thin film in various fields

Course Code: PHS-610	Title of the Course: Physics of Glasses

Number of Credits: 2

Prerequisites for	Should have basic knowledge of Solid-state Physics,	
the course:	Thermodynamic and statistical mechanics	
<u>Course Objectives:</u>	To introduce students to the Physics governing amorphous	
<u>course objectives.</u>	materials. The course includes the preparation of	
	amorphous materials, kinetics and their characterization	
	methods.	
Contont		5 hours
<u>Content:</u>	Amorphous materials	5 hours
	Introduction, Definition, difference between crystalline and	
	amorphous materials, properties of amorphous materials,	
	Examples of amorphous materials, Methods of preparation	
	of amorphous materials.	2
	Glasses	3 hours
	Historical perspective of glass, Types of glasses. Refractive	
	index, color, density, porosity, transparency, viscosity	<u></u>
	The Glass transition	8 Hours
	The glass transition-change in volume with temperature,	
	glass formation vs crystallization, Thermodynamic phase	
	transition, Entropy, Relaxation, Factors determining glass	
	transition temperature, Theory of glass transition, kinetics	
	of glass formation,	
	Structure of glass	9 hours
	Network former, network modifier, Intermediates,	
	Structure and topology, Zachariasen random Network	
	theory, coordination number, radial distribution function,	
	structural modelling	
	Experimental techniques	5 hours
	Microscopy, X-ray diffraction, small angle scattering,	
	vibrational spectroscopy, Raman spectroscopy, Thermal	
	analysis.	
Pedagogy:	Lectures / tutorials/assignments. Sessions shall be	
	interactive in nature to enable peer group	
	learning.	
References/Reading	1. S R Elliott, Physics of Amorphous materials, Longman,	
<u>s</u>	Harlow, 1990	
	2. Richard Zallen, The Physics of Amorphous materials,	
	Wiley VCH, 2004.	
	3. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction,	
	3rd edition, Pearson Education, 2014.	
	4. G. L. Squires, Introduction to the theory of Thermal	
	5. J D Richard Tilley, Understanding solids: the science of	
	 G. L. Squires, Introduction to the theory of Thermal Neutron Scattering, Cambridge University Press (1978) 	

	materials, Wiley publication, 2004 6. K Nakamoto, Infrared and Raman spectra of Inorganic and coordination compounds, 6th Edition Wiley Publication,2009
Course Outcomes:	Students will be able to
	1. Distinguish between crystalline and amorphous
	materials.
	2. Acquire knowledge of glass history and important
	properties of glass.
	3. Understand kinetics and thermodynamic of glass
	formation
	4. Aware of basic rules of glass formation and structure
	5. Understand different methods of characterization of
	glasses.

Programme: M. Sc. (Physics) (Computational Physics)

Course Code: PHC-603 Title of the Course: Simulation Techniques

Number of Credits: 2 (1T+1P)

Prerequisites for	Basic knowledge of Computer programming, Quantum	
the course:	mechanics and Statistical mechanics.	
<u>Course</u>	To introduce computational methods for simulating many-	
<u>Objectives:</u>	body systems in condensed matter physics.	
Objectives.	body systems in condensed matter physics.	
Content:	Monte Carlo methods for classical spin systems	7T+4P=19
		hours
	Exact diagonalization of quantum lattice models	1T+2P=7
		hours
	The density matrix renormalization group and tensor	
	network methods	7T+4P=19
		hours
Pedagogy:	Lectures/Laboratory practicals. Sessions shall be	
	interactive in nature to enable peer grouplearning.	
References/Readin	1. J. Thijssen, Computational Physics, Second Edition,	
gs	Cambridge University Press, 2012.	
	2. Tao Pang, An Introduction to Computational Physics,	
	Second Edition, Cambridge University Press, 2006	
	3. U. Schollwock, The density-matrix renormalization	
	group in the age of matrix product states, Annals of	
	Physics 326 , 96192 (2011)	
Course Outcomes:	Student will be able to	
	1. Understand the need for numerical simulations to	
	study lattice models	
	2. Acquire knowledge of various numerical	
	techniques like exact diagonalization, DMRG and	
	Monte Carlo method.	
	3. Develop computer programs for the same	
	4. Apply these methods to study many-body	
	condensed matter systems.	
	5. Infer the advantages and limitations of these	
	methods.	

Title of the Course: Physics of Quantum Materials

Course Code: PHC-604 Number of Credits: 2

Prerequisites for	Should have studied modern physics	
<u>the course</u> Objectives	The aim of this course is to give a background relevant to research in the physics of topological	
	materials and low dimensional structures and quantum devices.	
<u>Content</u>	Physics of topological materials: Berry phase, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field, Linear response theory, Topological phases of matter such as Chern insulators and two- and three-dimensional topological insulators. Angle, Spin, and Depth Resolved Photoelectron Spectroscopy on Quantum Materials, Results of topological insulators, HgTe, Bi ₂ Se ₃ family (Bi ₂ Te ₃ , Sbi ₂ Te ₃) topological semimetal Na ₃ Bi, quantum spin Hall insulator WTe ₂	11 hours
	Physics of low dimensional systems: Concepts about heterostructures and resulting low dimensional systems such as quantum wells, nanowires and quantum dots. Quantum physics applied to such systems. Optical properties of low dimensional systems (transition rules, polarisation etc). Electron transport properties of 2D and 1D system. Quantised conductance with Landauer- formalism. Scattering phenomena in 1D. Devices based on quantum phenomena and Coulomb blockade.	11 hours
	Low dimensional quantum magnetism: Dimers, Shastry-Sutherland network, Dimers, Bose- Einstein condensation, Chains, spin liquids, phase transitions, spin gap, long-range order, Ladders, Nersesyan-Tsvelik network, Layers, triangular, Kagome and honeycomb lattices, Examples.	8 hours
<u>Pedagogy</u>	lectures/ tutorials/ seminars/ assignments/ presentations/ etc. or a combination of some of these.	
Reference/Readings	 Text Books/References: N. W. Ashcroft and N. D. Mermin, Solid State Physics, Cengage Learning Publishers, 1976 1st Edition. John Singleton, Band Theory and Electronic 	

3. B. Yan and S-C. Zhang, Topological Materials,	
Rep.Prog. Phys. 75 (2012) 096501	
4. Kane C L and Mele E J, Quantum Spin Hall Effect	
in Graphene <i>, Phys. Rev. Lett.</i> 95 (2005) 226801	
5. B. A. Bernevig and S. C. Zhang, Simple Quantum	
Spin Hall Effect, 2006 Phys. Rev. Lett. 96 106802.	
6. N. Kumar, S. N. Guin, K. Manna, C. Shekhar, C.	
Felser, Topological Quantum Materials from the	
viewpoint of Chemistry, Chemical Reviews 121	
(2021) 2780-2815.	
7. P. D. C. King et al., Angle, Spin and Depth resolved	
photoelectron spectroscopy on Quantum	
Materials, Chemical Reviews 121 (2021) 2816-	
2856.	
8. A. Vasiliev et al, Milestones of low-d quantum	
Students will be able to	
1. Develop a broad understanding of low	
dimensional materials.	
3. understand topological interactions and its	
influence on properties of materials.	
4. gain knowledge of key applications in quantum	
technologies.	
	 Kane C L and Mele E J, Quantum Spin Hall Effect in Graphene, <i>Phys. Rev. Lett.</i> 95 (2005) 226801 B. A. Bernevig and S. C. Zhang, Simple Quantum Spin Hall Effect, 2006 <i>Phys. Rev. Lett.</i> 96 106802. N. Kumar, S. N. Guin, K. Manna, C. Shekhar, C. Felser, Topological Quantum Materials from the viewpoint of Chemistry, Chemical Reviews 121 (2021) 2780-2815. P. D. C. King et al., Angle, Spin and Depth resolved photoelectron spectroscopy on Quantum Materials, Chemical Reviews 121 (2021) 2816- 2856. A. Vasiliev et al, Milestones of low-d quantum magnetism npj Quantum Materials 3 (2018) 8368 Students will be able to Develop a broad understanding of low dimensional physics. gain perspective on recently developed low dimensional materials. understand topological interactions and its influence on properties of materials. gain knowledge of key applications in quantum

Title of the Course: Superconductivity

Course Code: PHC-605 Number of Credits: 2

Prerequisites for	Should have basic knowledge of electrodynamics,	
the course	thermodynamics and quantum mechanics, and solid	
	state physics	
Objectives	To introduce an up-to-date experimental progresses	
<u>Objectives</u>	and theories of superconductivity	
Content	Basic Experimental Aspects	2 hours
content	Introduction, Conduction in metals, Zero-resistivity,	2 110013
	Meissner- Ochsenfeld effect, Perfect diamagnetism,	
	Type-I and type-II superconductors, Application of	
	low and high temperature superconductors.	
	Superconducting Materials	10 hours
	Classical Superconductors: Elemental	10 110013
	superconductors, superconducting compounds and	
	alloys, A15 compounds, Chevrel phase compounds	
	and their crystal structure, experimental studies on these materials, Phase	
	diagrams.	
	High-temperature Superconductors: La-Ba/Sr-Cu-O	
	systems, Y-Ba- Cu-O systems, Bi-Sr-Ca-Cu-O systems,	
	Ti-Sr-Ca-Cu-O systems, superconductivity in rare-	
	earth and actinide compounds, organic	
	superconductors, MgB ₂ and Iron Arsenide systems,	
	their crystal structure, phase diagrams experimental	
	studies on these materials, Phase diagrams.	10 h a
	Theoretical Aspects	18 hours
	Phenomenological theories: Thermodynamics of	
	superconducting transition, expressions for critical	
	temperature $T_{\rm C}$, critical field $H_{\rm C}$, London's theory,	
	Pippard non-local theory, Ginzburg-Landau Theory.	
	Microscopic theory: BCS theory, the electron-phonon	
	interaction, the Cooper pair formation, BCS ground	
	state, Consequences of the BCS theory and	
	comparison with experimental results, Coherence of	
	the BCS ground state and the Meissner-Ochsenfeld	
	effect.	
	Possible Mechanisms of high TC Superconductors	
<u>Pedagogy</u>	lectures/ tutorials/ seminars/ assignments/	
	presentations/ etc. or a combination of some of	
	these.	
<u>Reference/Readings</u>	1. James F. Annett, Superconductivity, Superfluids	
	and Condensates, Oxford Series in Condensed	
	Matter Physics (2004).	

	 J.B. Ketterson and S.N. Song, Superconductivity, Cambridge Univ. Press (1999). M. Tinkham, Introduction to Superconductivity, McGraw Hill (1996). C. Kittel, Introduction to Solid State Physics,
	Wiley, Eight Ed. (1997).
	5. H. Ibach and H. Luth, Solid State Physics, Springer
	(2012).
Course Outcomes:	Student will be able to
	1. gain knowledge of different families of
	superconducting materials.
	2. Understand phase diagrams of different
	superconductor families.
	3. Understand theories on conventional
	superconductors.
	4. Develop understanding of mechanisms of
	unconventional superconductivity.

Title of the Course: Advanced Particle Physics

Number of Credits: 4

Course Code: PHC-606

<u>Prerequisites</u> for the course:	Introduction to Particle Physics (PHC-654) and Nuclear and Elementary Particle Physics (PHY-507), Quantum Mechanics (PHY-505)	
<u>Course</u> Objectives:	To introduce students the core principles in particle physics	
<u>Content:</u>	Feynman Calculus: Decays, scattering and cross-sections Fermi Golden rule, Golden rule for two particle decays and scattering of particles Two-body scattering in the COM frame Feynman rules for a toy theory and higher-order Feynman diagrams	10 hours
	Quantum Electrodynamics: Dirac equation, solutions to the Dirac equation, and bilinear covariants Photon, Feynman rules for QED and examples Casimir's Trick, cross-sections and lifetimes, and renormalization Hadron production in e+e- collisions Elastic electron-proton scattering	12 hours
	Quantum Chromodynamics:Feynman rules for ChromodynamicsColor factors, quark and antiquarkPair annihilation in QCDAsymptotic Freedom	10 hours
	Weak Interactions: Charged leptonic weak Interactions Decay of muon, neutron, and pion Charged weak interactions of quarks Neutral weak interactions Electroweak unification and chiral fermion states	12 hours
	Weak isospin and hypercharge, electroweak mixing Gauge Theories: Lagrangian formulation of classical particle mechanics and Lagrangians in relativistic field theory Local gauge invariance and Yang-Mills Theory Chromodynamics, Feynman rules and Mass term Spontaneous symmetry-breaking Higgs Mechanism	12 hours
	Neutrino Oscillations: Solar neutrino problem and neutrino oscillations	4 hours

	Neutrino mixing and neutrino mixing matrix	
<u>Pedagogv</u> :	Lectures/tutorials/assignments. Sessions shall be interactive in nature to enable peer group learning.	
<u>References/Reading</u> <u>s</u>	 David Griffiths, Introduction to Elementary Particles, 2nd edition, Wiley (2008) F. Halzen and A. D. Martin, Quarks and Leptons, John Wiley (1984) D. H. Perkins, Introduction to High Energy Physics, 4th edition, Cambridge (2000) M. Thomson, Modern Particle Physics by Cambridge University Press India (2016) 	
<u>Course Outcomes:</u>	 Student will be able to Learn Feynman diagrams, rules and calculate cross-section for QED, QCD and Weak processes. Classify particles and fundamental forces. Learn about QED, QCD and Weak interactions in details Gain understanding of Lagrangian formulation and local gauge invariance, spontaneous symmetry-breaking and Higgs mechanics. Understand neutrino oscillations and mixing. 	

Programme: M. Sc. (Physics) (Computational Physics)

Course Code: PHC-607 Title of the Course: Introduction to Parallel Programing using openMP

Number of Credits: 2

Prerequisites for the course:Students enrolling for this course should be comfortable with programming in FORTRANCourse Objectives:This is an introductory course in shared memory parallel programming suitable for students working on parallel/HPC applications and interested in parallel programming.Content:Parallel Programming with OpenMP8 hoursWhat is Parallel Computing? Why would one make codes parallel? Shared and Distributed Memory OpenMP Who would use OpenMP? How do you make your existing codes parallel?8 hours
Course Objectives:This is an introductory course in shared memory parallel programming suitable for students working on parallel/HPC applications and interested in parallel programming.Content:Parallel Programming with OpenMPWhat is Parallel Computing? Why would one make codes parallel? Shared and Distributed Memory OpenMP Who would use OpenMP? How do you make your existing codes parallel?8 hoursHow do you make your existing codes parallel?8 hours
programming suitable for students working on parallel/HPC applications and interested in parallel programming.AContent:Parallel Programming with OpenMP8 hoursWhat is Parallel Computing? Why would one make codes parallel? Shared and Distributed Memory OpenMP Who would use OpenMP? How do you make your existing codes parallel?8 hoursHow do you make your existing codes parallel?8 hours
parallel/HPC applications and interested in parallel programming.parallel programmingContent:Parallel Programming with OpenMP8 hoursWhat is Parallel Computing?What is Parallel Computing?8 hoursWhy would one make codes parallel?Shared and Distributed Memory OpenMP4 hoursWho would use OpenMP?How do you make your existing codes parallel?8 hours
programming.Parallel Programming with OpenMP8 hoursWhat is Parallel Computing?What is Parallel Computing?8 hoursWhy would one make codes parallel?Shared and Distributed Memory OpenMP4 hoursWho would use OpenMP?How do you make your existing codes parallel?8 hours
Content:Parallel Programming with OpenMP8 hoursWhat is Parallel Computing?Why would one make codes parallel?8 hoursWhy would one make codes parallel?Shared and Distributed Memory OpenMP8 hoursWho would use OpenMP?How do you make your existing codes parallel?8 hours
What is Parallel Computing?Why would one make codes parallel?Shared and Distributed Memory OpenMPWho would use OpenMP?How do you make your existing codes parallel?8 hours
Why would one make codes parallel?Shared and Distributed Memory OpenMPWho would use OpenMP?How do you make your existing codes parallel?8 hours
Shared and Distributed Memory OpenMPWho would use OpenMP?How do you make your existing codes parallel?8 hours
Who would use OpenMP?How do you make your existing codes parallel?8 hours
How do you make your existing codes parallel? 8 hours
How does one make existing codes parallel?
How does one compile code to run OpenMP?
How does one decide if a loop is parallel or not?
What are Private and Shared variables?
How can one do Summations?
Summary
Basic Linear Algebra using OpenMP and OpenMP tasks 14 hours
Numerical Integration
Matrix Multiplication
Solution of linear equations
Solution of Ordinary differential equations
, , ,
Pedagogy: lectures/ tutorials/ seminars/ assignments/
presentations/ etc. or a combination of some of these.
References/Readin 1. Ananth Grama, Anshul Gupta, George Karypis, Vipin
gs: Kumar, Introduction to Parallel Computing, Second
Edition, Addison Wesley, (2003).
2. OpenMP Tutorial from LLNL
https://computing.llnl.gov/tutorials/openMP
3. V. Rajaraman, Computer Programming in FORTRAN
90 and 95, Prentice-Hall of India, New Delhi (1999).
4. Martin Counihan, Fortran 95, UCL Press Limited
University College London (1996).
5. Stephen Chapman, Fortran 95/2003: for Scientists
and Engineers, McGraw-Hill (2007).
<u>Course Outcomes:</u> 1. understand the basics of parallel programming using
OpenMP,
opennit,

3.	solve linear and non-linear algebraic equations using	
4.	OpenMP use parallel programming OpenMP to solve eigenvalue problems.	