

गोंय विद्यापीठ ताळगांव पठार गोंय - ४०३ २०६ फोन: +९१-८६६९६०९०४८

Goa University

Taleigao Plateau, Goa - 403 206 Tel : +91-8669609048 Email : registrar@unigoa.ac.in Website: www.unigoa.ac.in

(Accredited by NAAC)

GU/Acad -PG/BoS -NEP/2023/78/4

Date:24.05.2023

Ref: GU/Acad –PG/BoS -NEP/2022/339/11 dated 19.08.22

CIRCULAR

In supersession to the above referred Circular, the updated approved Syllabus with revised Course Codes of the **Master of Science in Chemistry Programme** is enclosed.

The approved Syllabus of the **Master of Science in Chemistry** Programme (Organic, Inorganic, Analytical and Physical, Pharmaceutical Chemistry) is attached.

The Dean/ Vice-Deans of the School of Chemical Sciences/ Principals of Affiliated Colleges offering the **Master of Science in Chemistry** Programme are requested to take note of the above and bring the contents of the Circular to the notice of all concerned.

ASHWIN Digitally signed by ASHWIN VYAS VYAS LAWANDE LAWANDE Date: 2023.05.24 17:31:44 +05'30'

(Ashwin Lawande) Assistant Registrar – Academic-PG

Τo,

- 1. The Dean, School of Chemical Sciences, Goa University.
- 2. The Vice-Deans, School of Chemical Sciences, Goa University.
- 3. The Principals of Affiliated Colleges offering the Master in Sciences in Chemistry Programme.

Copy to:

- 1. The Chairperson, Board of Studies in Chemistry PG.
- 2. The Programme Director, M. Sc. Chemistry, Goa University.
- 3. The Controller of Examinations, Goa University.
- 4. The Assistant Registrar, PG Examinations, Goa University.
- 5. Directorate of Internal Quality Assurance, Goa University for uploading the Syllabus on the University website.

ANNEXURE-I

M.Sc. Chemistry (SEM I & II) Syllabus (80 Credit course) as per NEP 2020 for AY 2022-23

		SEM I	
Sr. No.	Subject code	Paper title	Credits
1.	<u>CHO-500</u>	Fundamentals of Organic Chemistry	4
2.	<u>CHI-500</u>	Fundamentals of Inorganic Chemistry	4
3.	<u>CHP-500</u>	General Physical Chemistry	4
4.	<u>CHA-500</u>	Techniques in Analytical Chemistry-I	4
5.	<u>CHO-521</u>	Practical Course in Organic Chemistry-I	2
6.	<u>CHO-522</u>	Practical Course in Organic Chemistry-II	2
7.	<u>CHI-521</u>	Practical Course in Inorganic Chemistry-I	2
8.	<u>CHI-522</u>	Practical Course in Inorganic Chemistry-II	2
9.	<u>CHP-521</u>	Practical Course in Physical Chemistry-I	2
10.	<u>CHP-522</u>	Practical Course in Physical Chemistry-II	2
11.	<u>CHA-521</u>	Practical Course in Analytical Chemistry-I	2
12.	<u>CHA-522</u>	Practical Course in Analytical Chemistry-II	2
		SEM II (Inorganic Chemistry)	
1.	<u>CHI-501</u>	Chemistry of Coordination & Organometallic Compounds	4
2.	<u>CHI-502</u>	Chemistry of Materials	4
3.	<u>CHI-503</u>	Concepts in Molecular Symmetry and Spectroscopy	4
4.	<u>CHI-504</u>	Concepts in Inorganic Chemistry	4

	SEM II (Analytical Chemistry)		
1.	<u>CHA-501</u>	Chemical Methods of Analysis	4
2.	<u>CHA-502</u>	Techniques in Analytical Chemistry-II	4
3.	<u>CHA-503</u>	Separation Techniques	4
4.	<u>CHA-504</u>	Instrumental Methods of Analysis	4
		SEM II (Organic Chemistry)	
1.	<u>CHO-501</u>	Organic Spectroscopy	4
2.	<u>CHO-502</u>	Pericyclic and Organic Photochemical Reactions	4
3.	<u>CHO-503</u>	Synthetic Methodologies in Organic Chemistry	4
4.	<u>CHO-504</u>	Stereochemistry and Organic Transformations	4
	L	SEM II (Physical Chemistry)	
1.	<u>CHP-501</u>	Quantum Chemistry and Statistical Thermodynamics	4
2.	<u>CHP-502</u>	Group Theory and Molecular Spectroscopy	4
3.	<u>CHP-503</u>	Chemical Kinetics and Thermodynamics	4
4.	<u>CHP-504</u>	Electrochemistry and Surface Studies	4

Course Code: CHA-500 Title of the course: Techniques in Analytical Chemistry - I

Number of Credits: 04

Prerequisites	Students should have studied chemistry courses at graduate level of	or must
for the course:	have cleared change of discipline entrance test conducted k	
	University.	
Course	1. Learning various methods of data handling in analysis.	
Objective:	2. Understanding the significance of sampling and calibration technic	lues.
	3. Understanding principles and applications of various types of	
	techniques	
	 Training the students to deduce structures based on IR, NN combined data. 	/IR, MS
Content:	1. Analytical Objectives and Data Handling	No. of
	Importance of analytical chemistry in research and industry;	Hours
	statistics and data handling in analytical chemistry, standard	5
	operating procedures, good laboratory practices: quality	
	assurance, method validation and quality control.	
	2. Sampling and Calibration Techniques	5
	Sampling and sample preparation, general steps in chemical	
	analysis, calibration of glass wares. Finding the best straight line-	
	least square regression, correlation coefficient; Calibration curves, standard addition technique and internal standards. Chemical	
	concentrations.	
	3. Classical methods of Analysis	6
	Gravimetry and Titrimetric methods, Principle, methodology,	Ū
	Advantages & Disadvantages over instrumental methods.	
	Conditions for identifying a given reaction as method of Analysis,	
	Classification of reactions in titrimetric analysis (Acid-Base, redox,	
	complexometric and precipitation), Standard solutions and their	
	preparation. Selection of Visual Indicators in titrimetric Analysis	
	4. Introduction to Electroanalytical techniques	4
	Introduction to electrochemical cell, electrode potential,	
	Classification of electroanalytical techniques, working principles,	
	and their applications	
	5. Introduction to Thermoanalytical techniques	5
	Principle, Instrumentation and applications of Thermo Gravimetric	
	Analysis, Differential Thermal Analysis, and Differential Scanning Calorimetry. Numericals based on TGA.	
	6. Introduction to Chromatographic Techniques	15
	a. Principles of chromatography, classification of	13

	techniques based on mechanism of
, , ,	ration, mobile and stationary phase.
	ration- plate theory (theoretical plate
concept) and rate t	heory (van Deemter equation).
b. Principles and app	lications of Paper chromatography, thin
layer chromatogra	aphy, HPTLC, Size exclusion and Ion
exchange chromato	ography. Counter-current chromatography
for isolation of natu	iral products.
c. Gas and Liquid Chr	omatography: Introduction; Instrumental
Modules; The Sep	aration System; Choice of Conditions of
Analysis; Sample	Inlet Systems; Detectors; Practical
Considerations in	Qualitative and Quantitative Analysis;
Coupled Systems-ir	troduction to GCMS, LCMS; Applicability-
interpretation and	numericals.
7. Introduction to Spectr	
-	ectromagnetic Radiation with Matter:
	ectra, regions of spectrum, numericals.
5 1	ble Spectroscopy: Electronic spectra and
	are: types of electronic transition,
	auxochrome, absorption by isolated
-	onjugated chromophores, aromatic
	anic chelates. Calculating λmax for
	s, Trienes, polyenes, α,β -unsaturated
	ds, Numericals. Choices and effect of
	Quantitative Calculations: Beer-Lambert
Law; Mixtures of	absorbing species-laws of additivity of
	ation curve for calculation of unknown;
Spectrometric erro	rs in measurement; Deviation from Beer-
	emical deviation, instrumental deviation;
Numericals for	
spectroscopy.	
	opy: Infrared absorption and molecular
	llar vibrations, types of vibrations, IR
	s and bands-basis of NIR absorption.
• •	tion, Frequencies of functional group,
	Identification of unknown compounds.
	rumentation of UV-Vis and IR: Sources,
•	sample cells, detectors, instrumental
	sorption calibration.
_	n NMR Spectroscopy: Theory of NMR,
	hemical shift, factors influencing chemical
	d in NMR, spin-spin splitting, coupling
	n, factors influencing coupling constant.
	r: Principle, Instrumentation and various
	. Thepic, instrumentation and various

	fragmentation patterns.
	g. Conjoint spectrometry problems: Structural elucidation of
	organic molecules using IR, UV, NMR and MS.
	h. Raman Spectroscopy: Theory, Basic instrumentation and
	Structural analysis using Raman Spectra.
	(Note: Assignment based on all above spectrometric methods
	should be given to student. More weightage of lectures shall be
	given for solving IR and NMR data problems for structure
	elucidation)
Pedagogy:	Mainly lectures and tutorials. Seminars / term papers /assignments /
	presentations / self-study or a combination of some of these can also be
	used. ICT mode should be preferred. Sessions should be interactive in
	nature to enable peer group learning.
References /	1. G. D. Christian, Analytical Chemistry, 6 th Ed.; Wiley, 2004.
Readings:	2. J. H. Kennedy, Analytical Chemistry: Principles, 2 nd Ed.; Saunders
	College Publishing, 1990.
	3. G. W. Ewing, Instrumental Methods of Chemical Analysis, 5 th Ed.;
	McGraw- Hill Int., 1985.
	4. W. Kemp, Organic Spectroscopy, 3 rd Ed.; Palgrave, 1991.
	5. D. A. Skoog, D. M. West, F. J. Hollar, S. R. Crouch, Fundamentals of
	Analytical Chemistry, 9 th Ed.; Cengage learning, 2014.
	6. F. J. Holler, D. A. Skoog, S. R. Crouch, Principles of Instrumental
	Analysis, 6 th Ed.; Thomson Books, 2007.
	7. H. Willard, L. L. Merritt, J. A. Dean, F. A. Settle, Instrumental methods
	of Analysis, 7 th Ed.; HCBS Publishing, 2004.
	8. C. N. Banwell, E. M. McCash, Fundamentals of Molecular
	Spectroscopy, 4 th Ed.; Tata McGraw- Hill, 2006.
	9. R. M. Silverstein, F. X. Webster, Spectrometric identification of
	Organic Compounds, 6 th Ed.; Wiley, 1998.
	10. H. Gunzler, A. Williams, Handbook of Analytical Techniques, 1 st Ed.;
	Wiley, 2001.
	11. P. S. Kalsi, Spectroscopy of Organic Compounds, 2 nd Ed.; New Age
	International, 2000.
	12. E. Pretsch, P. Buhlmann, C. Affolter, Structural Determination of
	Organic Compounds, 2 nd Ed.; Springer, 2005.
	13. L. D. Field, S. Sternhell, J. R. Kalman; Organic Structures from
	Spectra, 4 th Ed.; Wiley, 2007.
	14. R. A. Day, A. L. Underwood, Quantitative Analysis, 6 th Ed.; Prentice
	Hall, 2001.
	15. B. K Sharma, Instrumental methods of chemical analysis, Goel
	Publishing House, Meerut, 2004.
	16. K. Nakamoto, Infrared and Raman Spectra of Inorganic and
	Coordination Compounds, 6 th Ed.; Wiley, 2009.
	17. P. J. Larkin, Infrared and Raman Spectroscopy: principles and

	spectral interpretation, 2 th Ed.; Elsevier, 2018. 18. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, B. Sivasankar, Vogel's Text Book of Quantitative Chemical Analysis, 6 th Ed.; Pearson,
	2009.
Course outcomes:	1. Students will be able to analyse the role of statistical tools for determination of error and organised data management for systematic
	interpretation.2. Student will be able to apply the sampling and calibration methods for obtaining reliable results.
	 Students will be able to understand basic principles and scope of different methods of Analysis
	4. Students will be able to solve problems based on IR, NMR, MS combined spectral data.

Course Code: CHA-521 Title of the course: Practical Course in Analytical Chemistry - I

Number of Credits: 02

Prerequisites	Students should have studied chemistry practical courses at graduate le	evel or
for the course:	must have cleared change of discipline entrance test conducted by Goa	
	University.	
Course	1. Introduction of various experimental techniques for analysis.	
Objectives:	2. Learning data analysis, handling and interpretation of spectra.	
Content:	This course consists of 7 units of experiments in various areas of	No of
	Analytical chemistry. Minimum 13 experiments which include at least	hours
	02 experiments from unit 1-6 and 01 experiment from unit 7 shall be	
	conducted.	
	Unit 1: Statistics	
	i. Calibration of selected Volumetric apparatus	9
	ii. Calibration of selected Laboratory instruments	
	Preparation of standard solutions and standardisation.	
	Unit 2: Colorimetry/ UV-Visible Spectrophotometry	8
	i. Estimation of Iron from Pharmaceutical sample (capsule) by	
	thiocyanate method	
	ii. Estimation of phosphoric acid in cola drinks by molybdenum	
	blue method.	
	iii. Estimation of KNO ₃ by UV spectroscopy and K ₂ Cr ₂ O ₇ by Visible spectroscopy	
	iv. Simultaneous determination and Verification of law of	
	additivity of absorbances (K ₂ Cr ₂ O ₇ and KMnO ₄).	
	Unit 3: Flame Spectrophotometry and AES/AAS/ICP Spectroscopy	9
	i. Estimation of Na and K in food supplements or cosmetic	
	products.	
	ii. Estimation of Pb in water sample by AES/AAS/ICP.	
	iii. Estimation of Fe and Al in Iron ore sample by AES/AAS/ICP.	
	Unit 4: Ion Exchange Chromatography and High Pressure Liquid	10
	Chromatography	
	i. Separation and Estimation of chloride and bromide.	
	ii. Separation of Anthracene and Naphthalene using reverse	
	phase chromatography	
	iii. Separation of Benzaldehyde and Benzyl alcohol using normal	
	phase chromatography	

	Unit 5: Volumetric Titrations	10
	i. Estimation of Ca in pharmaceutical tablet.	
	ii. Estimation of Al and Mg in antacid tablet.	
	iii. Estimation of CaO in cement.	
	Unit 6: Solvent Extraction and spectrophotometry	10
	i. Extraction of Cu as copper dithiocarbamate (DTC) using	
	solvent extraction and estimation by spectrophotometry.	
	ii. Determination of Ni as Dimethylglyoxime complex by	
	spectrophotometry.	
	iii. Determination of Silver as ion association complex with 1,10-	
	Phenanthroline and Bromopyrogallol red.	
	Unit 7: Interpretation Exercises	4
	i. Thermal studies: TG/DTA and Isothermal weight loss studies	
	of various hydrated solids like $CuSO_4 \cdot 5H_2O$, $Ca_2C_2O_4 \cdot H_2O$,	
	$Fe_2C_2O_4 \cdot 2H_2O$.	
	ii. X-ray powder diffractometry: Calculation of lattice parameters	
	from X-ray powder pattern of cubic system such as $NiMn_2O_4$,	
	$CoFe_2O_4$ etc.	
	iii. IR spectra of Urea, benzoic acid, Copper sulphate	
	pentahydrate etc.	
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-out or a com	oination
	of some of these. Sessions shall be interactive in nature to enable peer	
	learning.	0 1
References /	1. J. H. Kennedy, Analytical Chemistry Principles, Saunders College Pub	lishing,
Readings:	2 nd Ed., 1990.	
_	2. G. D. Christian, Analytical chemistry, 5 th Ed., John Willey and Sons, 19	94
	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B. Sivasankar, Vo	gel's
	Textbook of Quantitative Chemical Analysis, 6 th Ed., Pearson Education	Asia
	2009.	
	4. A. J. Elias, Collection of interesting chemistry experiments, University	y press,
	2002.	
	5. R.A. Day & A.L. Underwood, Quantitative Analysis, 6 th Ed., Prentice H	all,
	2001.	
	6. J. Kenkel, Analytical Chemistry for Technicians, 3 rd Ed., Lewis publishe	ers,
	2002.	
Course	1. Students will be able to explain how to determine an unknown	
outcomes:	concentration of solution.	
	2. Students will use statistical methods to analyse data in laboratory.	
	3. Students will be able to use different techniques for qualitative and	
	quantitative estimation.	
	4. Students will be able to interpret TG/X-Ray/IR spectra.	

Course Code: CHA-522 Title of the course: Practical Course in Analytical Chemistry - II

Number of Credits: 02

Prerequisites	Students should have studied chemistry practical courses at graduate	e level or
for the course:	must have cleared change of discipline entrance test conducted by Goa	
	University.	
Course	1. Introduction of various experimental techniques for analysis.	
Objectives:	2. Learning data analysis, handling and interpretation of spectra.	
Content:	This course consists of 7 units of experiments in various areas of	No of
	Analytical chemistry. Minimum 13 experiments which include at	hours
	least 02 experiments from unit 1-6 and 01 experiment from unit	
	7 shall be conducted.	
	Unit 1: Statistics	
	i. Calibration of selected Volumetric apparatus	9
	ii. Calibration of selected Laboratory instruments	
	iii. Preparation of standard solutions and standardisation.	
	Unit 2: Titrimetric Analysis	8
	i. Standardisation and estimation of Chloride using	
	precipitation titration (Mohr's method)	
	ii. Analysis of commercial caustic soda by neutralisation	
	titrimetric method	
	iii. Determination of sulphates by complexometric titrations	
	using EDTA.	
	Unit 3: Flame Spectrophotometry and AES/AAS/ICP	10
	Spectroscopy	
	i. Estimation of Na and K in food supplements or cosmetic	
	products using flame photometer.	
	ii. Estimation of chromium in water sample by AES/AAS/ICP.	
	iii. Estimation of nickel, molybdenum in Hastelloy C-22 using	
	AES/AAS/ICP.	
	Unit 4: Natural product isolation and Ion Exchange	9
	Chromatography	
	i. Isolation of cinnamaldehyde from cinnamonii. Isolation of Caffeine from tea powder	
	iii. Separation and estimation of Cadmium and Zinc	
	· · · · · ·	10
	Unit 5: UV-Visible Spectrophotometry and High-Pressure Liquid Chromatography	10
	i. Estimation of KNO ₃ and $K_2Cr_2O_7$ using UV- Visible	
-		L

	spectroscopy	
	ii. Separation of Benzaldehyde and benzoic acid using reverse	
	phase HPLC.	
	iii. Quantification of naphthalene in a sample using reverse	
	phase HPLC.	
	Unit 6: Solvent Extraction and spectrophotometry	10
	i. Spectrophotometric determination of aspirin/phenacetin/	
	caffeine in APC tablet using solvent extraction	
	ii. Colorimetric determination of iron with salicylic acid.	
	iii. Determination of copper in brass sample by colorimetry.	
	Unit 7: Data Interpretation Exercises	4
	i. NMR/Mass spectra	
	ii. HPLC and GC chromatograph	
	iii. XRD powder pattern of cubic systems	
	iv. Thermogram of coordination compounds	
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-out or a	
	combination of some of these. Sessions shall be interactive in nature	to
	enable peer group learning.	
References /	1. J. H. Kennedy, Analytical Chemistry Principles, Saunders College	
Readings:	Publishing, 2 nd Ed., 1990.	
	2. G. D. Christian, Analytical chemistry, 5 th Ed., John Willey and Sons, 1994	
	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B. Sivasankar, Vogel's	
	Textbook of Quantitative Chemical Analysis, 6 th Ed., Pearson Edu	cation
	Asia 2009.	
	4. J. Elias, Collection of interesting chemistry experiments, University	ty press,
	5. R.A. Day & A.L. Underwood, Quantitative Analysis, 6 th Ed., Prenti	ce Hall,
	2001.	lichere
	6. J. Kenkel, Analytical Chemistry for Technicians, 3 rd Ed., Lewis pub 2002.	insners,
Course	1. Students will be able to standardize a material to determine an un	known
outcomes:	concentration.	NIUWII
outcomes.	2. Students will use statistical methods to analyse data in laboratory.	
	3. Students will be able to use different techniques for qualitative and	
	quantitative estimation.	~
	4. Students will be able to interpret TG/X-Ray/IR spectra.	
L		

Course Code: CHI-500Title of the course: Fundamentals of Inorganic Chemistry

Number of Credits: 04

Prerequisit es for the course:	Students should have studied chemistry courses at graduate level have cleared change of discipline entrance test conducted by Goa Ur	
Course Objective:	 To introduce atomic structure, molecular structure, bonding, and symmetry. To provide fundamental knowledge of solid state chemistry, coordination chemistry, organometallic chemistry, and bioinorganic chemistry. To provide fundamental aspects of transition & inner transition elements & their compounds. To introduce air and water pollution, and its treatments, to follow directive of the Supreme Court in 1993 to introduce environmental education at all levels. 	
	1. Atomic structure, molecular structure and bonding a. Atomic Structure: Structures of hydrogenic atoms: some principles of quantum mechanics, atomic orbitals. Many	No of hours
Content	 electron atoms: penetration & shielding, building up principle, classification of elements. Spectroscopic terms. Atomic properties: atomic radii, ionic radii, ionization energy, electron affinity, electronegativity, polarizability. b. Molecular Structure & bonding: Lewis structures: octet rule, resonance. VSEPR model: basic shapes, modification of the basic shapes. Valence bond theory: hydrogen molecule, homonuclear diatomic molecules, polyatomic molecules, promotion, hypervalence, hybridization. Molecular orbital theory: approximation, boding & antibonding orbitals. Homonuclear diatomic molecules & Heteronuclear diatomic molecules 	10
	 2. Molecular Symmetry a. Symmetry elements and symmetry operations. b. Equivalent symmetry elements and equivalent atoms, symmetry point groups with examples, point groups of higher symmetry. c. Systematic procedure for symmetry classification of molecules and illustrative examples, dipole moment, optical activity and point groups 	4
	3. Solid state chemistry a. Structures of solids: crystal structures, lattices and unit cells,	10

6. Basic Bioinorganic Chemistry a. Macronutrients/micronutrients. Role of elements in biology.	4
· · · · · · · · · · · · · · · · · · ·	4
reactions of CO ligand, spectroscopic properties of metal carbonyls. Oxidative addition and reductive elimination.	
oxidation-reduction of carbonyls, metal carbonyl basicity,	
phosphines, homoleptic carbonyls its synthesis and properties,	
atom and donor pair electron count methods). Ligands: CO &	
chemistry, nomenclature, stability and inert gas rules (neutral	
b. Organometallic Chemistry: Introduction to organometallic	
diagram for octahedral and tetrahedral complexes).	
complexes, magnetic moments, CFSE. Electronic spectroscopy: basic concepts, interpretation of spectra of d ¹ & d ⁹ ions (Orgel	
complexes: CFT applied to octahedral and tetrahedral	
electron delocalization. Electronic properties of metal	
constants, chelate and macrocyclic effects, steric effects and	
chirality in square planar and octahedral complexes, ligand chirality. Thermodynamics of complex formation: formation	
coordination numbers, polymetallic compounds. Isomerism &	
numbers, intermediate coordination numbers, higher	
nomenclature. Constitution and geometry: low coordination	
a. Coordination chemistry: Introduction, representative ligands,	
5. Coordination and Organometallic Chemistry	12
and properties, electronic spectra, thorium and uranium.	
spectra, magnetic properties, lanthanide contraction, compounds of lanthanides. Actinoid chemistry: general trends	
properties, oxidation states, electronic structure, colour and	
b. Inner transition elements: Lanthanides, occurrence,	
two rows.	
metal bonded clusters, difference between 1 st row and other	
metal halides, oxides & oxido complexes, examples of metal-	
occurrence, physical and chemical properties, noble character,	
a. Transition elements: IUPAC definition of transition elements,	10
enthalpies. (numerical expected) 4. Chemistry of transition & inner transition elements	10
energy and the Born–Haber cycle, The calculation of lattice	
radius ratio, structure maps, energetics of ionic bonding, lattice	
phases, ternary phases, rationalization of structures, ionic radii,	
c. Ionic solids: characteristic structures of ionic solids, binary	
intermetallic compounds.	
structures, polymorphism of metals, atomic radii of metals, alloys, substitutional and interstitial solid solutions,	
b. Structures of metals & alloys: polytypism, nonclosed-packed	
spheres, holes in closed-packed structures.	
fractional atomic coordinates and projections, close packing of	

	Metal ion transport role. b. Definition of metallobiomolecules, metalloporphyrins, structure of porphine and heme group, examples of	
	metalloenzymes of Cu and Zn.	
	7. Environmental Chemistry	10
	a. Air Pollution: Classification of air pollutants and	
	photochemical reactions in the atmosphere. Common air	
	pollutants (e.g. CO, NOx, SO ₂ , hydrocarbons and particulates)	
	(a) sources (b) physiological and environmental effect (c)	
	monitoring, (d) various remedial & technological measures to	
	curb pollution. Air quality standards.	
	b. Water pollution: Importance of buffer & buffer index in	
	waste water treatments. Chemical, physical & biological	
	characteristics of water pollution, specific & non-specific	
	characterization of water. DO, BOD, COD, and chlorine demand,	
	typical water treatment & waste water treatment (Municipal).	
	Impact of plastic pollution and its effect.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignm	-
	presentations / self-study or a combination of some of these can a	
	used. ICT mode should be preferred. Sessions should be interact	tive in
References	nature to enable peer group learning. 1. P. W. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Sh	rivor 8
/ Readings:	Atkins Inorganic Chemistry, 5 th Ed.; Oxford Publications, 2009.	IIVEI Q
/ Reduings.	2. J. E. Huheey, E. A. Kieter, R. L. Kieter, O. K. Medhi, Inorganic Che	mistry
	Principles of Structure & Reactivity, 4 th Ed.; Pearson, 2011.	inisci y.
	3. F. A. Cotton, G. Wilkinson, P. L. Gauss, Basic Inorganic Chemis	trv. 3 rd
	Ed.; Wiley, 2008 (reprint).	,,
	4. J. D. Lee, Concise Inorganic Chemistry, 5 th Ed.; Wiley, 2008.	
	5. F. A. Cotton, Chemical applications of group theory, 3 rd Ed.;	; Wiley
	Eastern, 2012 (reprint).	
	 L. Pauling, The Nature of The Chemical Bond, 3rd Ed.; Cornell Un Press, 1960. 	iversity
	7. M. C. Day, J. Selbin, Theoretical Inorganic Chemistry, 2 ^{ed} Ec	d.: Van
	Nostrand-Reinhold, 1969.	, -
	8. H. V. Keer, Principles of Solid state Chemistry, 1 st Ed.; New Age Ir	ntl. Ltd,
	1993, (reprint 2008).	
	9. A. R. West, Solid State Chemistry and Its Applications, 1 st Ed	.; John
	Wiley & Sons, Singapore, 1984 (reprint 2007).	
	10. D. K. Chakrabarty, Solid State Chemistry, 2 ^{ed} Ed.; New Ag	ge Intl.
	Publishers, 2010.	
	11. F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 3 rd Ed.	; Wiley
	Eastern, 2001.	
	12. A. V. Salker, Environmental Chemistry: Pollution and Re	emedial
	Perspective, 1 st Ed.; Narosa Publication, 2017.	

	13. A.K. De, Environmental Chemistry, 3 rd Ed.; New Age Intl. Publishers, 2005.
	14. A. C. Stern, R. W. Boubel, D. Bruce turner, D. L. Fox, Fundamentals of Air Pollution, 1 st Ed.; Academic Press, 1984.
	15. R. A. Horne, Chemistry of Our Environment, 1 st Ed.; John Wiley, 1978.
	16. R. S. Drago, Physical Methods in Inorganic Chemistry, Affiliated East
	West Press Pvt. Ltd., 2017
	17. G. C. Miessler, D. A. Tarr, Inorganic Chemistry, 3 rd Ed.; Pearson, 2004
Course	1. Students will be able to predict geometry and shape of different
outcomes:	molecules, and the point group symbols.
	 Students will be able to explain the fundamentals of atomic and molecular structure, solid state chemistry, coordination chemistry, organometallic chemistry, and bioinorganic chemistry. Students should be able to describe and explain the properties and usefulness of transition & inner transition metals. Students will able to explain different air and water pollutants and will be in a position to apply knowledge to treat these pollutants.

Course Code: CHI-521Title of the course: Practical course in Inorganic Chemistry-I

Number of Credits: 02

Prerequisites for the course:	Students should have studied chemistry practical courses at gradu or must have cleared change of discipline entrance test conducte University.	
Course Objective:	 Students shall acquire skills in synthetic inorganic chemistry. Students will learn to prepare coordination compounds. Students will learn to prepare useful potash alum from scrap alu Students will learn how to grow single crystals. Students will acquire skills in determination of chromium, oxa aluminum by redox titrations. Students will be trained to fix the formula of compounds and fi water molecules by complexometric, redox & iodometric titration Students shall acquire skills in determination of metal content low concentrations (ppm) using colorimetry / spectrophotometric 	llate, and nd lattice ons. It at very
Content	Minimum 13 experiments from the list shall be conducted.	No of
	 Preparations / Synthesis of Inorganic Compounds: (Any Five) Preparation of hexaamminenickel(II) chloride. Preparation of Trisethylenediaminecobalt(III) chloride. Preparation of potassium trioxalatoaluminate trihydrate. Preparation of potassium hexathiocyanato-κN-chromate tetrahydrate. Preparation of potassium trioxalatochromate trihydrate. 	hours 25
	 2. Estimations / Determinations: (Any Eight) Estimation of nickel in [Ni(NH₃)₆]Cl₂by complexometry or Gravimetry. Estimation of cobalt in [Co(en)₃]Cl₃ by complexometry. Estimation of oxalate in K₃[Al(C₂O₄)₃]·xH₂O or K₃[Cr(C₂O₄)₃]·xH₂O Estimation of nitrite by redox titration. Estimation of calcium from calcite ore. Iodometric determination of Copper in gun metal alloy/Devarda's alloy. Determination of chromium in chrome alum and K₃[Cr(C₂O₄)₃]·xH₂O and to determine degree of hydration. 	35

	chromium.
	ix. Estimation of manganese by colorimetric /
	spectrophotometry method.
Pedagogy	Students will be given pre-lab and post-lab assignments on theoretical
redagogy	aspects of laboratory experiments prior to the conduct of each
	experiment. Exams will be in the form of ISA, SEA which will involve
	performing given experiments and conduct of viva, systematic reporting of
	experiments, results and observations in laboratory report. Sessions
	should be interactive in nature to enable peer group learning.
References /	1. G. Brauer, Handbook of Preparative Inorganic Chemistry, Vol. 1
Readings	& 2, 1963.
Readings	2. G. Pass & H. Sutcliffe, Practical Inorganic Chemistry, Preparations,
	Reactions and Instrumental Methods, 2 nd Ed.; Chapman & Hall,
	1974.
	3. S. De Meo, J. Chem. Ed., Vol 80, Pg.No.796-798, 2003.
	4. W. L. Jolly, The Synthesis & Characterization of Inorganic Compounds,
	Prentice-Hall, INC, 1970.
	5. A. J. Elias, General Chemistry Experiments, Revised Ed.; University Press, 2008.
	6. J. Mendham, R.C. Denney, J.D. Barnes, M.J. K. Thomas, Vogel's Text
	Book of Quantitative Chemical Analysis,6 th Ed.; Pearson, 2002.
	7. G. Svehla, Vogel's Text Book of Qualitative Inorganic Analysis, 7 th Ed,
	Pearson, 2011.
	8. G. Marr, B. W. Rockett, Practical Inorganic Chemistry, Van Nostrnad
	Reinhold London, 1972.
Course	1. Students will be in a position to synthesis coordination compounds with
outcomes:	different metals and ligands.
	2. Students will be able to grow single crystal.
	3. Students will be able to prepare potash alum compound from waste
	scrap Al source.
	4. Students will be able to determine metal content in the synthesised
	inorganic compounds.
	5. Students will be able to fix the formula of compounds.
	6. Students will be able to use and explain the diverse methods available
	for estimation of the metals including colorimeters and spectrometers.

Course Code: CHI-522Title of the course: Practical course in Inorganic Chemistry-II

Number of Credits: 02

Prerequisit	Students should have studied chemistry practical courses at gradua	te level
es for the	or must have cleared change of discipline entrance test conducted	by Goa
course:	University.	
Course	1. Students shall acquire skills in synthetic inorganic chemistry.	
Objective:	2. Students will learn to prepare coordination compounds.	
	3. Students will learn how to grow single crystals.	
	4. Students will acquire skills in determination of metal pre-	sent by
	gravimetric and titrimetric method.	
	5. Students shall acquire skills in determining the metal content	at very
	low concentrations (ppm) using colorimetry / spectrophotometry	•
Content	Minimum 13 experiments from the list shall be conducted.	No of
		hours
	1. Preparations / Estimation of Inorganic Compounds: (Any Nine)	
	i. Preparation of hexaamminecobalt(III) nitrate.	40
	ii. Estimation of cobalt in hexaamminecobalt(III) nitrate by	
	volumetric titration.	
	iii. Preparation of Potassium Trioxalatoferrate(III) Trihydrate	
	iv. Estimation of iron and oxalate by redox titration	
	v. Synthesis of metal nanoparticles (Cu, Ag, Au, Ni) and	
	determining the absorption maxima by UV-visible spectrophotometer.	
	vi. Estimation of amount of calcium in given sample by	
	gravimetric method.	
	vii. Estimation of amount of nickel in given sample by gravimetric method.	
	viii. Estimation amount of zinc present in given sample by	
	gravimetric method. ix. Estimation of iron by colorimetric / spectrophotometry	
	method.	
	x. Estimation of barium by complexometric titration method.	
	xi. Estimation of manganese in presence of iron by	
	complexometric titration method.	
	2. Semi-micro qualitative analysis of cation and anion in a given	
	inorganic mixture: (Any four mixture)	
	Mixture containing total six cations and/or anions.	20
	Cations : Pb^{2+} , Cu^{2+} , Cd^{2+} , Sn^{2+} , Fe^{2+} , Fe^{3+} , Al^{3+} , Cr^{3+} , Zn^{2+} ,	

	Mn ²⁺ , Ni ²⁺ , Co ²⁺ , Ba ²⁺ , Sr ²⁺ , Ca ²⁺ , Mg ²⁺ , (NH ₄) ⁺ , K ⁺
	IVIN , NI , CO , Ba , Sr , Ca , IVIg , (NH_4) , K
	Anions: Cl ⁻ , Br ⁻ , I ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , SO ₃ ⁻²⁻ , CO ₃ ²⁻ , SO ₄ ⁻²⁻ , PO ₄ ⁻³⁻ , S ²⁻
Pedagogy	Students will be given pre-lab and post-lab assignments on theoretical
	aspects of laboratory experiments prior to the conduct of each experiment.
	Exams will be in the form of ISA, SEA which will involve performing given
	experiments and conduct of viva, systematic reporting of experiments,
	results and observations in laboratory report. Sessions should be interactive
	in nature to enable peer group learning.
References	1. G. Brauer, Handbook of Preparative Inorganic Chemistry,
/ Readings	Vol. 1 & 2, 1963.
	2. G. Pass & H. Sutcliffe, Practical Inorganic Chemistry, Preparations,
	Reactions and Instrumental Methods, 2 nd Ed.; Chapman & Hall,
	1974.
	3. S. De Meo, J. Chem. Ed., Vol 80, Pg.No.796-798, 2003.
	4. W. L. Jolly, The Synthesis & Characterization of Inorganic
	Compounds, Prentice-Hall, INC, 1970.
	 A. J. Elias, General Chemistry Experiments, Revised Ed.; University Press, 2008.
	6. J. Mendham, R.C. Denney, J.D. Barnes, M.J. K. Thomas, Vogel's
	Text Book of Quantitative Chemical Analysis,6 th Ed.; Pearson,
	2002.
	7. G. Svehla, Vogel's Text Book of Qualitative Inorganic Analysis, 7 th
	Ed, Pearson, 2011.
	8. G. Marr & B. W. Rockett, Practical Inorganic Chemistry, Van Nostrand
	Reinhold Company, London, 1972.
Course	1. Students will be in a position to synthesize coordination compounds
outcomes:	with different metals and ligands.
	2. Students will be able to grow single crystal.
	3. Students will be able to determine metal content in the given sample.
	4. Students will be in position to apply diverse methods available for
	estimation of the metals and can use colorimeters and
	spectrometers.
	5. Students will able to detect cations and anions in the given salt.

Course Code: CHO-500 Title of the course: Fundamentals of Organic Chemistry

Number of Credits: 04

Prerequisites for the course:	Students should have studied chemistry courses at graduate level have cleared change of discipline entrance test conducted University.	
Course Objective:	 To study the various concepts based on molecular orbital theory. To understand the concepts of topicity, prostereoisomerism and chemo-, regio- and stereoselectivity in organic reactions. To understand the mechanistic aspects of various type of reactio organic synthesis. 	
Content	1.Molecular orbitals and delocalized chemical bonding a. Qualitative description of molecular orbitals of simple acyclic	No of hours
	and monocyclic systems, frontier molecular orbitals.	nours
	 b.Conjugation, cross conjugation, resonance, hyperconjugation and tautomerism (types and examples). c. Aromaticity: Origin of Huckel's rule, examples of aromatic, non-aromatic and antiaromatic compounds; concept of Mobius 	08
	aromaticity.	
	 2.Structure & Reactivity a. Acidity, basicity and pKa of organic compounds; Acid and base strengths; HSAB concept & Factors affecting it, effect of structure & medium on acid and base strength. b. Concept of superacids and superbases. c. Electrophilicity&nucleophilicity, examples of ambident nucleophiles & electrophiles. (Including revision of aromatic electrophilic and nucleophilic substitution) 	08
	 3.Stereochemistry a. Brief revision of configurational nomenclature: R & S; D & L; E & Z; cis & trans and syn & anti nomenclature. Chirality in molecules with two and more chiral centres. b. Conformational analysis of open chain compounds (Butane, 2, 3-butane diol, 2,3-dibromobutane etc.). Erythroand threonomenclature. c. Topicity and Prostereoisomerism: Topicity of ligands and faces-homotopic, enantiotopic and Cram's rule /diastereotopic ligands and faces. d. Introduction to chemoselective, regioselective and 	14

· · · · · · · · · · · · · · · · · · ·		-
	 stereoselective reactions. e. Stereochemistry of <i>cis</i>- and <i>trans</i>-decalins, conformation and reactivity of cyclohexane and substituted cyclohexanes, cyclohexene / cyclohexanone. conformational isomerism and analysis in acyclic and simple cyclic systems –substituted ethanes, cyclopentane, cyclohexane cycloheptane, cyclooctane and decalins, f. optical isomerism - optical activity - molecular dissymmetry and chirality - elements of symmetry. optical isomerism in biphenyls, allenes and spirans - optical isomerism of nitrogenous compounds racemisation and resolution. 4.Reaction Mechanism a. Brief revision of carbocations, carbanions, free radicals, carbenes, Arynes and nitrenes with reference to generation, structure, stability and reactivity; b. Types of mechanisms, types of reactions, thermodynamic and kinetic control. c. The Hammond postulate and principle of microscopic reversibility, d. Methods of determining reaction mechanisms like-i. Identification of products, ii. Determination of the presence of intermediates (isolation, detection, trappingandaddition of suspected intermediate, iii. Isotopic labelling, iv. Stereochemical evidence, v. Kinetic evidence and vi. Isotope effect (at least two reactions to exemplify each 	08
	 method be studied) 5.Aliphatic Nucleophilic substitution a. Brief revision of nucleophilic substitutions with respect to Mechanism, various factors affecting such reactions; b. The Neighbouring Group Participation (NGP)/ Anchimeric assistance: General approach to various NGP processes; NGP by unshared/lone pair of electrons; NGP by π-electrons; NGP by aromatic rings (formation of phenonium ion intermediate); NGP by sigma bonds with special reference to bornyl and norbornyl system (formation of nonclassical carbocation) 	08
	 6.Elimination reactions a. The E2, E1 and E1cB mechanisms. Orientation of the double bond, Saytzeff and Hofmann rule. b. Effects of changes in the substrate, base, leaving group and medium on 	08

	i Overall reactivity	
	i. Overall reactivity,	
	ii. E1 vs. E2 vs. E1cB	
	iii. Elimination vs substitution, Mechanism and orientation in	
	pyrolytic syn elimination (various examples involving cyclic and	
	acyclic substrates to be studied).	
	7. Selective reagents for Organic transformation 06	
	a. Oxidation of organic compounds, PCC, PDC and MnO ₂ ,	
	ozonolysis, peracids.	
	b. Reduction of organic compounds: NaBH ₄ , LAH, DIBAL	
	reduction and reduction with borane and dialkylboranes.	
	Clemmensen reduction, Birch reduction and Wolff-Kishner	
	reduction	
Pedagogy	Mainly lectures and tutorials. Seminars/tern	n
	papers/assignments/presentations/ self-study or a combination of some	e
	of these can also be used. ICT mode should be preferred. Sessions should	
	be interactive in nature to enable peer group learning.	
References /	1. W. Caruthers, I. Coldham, Modern Methods of Organic Synthesis	
Readings	Cambridge University Press, 4 th Ed., 2016.	<i>,</i>
	2. M. B. Smith, Organic Synthesis, McGraw–HILL, New York, Internationa	эl
	Edition, 1994.	
	3. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry	,
	Oxford University Press, 2 nd Ed., 2012.	'
	4. R. Bruckner, Advanced Organic Chemistry – Reaction Mechanisms, Sa	n
	Diego, CA: Harcourt /Academic Press, San Diego, 2002.	
	5. J. Fuhrhop, G. Penxlin, Organic Synthesis – Concepts, Methods	
	Starting Materials, VCH Publishers Inc., New York, 1994.	"
	6. H. O. House, Modern Synthetic Reactions, W. A. Benjamin	
	2 nd Ed.,1965	',
	7. M. Nogradi, Stereoselective Synthesis, VCH Publishers, Inc., Revised	Ч
	and Enlarged Edition, 1994.	L
	8. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Springer India	~
	Private Limited, 5 th Ed, 2007.	a
	, , ,	_
	9. T. Laue, A. Plagens, Named Organic Reactions, John Wiley and Sons	''
Courses	Inc., 2005.	
Course	1. Students will be in a position to evaluate the effect of delocalization of	
outcomes:	electrons & presence or absence of aromaticity in organic compounds.	
	2. Students will be able to apply various concepts in stereochemistry to	
	understand stereochemical outcome in a reaction.	
	3. Students shall be in a position to understand/propose plausible	
	mechanism of organic reactions.	
	4. Students will understand and apply various reagents for desired organi	С
	transformations.	

Course Code: CHO-521 Title of the course: Practical Course in Organic Chemistry-I

Number of Credits: 02

Prerequisites	Students should have studied chemistry practical courses at graduate	ate level
for the	or must have cleared change of discipline entrance test conducted	
course	University.	
Course	To translate certain theoretical concepts learnt earlier into expe	rimental
Objective:	knowledge by providing hands on experience of basic lal	
,	techniques required for organic syntheses.	,
Content	Minimum 13 experiments from the list shall be conducted.	No of
	······································	hours
	1. Introduction to laboratory equipments, apparatus and safety	
	a. Use of common laboratory equipments like fume hoods,	04
	vacuum pumps, weighing balance etc. to be explained to the	
	students.	
	b. Introduction to various types of quick fit joints and apparatus	
	to the students.	
	c. Discussion of Safety Techniques:	
	i Disposal of chemicals	
	ii Usage of protective equipment's	
	iii First aid	
	iv Fire extinguishers, types of fire	
	v Hazards of chemicals and risk assessment	
	2. Laboratory Techniques	24
	a. Simple distillation (any one):	
	i. Toluene-dichloromethane mixture using water condenser.	
	ii. Nitrobenzene and aniline using air condenser.	
	b. Steam distillation (anyone):	
	i. Separation of <i>o</i> - and <i>p</i> - nitrophenols.	
	ii. Naphthalene from its suspension in water,	
	iii. Clove oil from cloves.	
	c. Crystallisation: Concept of induction of crystallization (any one)	
	i. Crystallisation of phthalic acid from hot water using fluted filter	
	paper and stemless funnel.	
	ii. Acetanilide from boiling water	
	iii. Naphthalene from ethanol.	
	iv. Decolorisation and crystallization of brown sugar (sucrose)	
	with animal charcoal using gravity filtration.	
	d. Sublimation: Simple or vacuum sublimation of camphor,	
	naphthalene, anthracene or succinic acid (any one).	
	e. Vacuum distillation (any one): o-dichlorobenzene, diphenyl	

		
	ether. Also use of nomograph should be explained.	
	f. Thin layer Chromatography (any one):	
	i. Separation of <i>o</i> and <i>p</i> -nitroanilines.	
	ii. Separation of analgesic drugs	
	iii. Separation of <i>o</i> and <i>p</i> -nitrophenols,	
	3. Organic synthesis (Any Seven experiments)	24
	a. Aliphatic electrophilic substitution: Preparation of iodoform	
	from ethanol & acetone.	
	b. Aromatic electrophilic substitution (anyone):	
	i. Preparation of <i>p</i> -bromoacetanilide.	
	ii. Bromination of acetophenone to phenacyl bromide	
	iii. Nitration of napththalene to 1-nitronaphthalene	
	iv. Nitration of benzaldehyde to 3-nitrobenzaldehdye.	
	c. Oxidation (any one)	
	i. Benzoic acid from toluene.	
	ii. Cyclohexanone from cyclohexanol.	
	iii Isoborneol to camphor using Jones reagent.	
	d. Reduction (any one)	
	i. Reduction of <i>o</i> -nitroaniline to <i>o</i> -phenylenediamine using Sn/HCl	
	ii. Reduction of <i>p</i> -nitro benzaldehyde to <i>p</i> -nitrobenzyl alcohol	
	using NaBH ₄ .	
	e. Bromination of an alcohol using CBr ₄ / triphenylphosphine.	
	f. Grignard reaction: Triphenylmethanol from benzoic acid ester	
	or benzophenone.	
	g. Aldol condensation: Dibenzal acetone from benzaldehyde	
	h. Acetoacetic ester condensation: Preparation of ethyl n-	
	butylacetoacetate or ethyl acetoacetate.	
	i. Cannizzaro reaction using 4-chlorobenzaldehyde as substrate.	
	j. Friedel Craft's reaction (any one):	
	i. using toluene and succinic anhydride	
	ii. Resorcinol to resacetophenone, benzene and maleic anhydride	
	to β-benzoylacrylic acid	
	k. Solvent free preparation of coumarin by the Knoevenagel	
	condensation under MW irradiation.	
	I. Preparation of oxidizing agent (any one): Pyridinium	
	chlorochromate-silica, pyridinium chlorochromate-alumina,	
	MnO ₂ .	
	m. Preparation of cuprous chloride.	
	4. Isolation from natural sources (Any two)	8
	i. Caffeine from tea powder.	
	ii. Piperine from pepper.	
	iii. Cinnamaldehyde from cinnamon	
	iv. Lemongrass oil from lemongrass	
Pedagogy:	Students should be given suitable pre- and post-lab assignments	
		L

	7
	and explanation revising the theoretical aspects of laboratory
	experiments prior to the conduct of each experiment. Each of the
	experiments should be done individually by the students.
References /	1. A.I. Vogel, A., R. Tatchell, B. S. Furniss, A.J. Hannaford, Vogel's
Readings	Textbook of Practical Organic Chemistry, 5 th Ed., Prentice Hall;
	2011.
	2. D. Pasto, C. Johnson and M. Miller, Experiments and
	Techniques in Organic Chemistry, 1 st Ed., Prentice Hall, 1991.
	3. L.F. Fieser, K.L. Williamson, Organic Experiments, 7 th edition D.
	C. Heath, 1992.
	4. K.L. Williamson, K.M. Masters, Macroscale and Microscale
	Organic Experiments, 6 th Edition, Cengage Learning, 2010
	5. R.K. Bansal, Laboratory Manual in Organic Chemistry, New Age
	International, 5 th Edition, 2016.
	6. S. Delvin, Green Chemistry, Sarup& Sons, 2005.
	7. O.R. Rodig, C.E. Bell Jr. and A.K. Clark, Organic Chemistry
	Laboratory Standard and Microscale Experiments, Saunders
	College Publishing, 3 rd edition, 2009.
	8. J. Mohan, Organic Analytical Chemistry, Narosa Publishing
	House, 2014.
Course	1. Students will be in a position to understand stoichiometric requirements
outcomes	during organic syntheses.
	2. Students will be in a position to understand Safe and good laboratory
	practices, handling laboratory glassware, equipment and chemical
	reagents.
	3. Students will be in a position to apply the practical knowledge to
	perform
	experiments involving common laboratory techniques like reflux,
	distillation, steam distillation, vacuum distillation, aqueous extraction,
	thin layer chromatography (TLC) etc.
	4. Students will get hands-on experience on isolation of some important
	natural products.

Course Code: CHO-522 Title of the course: Practical Course in Organic Chemistry-II

Number of Credits: 02

Prerequisites	Students should have studied chemistry practical courses at grad	uate level
for the	or must have cleared change of discipline entrance test conducted by Goa	
course	University.	,
Course	To translate certain theoretical concepts learnt earlier into exper	imental
Objective:	knowledge by providing hands on experience of basic laboratory	
	techniques required for organic syntheses.	
Content	Minimum 13 experiments from the list shall be conducted.	No of
	1. Introduction to laboratory equipments, apparatus and	hours
	safety	
	a. Common Hazards in Chemical Laboratory, Risk assessment	04
	b. Accidents and Emergency procedures	
	2. Laboratory Techniques (Any Two)	08
	a. Simple distillation	
	i. Simple distillation of thionyl chloride under anhydrous	
	condition	
	ii. Simple distillation under Nitrogen atmosphere	
	b. Fractional distillation	
	i. Chloroform-dichloromethane mixture using water	
	condenser.	
	ii. Toluene and cyclohexane by fractionating column.	
	c. Vacuum distillation under inert atmosphere	
	Dry Distillation of DMF, o-dichlorobenzene, POCl ₃	
	d. Thin layer Chromatography	
	i. Purification and isolation of mixture of acids by using	
	Preparative TLC.	
	ii. Purification and isolation of mixture of phenols by using	
	Preparative TLC.	
	iii. Purification and isolation of pharmaceutical drugs using	
	Preparative TLC.	
	3. Organic Synthesis (Any Four)	16
	a. <i>p</i> -lodonitrobenzene by Sandmeyer reaction	
	b. Pinacol- Pinacolone rearrangement	
	c. Hydrogenation of Maleic acid (Hydrogen balloon)	
	d. Preparation of nitrostyrene from aldehyde	
	e. Preparation of α , β -dibromocinnamic acid	
	f. Reduction of nitro compounds	
	g. Synthesis of Urea from ammonium cyanate	

	4. Solvent Free Organic synthesis (Any Two)	08
	a. Reduction using ball milling technique	
	b. Oxidation of 2° alcohol using KMnO ₄ /Alumina by grinding	
	technique.	
	c. Synthesis of (±)-Binol from β -naphthol	
	d. Hunsdiecker reaction of cinnamic acid derivatives	
	e. Beckmann rearrangement of oxime derivatives	
	5. Two-step Organic Synthesis (Any Two)	16
	a. Benzamide-Benzoic acid-Ethyl Benzoate	
	b. Phthalic anhydride – Phthalimide – Anthranilic acid.	
	c. Methyl benzoate- <i>m</i> -nitrobenzoate- <i>m</i> -nitrobenzoic acid	
	d. Chlorobenzene – 2, 4 – dinitrochlorobenzene – 2,4-	
	dinitrophenol	
	e. Acetanilide – <i>p</i> –Bromo acetanilide – <i>p</i> –Bromoaniline	
	f. Acetophenone – Oxime – Acetanilide	
	6. Separation, Isolation and Identification of Organic	08
	compounds (Any One)	
	a. Separation, purification and identification of compounds	
	of binary mixture (Solid-Solid, Solid-liquid and Liquid-liquid)	
	using the TLC and column chromatography, chemical tests.	
	IR spectra to be used for functional group identification.	
Pedagogy	Students should be given suitable pre- and post-lab assignments a	
	explanation revising the theoretical aspects of laboratory experim	ents
	prior to the conduct of each experiment.	
References	1. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's	Textbook
/ Readings	of Practical Organic Chemistry, 5 th Ed., Prentice Hall; 2011.	
	2. K. Tanaka, Solvent-free Organic Synthesis, Wiley-VCH, 2 nd Ed., 2	
	3. L. F. Fieser, K. L. Williamson "Organic Experiments" 7 th edit Heath, 1992.	ION D. C.
	4. K. L. Williamson, K. M. Masters, Macroscale and Microscale	Organic
	Experiments, 6 th Edition, Cengage Learning, 2010	
	5. R. K. Bansal, Laboratory Manual in Organic Chemistry, 1	
	International, 5 th Edition, 2016.	New Age
	6. S. Delvin, Green Chemistry, Sarup& Sons, 2005.	
	7. O. R. Rodig, C. E. Bell Jr., A. K. Clark, Organic Chemistry La	aboratory
	Standard and Microscale Experiments, Saunders College P	-
	3 rd edition, 2009.	······
	8. J. Mohan, Organic Analytical Chemistry, Narosa Publishing Hous	se, 2014.
Course	1. Students will be in a position to adopt Safe and good la	
outcomes	practices, handling laboratory glassware, equipment and	-
	reagents.	
	2. Students will be in a position to understand and calculate stoic	niometric
	requirements during organic syntheses.	

3. Students will be in a position to perform common laboratory techniques
including reflux, distillation, vacuum distillation, aqueous extraction, thin
layer chromatography (TLC).
4. Students will get hands-on experience on isolation of some important
natural products.

Course Code: CHP-500 Title of the course: General Physical Chemistry

Number of Credits: 04

Prerequisites for the course:	Students should have studied chemistry courses at graduate level have cleared change of discipline entrance test conducted by Goa Uni	
Course Objective:	 Introduction of various concepts on thermodynamics. Introduction of electro chemistry and kinetics. Learning quantum chemistry. 	
Content	1. Mathematical Preparations	No of
	a. Introduction to various functions and function plotting	hours
	(exponential, logarithmic, trigonometric etc.), functions of many	12
	variables. Complex numbers and complex functions.	12
	 b. Linear equations, vectors, matrices and determinants. c. Basic rules of differentiation and integration, Partial 	
	differentiation, location and characterization of critical points of	
	a function, Regression methods, curve fitting.	
	d. Introduction to series, convergence and divergence, power	
	series, Fourier series	
	e. Probability (permutations and combinations).	
	2. Quantum Chemistry	20
	a. Operators, Functions, Eigen value equations, Postulates.	
	b. Schrodinger equation, application to simple system viz. free	
	particle, particle in one dimensional, two dimensional and three-	
	dimensional box (quantization, separation of variables,	
	degenerate wave functions).	
	c. Hydrogen like atoms, Schrodinger equation and its solutions,	
	atomic orbital wave functions and interpretation. d. Hückel MO theory, Secular equations, Secular determinant,	
	delocalization energy, charge density, π -bond order, free	
	valence, applications to C_2H_4 , C_3H_5 (radical), C_4H_6 , C_4H_4 , C_6H_6 ,	
	C_6H_8 .	
	3. Thermodynamics	12
	a. Thermodynamic properties: Gas laws, Real gasses, Boyle	
	temperature, Critical temperature, State and path properties.	
	Intensive and extensive properties. Exact and inexact	
	differentials. Internal energy, enthalpy, entropy, free energy and	
	their relations and significances. Maxwell relations.	
	Thermodynamic equations of state	
	b. Joule-Thomson effect. Joule-Thomson coefficient for van der	

Waals' gas. Joule-Thomson effect and production of low temperature, adiabatic demagnetization, Joule-Thompson	
coefficient, inversion temperature.	
c. The third law of thermodynamics. Need for the third law.	
Apparent exceptions to third law. Application of third law. Use	
of thermodynamic functions in predicting direction of chemical	
change. Entropy and third law of thermodynamics.	
d. Phase equilibria: Phase rule, Discussion of two component	
systems forming solid solutions with and without maximum or	
minimum in freezing point curve. Systems with partially miscible	
solid phases.	
e. Three component systems: Graphical representation. Three	
component liquid systems with one pair of partially miscible	
liquids. Influence of temperature. Systems with two pairs and	
three pairs of partially miscible liquids. The role of added salts.	
4. Electrochemistry	8
a. EMF series, The cell potential: The Nernst equation, Cells at	Ö
equilibrium. Determination of thermodynamic functions.	
b. Decomposition potential and overvoltage, electronegativity,	
basic principles, completeness of deposition, Separation with	
controlled potentials, constant current electrolysis, composition	
of electrolyte, potential buffers, physical characteristics of metal	
deposits.	
c. Electroplating and electroless plating, electrosynthesis.	
d. Concepts of acid-base aqueous and non-aqueous solvents,	
hard and soft acid-base concept and applications.	
5. Chemical Kinetics	8
a. General introduction to various types of order of reaction	0
including fractional order, Molecularity of the reaction.	
b. Introduction to reversible and irreversible reactions and	
reactions leading to equilibrium. Van't Hoffs equation and	
analysis of Gibbs free energy of equilibrium reactions. c. Collision Theory and Maxwell Boltzmann distribution of	
energies of colliding molecules (derivation not required). The	
concept of collisional cross section and reactive cross section and its significance	
its significance.	
d. Comparative study of transition state and collision state theory (derivation not required)	
(derivation not required).	
e. Reaction Mechanisms: elementary reactions, Consecutive	
elementary reactions, steady state approximation, the rate	
determining step and pre-equilibria	
f. Free radical reactions, Complex reactions such as acetaldehyde	
decomposition and reaction between H ₂ and Br ₂ , Homogeneous	
reactions and acid-base catalysis.	

	g. Elementary enzyme reactions. Lineweaver-Burk plot and its analysis
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /
	presentations / self-study or a combination of some of these can also be
	used. ICT mode should be preferred. Sessions should be interactive in nature
	to enable peer group learning.
References /	1. P. W. Atkins and J. D. Paula, Physical Chemistry, 8 th Ed., Oxford University
Readings	Press, New Delhi. 2007
	2. G. M. Barrow, Physical Chemistry, 5 th Ed., Tata McGraw Hill, New Delhi.
	2016
	3. J. E. House, Principles of Chemical Kinetics, 2 nd Ed., Academic Press,
	Elsevier Burlington, USA, 2007
	4. I. N. Levine, Quantum Chemistry, 7 th Ed., Prentice-Hall, New Delhi. 1999
Course	1. Students should be in a position to understand and explain various
outcomes:	concepts in physical chemistry.
	2. Students should be in a position to apply these concepts during the lab
	course in physical chemistry.
	3. Students will understand concepts of electrochemistry.
	4. Students will be able to apply fundamentals of chemical kinetics for
	understanding reaction mechanisms.

Course Code: CHP-521 Title of the course: Practical course in Physical Chemistry-I

Number of Credits: 02

Prerequisites for the course:	Students should have studied chemistry courses at graduate level or must have cleared change of discipline entrance test conducted by Goa University.	
Course Objective:	 To develop experimental skills on basic lab techniques in physichemistry To acquire skills for data analysis and interpretation To help the students to develop research skills 	sical
Content	Minimum 13 Experiments to be performed per Semester Non-instrumental Experiments (any 7)	No of hours
	 To study the kinetics of hydrolysis of ethyl acetate and to determine a) Energy of activation b) Entropy of activation and c) Free energy change. 	30
	 To determine the order of reaction between potassium persulphate and potassium iodide by graphical, fractional change and differential methods. 	
	 To study the three-component system such as acetic acid, chloroform; and water and obtain tie line. To determine the molecular weight of polyvinyl alcohol 	
	 by viscosity measurement. 5. To study the electro-kinetics of rapid reaction between SO₄²⁻ and l⁻ in an aqueous solution. 	
	 6. To determine the buffer capacity of acidic buffer solution. 7. To determine the partial molal volume of ethanol-water mixture at a given temperature. 	
	 mixture at a given temperature. 8. To measure energy content of various types of plastics using bomb calorimetry 2. To determine number exercises medecular maintains. 	
	 9. To determine number average molecular weight of a polymer sample with an indirect titration method. 10. To investigate basic hydrolysis of ethyl acetate at four different temperatures and find out energy of activation 	
	Instrumental Experiments (any 6)	

		
	 11. To determine the degree of hydrolysis of salt of weak base and strong acid using conductometer. 12. To determine the dissociation constants of a tribasic acid (Phosphoric acid obtain derivative plot to get equivalence point. 13. To determine formal redox potential of Fe²⁺/Fe³⁺ and Ce³⁺/Ce⁴⁺ system obtain derivative plot to get equivalence point. 14. To study spectrophotometric titration of ferrous ammonium sulphate with potassium permanganate (or dichromate vs permanganate) 15. To determine the zeta potential of colloidal system and investigate the effect of different surfactants on stability of the colloids 17. To verify the Kohlrausch's law for weak electrolyte by conductometry 18. To determine the transport numbers of Cu²⁺ and SO₄²⁻ 	
	ions in CuSO ₄ solution by Hittorf's method.	
Pedagogy	Mainly pre-laboratory exercises Seminars / term papers /assignments / presentations / lab hand-out /self-study or a combination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning.	
References / Readings	 A. Finlay & J.A. Kitchener, Practical Physical Chemistry, Longman. F. Daniels & J.H. Mathews, Experimental Physical Chemistry, Longman. A. M. James, Practical Physical Chemistry, Longman. D.P. Shoemaker & C.W. Garland, Experimental Physical Chemistry, McGraw-Hill. 	
Course	1. Students will able to explain various fundamental lab techniques.	
outcomes:	2. Students should be in a position to apply the knowledge for their discortation and research work	
	dissertation and research work. 3. Students will be able to use spectrophotometric titrations for	
	appropriate analysis.	
	4. Students will be able to determine molecular weight of some	
	polymers.	

Course Code: CHP-522 Title of the course: Practical course in Physical Chemistry-II

Number of Credits: 02

Prerequisites for the	Students should have studied chemistry courses at graduate leve have cleared change of discipline entrance test.	l or must
course:		
Course	1. To develop experimental skills on basic lab techniques in physic	al
Objective:	chemistry	
	2. To acquire skills for data analysis and interpretation	
	3. To help the students to develop research skills	
Content	Minimum 13 experiments to be conducted per Semester	No of
	Non-instrumental Experiments (any 8)	hours
	1. To determine the radius of a molecule by viscosity measurements.	35
	2. To determine ΔG , ΔH and ΔS of silver benzoate by solubility product method	
	3. To investigate the adsorption of oxalic acid by activated	
	charcoal and test the validity of Freundlich and Langmuir's isotherms.	
	4. To determine the molecular weight of a given polymer by turbidimetry	
	5. To study the rate of reaction between ethyl bromoacetate and sodium thiosulphate kinetically.	
	6. To determine the percentage composition of a given mixture of two liquids by stalagmometer method.	
	7. To study the kinetics of hydrolysis of methyl acetate and to	
	determine a) Energy of activation b) Entropy of activation and c) Free energy change.	
	8. To study the kinetics of the reaction between Potassium per	
	sulphate $(K_2S_2O_8)$, and Potassium iodide (KI), and to	
	determine a) Energy of activation b) Entropy of activation	
	and c) Free energy change.	
	9. To determine the order of reaction for hydrolysis of ethyl	
	acetate by graphical, fractional change and differential	
	methods.	
	10.To determine the molecular weight of polystyrene by	
L		1

	viscosity measurement.	
	Instrumental Experiments (any 5)	
	11. To determine the relative strength of chloroacetic acid and	
	acetic acid by conductometry.	25
	12. To determine the degree of hydrolysis of salt of weak base	25
	and strong acid using conductometry.	
	13. To determine the composition of a mixture of acetic acid,	
	dichloroacetic acid and hydrochloric acid by conductometric	
	titration.	
	14. To determine the dissociation constants of monobasic acid	
	and dibasic acid and obtain derivative plot to get	
	equivalence point.	
	15. To determine the redox potential of Fe^{2+}/Fe^{3+} system by	
	titrating it with standard K ₂ Cr ₂ O ₇ solution.	
	16. To study the electrodeposition of metal.	
Pedagogy	Mainly pre-laboratory exercises Seminars / term papers /assign	-
	presentations / lab hand-out /self-study or a combination of	
	these can also be used. ICT mode should be preferred. Sessions sh	hould be
References /	interactive in nature to enable peer group learning. 1. A. Finlay & J.A. Kitchener, Practical Physical Chemistry, Longma	n.
Readings	2. F. Daniels & J.H. Mathews, Experimental Physical Chemistry, Lo	ngman.
	3. A. M. James, F. E. Prichard, Practical Physical Chemistry, Longm	
	 D.P. Shoemaker & C.W. Garland, Experimental Physical Chemis McGraw-Hill. 	u y,
Course	1. Students will gain knowledge of various fundamental lab technic	ques.
outcomes:	2. Students should be in a position to apply the knowledge for their	r
	dissertation and research work.	c .
	3. Students will be able to use spectrophotometric titrati	ons for
	appropriate analysis. 4. Students will be able to determine molecular weight of some po	lymers
		.,

Name of the Programme: M. Sc -I (Physical Chemistry)

Course Code: CHP-501 Title of the course: Quantum Chemistry and Statistical

Thermodynamics

Number of Credits: 04

Prerequisites	Students should have studied physical chemistry courses at	M.Sc.
for the	Chemistry in semester I	
course:		
Course	1. Introduction of various concepts of quantum chemistry.	
Objective:	2. To introduce various concepts of statistical thermodynamics.	
Content	1. Quantum Chemistry	No of
	a. The origin of quantum mechanics: Planck's quantum	hours
	theory, wave particle duality, uncertainty principle concept of	
	wave function, the Born interpretation of wave function.	34
	Normalization and orthogonalizations, quantization, Eigen	
	values and Eigen functions.	
	b. Postulates of quantum mechanics; Schrödinger equation	
	for free particle, particle in a box, degeneracy. Quantum	
	mechanical operators and their properties, commutation	
	relations, Hamiltonian and Laplacian operators, Harmonic	
	oscillators, Angular momentum, Ladder Operators.	
	c. Approximate methods, Schrödinger equation, its	
	importance and limitations, Born-Oppenheimer	
	approximation, Anti-symmetric wave functions and Slater	
	determinants (many electron system e.g. He atom), Exclusion	
	and Aufbau principle, Variation method, Linear Variation Principle, Perturbation theory (first order non-degenerate)	
	and their applications to simple systems.	
	d. MO theory, Hückel MO theory, Bond-order, Charge density	
	matrix, Unification of HMO and VB theory, their applications	
	in spectroscopy and chemical reactivity, electron density	
	forces and their role in chemical bonding. Hybridization and	
	valence MOs of H_2O , NH_3 and CH_4 . Application of Hückel	
	Theory to ethylene, butadiene and benzene molecules.	
	2. Statistical Thermodynamics	26
	a. The language of statistical thermodynamics: Probability,	
	ensemble, microstate, degeneracy, permutations and	
	combinations. Configuration and weights, the dominant	
	configuration. The Boltzmann distribution. The molecular	
	partition function: its interpretation and its relation to	

	uniform energy levels.				
	b. Translational, Rotational, Vibrational and Electronic				
	Partition functions for diatomic molecules. Relation between				
	thermodynamic functions and partition functions and their				
	statistical interpretations. Equilibrium constants from				
	partition function.				
	c. Law of Equipartition energy. Theories of specific heat of				
	solids. Comparison between Einstein and Debye theories.				
	d. Concept of symmetric and antisymmetric wave functions.				
	Ortho and para hydrogens. Quantum Statistics: Fermi-Dirac				
	(FD)and Bose-Einstein (BE) statistics. Comparison between				
	MB, FD and BE Statistics.				
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /				
	presentations / self-study or a combination of some of these can also be				
	used. ICT mode should be preferred. Sessions should be interactive in				
	nature to enable peer group learning.				
References /	1. P. W. Atkins and J. D. Paula, Physical Chemistry, 8 th Ed., Oxford				
Readings	University Press, New Delhi. 2007				
	2. G. M. Barrow, Physical Chemistry, 5 th Ed., Tata McGraw Hill, New Delhi. 2016.				
	3. M.C. Gupta, Statistical Thermodynamics, Wiley Eastern, New Delhi.				
	1990				
	4. I. N. Levine, Quantum Chemistry, 7 th Ed., Prentice-Hall, New Delhi. 1999				
	5. H. Metiu, Physical Chemistry, Statistical Mechanics, Taylor & Francis,				
	New York , 2006				
Course	1. Students should be in a position to understand and explain various				
outcomes:	concepts of quantum chemistry viz. the wave function and				
	applications.				
	2. Students should be able to explain various concepts in statistical				
	thermodynamics viz. the partition function and applications.				
	3. Students will be able to explain postulates of quantum mechanics.				
	4. Students will be able to explain law of equipartition energy.				

Course Code: CHP-502 Title of the course: Group Theory and Molecular Spectroscopy

Number of Credits: 04

Prerequisites for the course:	Students should have studied physical chemistry courses a Chemistry in semester I	at M.Sc.	
Course Objective:	 To introduce concepts in Group Theory and it applications to chemistry. To introduce some advance topics in spectroscopy. 		
Content	1. Group Theory for Chemistry	No of	
	a. Symmetry elements and symmetry operations, Concept of	hours	
	group and group multiplication tables, order of the group,		
	classes and subgroups in a group, Different types of groups (cyclic, abelian and non-abelian groups).	30	
	b. Point groups, Matrix representations of a group,		
	Reducible and Irreducible representations groups, Great		
	Orthogonality Theorem, Properties of Irreducible		
	representations, Mulliken symbols for Irreducible		
	representations, Character tables.		
	c. Standard reduction formula, Direct products of		
	representations and it applications Quantum Chemistry and spectroscopy: Vanishing of integrals, Selection rules.		
	Applications of group theory for hybridization of atomic		
	orbitals. Projection operator and Symmetry adapted linear		
	combinations (SALCs), MO treatment (within Huckel		
	Molecular Orbital Theory) of large molecules with symmetry.		
	Applications of group theory to Infra-red and Raman		
	spectroscopy.		
	d. Space Groups: Symmetry elements, Schoenflies, and		
	Hermann Mauguin notation, Representation of point groups		
	and space groups, point symmetry, space symmetry, glide plane, helical screw axis		
	2. Microwave, IR and Raman Spectroscopy	12	
	a. Theoretical treatment of Rotational and Vibrational	**	
	spectroscopy.		
	b. Principle of Fourier Transform (FT) spectroscopy, FTIR		
	spectroscopy: Theory, instrumentation and applications.		
	c. Quantum theory of Raman effect, Raman shift,		
	Instrumentation, Resonance Raman spectroscopy,		
	Complimentary nature of IR and Raman spectroscopy in		

	structure determination, Applications.		
	3. NMR Spectroscopy	10	
	a. Basic principles of NMR		
	b. Theory of pulse NMR and Fourier analysis, FT-NMR.		
	c. Solid state NMR, magic angle spinning (MAS), dipolar		
	decoupling and cross polarization, applications of solid-state		
	NMR.		
	d. Double resonance, NOE, Spin tickling, Solvent and shift		
	reagents, Structure determination by NMR.		
	4. ESR Spectroscopy	8	
	a. Theory and experimental techniques, Identification of		
	odd-electron species (methyl and ethyl free radicals) and		
	radicals containing hetero atoms.		
	b. Spin trapping and isotopic substitution, Spin densities and		
	McConell relationship, Double resonance techniques.		
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /		
	presentations / self-study or a combination of some of these car	n also be	
	used. ICT mode should be preferred. Sessions should be inter-	active in	
	nature to enable peer group learning.		
References /	1. P. W. Atkins and J. D. Paula, Physical Chemistry, 8 th Ed., Oxford		
Readings	University Press, New Delhi, 2007.		
	2. F.A. Cotton, Chemical Applications of Group Theory, 3 rd Ed., John		
	Wiley & Sons-Asia, New Delhi, 1999		
	3. K. V. Raman, Group Theory and its applications to chemistry, Tata		
	McGraw-Hill, New Delhi, 1999		
	4. C. N. Banwell and E.M. McCash, Fundamentals of Molecular		
	Spectroscopy, Tata McGraw-Hill, New Delhi, 1994		
	5. W. Kemp, NMR in Chemistry a multinuclear introduction, Ma	acmillan,	
	1986.		
	6. R.S. Drago, Physical Methods in Chemistry, W.B. Saunders C	ompany,	
	1977.		
Course	1. Students should be in a position to explain various concepts in	n Group	
outcomes:	Theory.		
	2. Should be able to apply character table to solve various problem		
	3. Students should be in a position to apply the knowl	ledge of	
	spectroscopy for their dissertation and research work.		
	4. Students will understand the fundamental difference between	n various	
	spectroscopic techniques.		

Course Code: CHP-503 **Title of the course:** Chemical Kinetics and Thermodynamics

Number of Credits: 04

Prerequisites for the course:	Students should have studied physical chemistry courses at M.Sc. Chemistry in semester I			
	1. To introduce approache of repetion binotics and the upped upperior			
Course	1. To introduce concepts of reaction kinetics and thermodynamics			
Objective:	2. To provide fundamental knowledge of theories that govern chemical			
	reactions			
	3. To introduce newer classes of reaction types and their kinetics			
	4. To introduce latest developments in the advance instrumental techniques			
	and methods for monitoring reaction kinetics and dynamics.			
Content	1. Theories of reaction rates	No of		
	a. Generalized kinetic theory and extended collision theory.	hours		
	Concept of collisional number, collisional frequency factor,			
	collisional and reactive cross section, steric factor, microscopic	10		
	rate constant. Assumptions and limitations of collision theory.			
	b. Conventional transition state theory, equilibrium hypothesis			
	and derivation of reaction rates. Thermodynamic formulation of			
	transition state theory. Arrhenius temperature dependent and			
	independent activation energy and its significance. Assumptions			
	and limitations of transition state theory. Lindemann-Hinshelwood			
	theory of thermal unimolecular reactions.	2		
	2. Elementary reactions in solutions	3		
	Collisional kinetics in solution, effect of solvent polarity, solvent			
	cohesion energy, and ion-dipole and dipole-dipole reactions on			
	reaction rates.			
	3. Kinetics of Homogeneous reactions	5		
	Homogeneous kinetics, enzymatic reactions and Michaelis-			
	Menten, Lineweaver-Burk and Eadie Analysis, Autocatalytic			
	reactions.			
	4. Composite reactions			
	Types of composite mechanisms, kinetics of parallel and	2		
	consecutive reactions. Introduction to shock tube method and its	3		
	use in combustion analysis.			
	5. Fast Reactions			
	Photochemical fast reactions, Pulsed laser photolysis, and its use	3		
	in monitoring fast reactions.			
	6. Reversible, Irreversible and Oscillatory reactions.	4		

)
	 a. Kinetics of reversible reactions and graphical analysis b. Oscillatory reactions, Voltera-Lotka hypothesis of oscillatory reactions. The significance of bi-stability in the Briggs-Rauscher Reaction and Belousov-Zhabotinskii reaction. 	
	7. Reaction Dynamics	
	Introduction to potential energy surfaces, description of H_2O and	2
	HF potential energy surface diagrams.	
	8. Equilibrium Thermodynamics	
	a. Important terminologies in Thermodynamics; Thermodynamics state functions; work & heat; work expansion; Mathematical interlude Exact and inexact differentials. Cyclic rule; partial	
	 derivatives. b. Heat change at constant pressure, volume; relationship between Qp & Qv; Heat capacities Cp, Cv; Concept of Entropy, entropy change for an ideal gas at different conditions; Entropy of mixing of ideal gas and the Gibbs paradox; Physical significance of 	17
	entropy. c. Work function and free energy function; Variation of free	
	 energy with temperature and pressure; Maxwell relations; Thermodynamic equations of state; Gibbs-Helmholtz equation. d. Thermodynamics of open systems, partial molar properties; chemical potential, variation of chemical potential with 	
	temperature and pressure; Gibbs-Duhem equation; Duhem- Margules equation; applications of chemical potential; thermodynamic derivation of phase rule.	
	 9. Non-Equilibrium thermodynamics a. Concept of internal entropy and spontaneity of a process in relation to free energy. Chemical affinity and extent of a reaction. Phenomenological Laws and Onsager's Reciprocal Relations; Conservation of Mass and energy in closed and open system. b. Postulates of non-equilibrium thermodynamics. 	
	Entropy production in heat flow. Entropy production of chemical reactions and Entropy production/entropy flow in open system. c. Principle of microscopic reversibility and the Onsager reciprocal	13
	relations; Validity of Onsager's equation and its verification; Application of Irreversible Thermodynamics to Biological Systems; Application to thermo-electric and electrokinetic phenomena.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignn presentations / self-study or a combination of some of these can used. ICT mode should be preferred. Sessions should be interactive in to enable peer group learning.	also be
References /	1. K. J. Laidler, Chemical Kinetics, 3 rd Ed.; Pearson Education	. 1987:
Acticicites /		, 1307,

Readings	 (printed in India by Anand Sons, 2004). P.W. Atkins and J. De. Paulo, Atkins' Physical Chemistry, 8th Ed. Oxford University Press, 2007.
	3. J. I. Steinfeld, J. S. Francisco and W. L. Hase, Chemical Kinetics and Dynamics, 2 nd Ed.; Prentice Hall, 1999.
	 D. K. Chakrabarty and B. Viswanathan, Heterogeneous Catalysis, New Age International Publishers, 2008.
	 S. K. Scott, Oscillations, waves and Chaos in chemical kinetics, Oxford Science Publications, 1994.
	6. T. S. Briggs, and W. C. Rauscher, An oscillating iodine clock, J. Chem. Educ., 1973.
	 G. W. Castellan, Physical Chemistry, 3rd Ed.; University of Maryland, Addison-Wesley Publishing Company, 1983.
	8. E. N. Yeremin, Fundamentals of Chemical Thermodynamics Firebird Publications, 1978.
	 D. A. McQuarrie & John D. Simon, Physical Chemistry: A molecular approach, Viva Books Pvt. Ltd., New Delhi, 2019.
	10. S. R. De Groot, Non-equilibrium thermodynamics, Dover Publications, 2011.
	11. A. Kleidon, R.D. Lorenz (Eds.), Non-equilibrium thermodynamics and the production of entropy: life, earth, and beyond, Springer Berlin Heidelberg New York, 2005.
	 J. Rajaram, J. C. Kuriacose, S. N. & Co., Thermodynamics for students of Chemistry, Classical, Statistical and Irreversible, Jalandhar, 1996. P. W. Atkins & J. De. Paulo, Atkins' Physical Chemistry, 8th Ed.; Oxford Univ. Press, 2007.
	1. Students should be in a position to understand and explain various concepts in chemical kinetics and thermodynamics.
Course	2. Students should be in a position to apply these concepts during the lab course in experimental physical chemistry.
outcomes:	 Students will able to explain the concept of equilibrium and non- equilibrium thermodynamics.
	4. Students will able to explain the elementary reactions in solutions.

Course Code: CHP-504 Title of the course: Electrochemistry and Surface Studies

Number of Credits: 04

Prerequisites for the course:	Students should have studied physical chemistry courses at M.Sc. Chemistry in semester		
Course Objective:	 To introduce some core concepts of electrochemical processes incl interaction theories, electrified interfaces, electrochemical kinetics and therm To develop problem solving skills in electrochemistry To introduce fundamental concepts and applications of electrochemistry i life eg. batteries, solar cells, capacitors 	nodynamics	
Content	1. Ionic Interactions and Conductance in Electrolytes	No of	
	a. Ion-solvent interactions. Born Theory, validity and limitations.	hours	
	b. Solvation number and coordination number.		
	c. Ion-ion interactions and Debye-Huckel theory of ion cloud.	10	
	d. Applications of Debye- Huckel equation. Concept of ionic strength and activity coefficient.		
	e. Debye-Huckel limiting law and its modifications.		
	f. Debye-Huckel-Onsager equation, validity and limitations.		
	g. Einstein-Smoluchowski equation.		
	h. Influence of ionic atmospheres on ionic migration: Relaxation and		
	Electrophoretic effects.		
	i. Conductance in strong and weak electrolytes.		
	2. Electrified Interfaces	10	
	a. Formation of an electrode/electrolyte interface and its structure.		
	b. Polarizable and non-polarizable interfaces.		
	c. Potential difference across electrical double layer: outer potential, surface potential, inner potential and relationship between them, chemical and electrochemical potentials.		
	d. Thermodynamics of electrified interface: Surface tension, surface excess, Electro-capillary curves. Determination of surface excess. Condition for thermodynamic equilibrium at electrified interface.		
	e. Generalized Gibbs equation, Lippmann equation and electrical capacitance at the double layer.		
	f. Models of the electrified interface.		
	g. Ion adsorption at the electrode: hydrated electrodes, contact adsorption,		

	Gibbs adsorption equation.	
	3. Pure Liquid Electrolytes: Ionic Liquids	8
	a. Thermal loosening of ionic lattice.	
	b. Ionic liquids in surface electrochemistry: Electrode/electrolyte	
	interfacial processes in ionic liquids.	
	c. Electrochemistry of Ti (IV) in Ionic liquids.	
	4. Electrode Kinetics and Corrosion	
	a. Disturbance of electrode equilibrium, cause of electron transfer, fast	
	and slow systems and their current-potential relationship.	
	b. Butler-Volmer equation and its low and high field approximations.	
	c. Nernst equation as a special case of B-V equation.	
	d. Tafel plots for anodic and cathodic processes.	12
	e. Fundamentals of Impedance spectroscopy; determining exchange current densities and rate constants from impedance plots.	
	f. Principles of corrosion, electrochemical methods of avoiding	
	corrosion.	
	g. pH-potential diagrams: Pourbaix diagram for corrosion of iron and	
-	stability of water.	
	5. Colloidal Chemistry	
	a. Interaction of double layers and stability of Sols. DLVO theory.	
	b. Colloidal electrolytes, critical micelle concentration, Kraft	
	temperature. c. Electrokinetic phenomena: Electroosmosis, streaming potential and	8
	current, electrophoresis. Zeta potential.	
	d. Donnan membrane equilibria.	
	e. Micellesandreversemicelles, Emulsions and Microemulsions.	
F	6. Electrochemical Energies: Conversion and Storage	
	a. Thermodynamics of electrochemical energy conversion.	
	b. Batteries: Basic principles; rating and shelf life. Zinc-Manganese	
	dioxide: Leclanche and alkaline batteries. Lithium ion batteries and	
	recharge ability.	
	c. Fuel cells: Principle of a hydrogen-oxygen fuel cell. Classification of	7
	fuel cell systems based on types of electrolytes/temperature.	
	Efficiency w.r.t. thermodynamic efficiency, reliability and economic	
	benefits. Direct methanol-polymer electrolyte fuel cell and electro- catalysts - a case study. Reactions occurring in various fuel cells and	
	calculation of their electrode and cell potentials.	
	d. Super-capacitors: Introduction: Origin of Supercapacitance.	
ļ t	7. Photoelectrochemistry	5

	a. Semiconductor/Electrolyte Interface: Band edge and Band bending.			
	b. Light absorption and carrier generation at the electrode: photoinduced			
	charge transfer, hot carriers.			
	c. Photoelectrodes: p-type photocathode, n-type photoanode.			
	d. Determination of surface states.			
	e. Photoelectrocatalysis: photoelectrochemical water splitting and CO_2			
	reduction.			
	f. Types of photoelectrochemical devices.			
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / presentations / self-study or a combination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning.			
References /	1. J. O. M. Bockris & A. K. N. Reddy, Modern Electrochemistry, Springer India,			
Readings	Pvt.Ltd, 2000, Vol.1,2and3.			
	2. D. Crow, Principles and Applications of Electrochemistry, Blackie Academy and			
	Professional, 1994.			
	3. C. M. A. Brett & A. M. O. Brett, Electrochemistry: Principles, methods and			
	applications, Oxford, NewYork Oxford University Press, 1993.			
	4. R. D. Vold & M. J. Vold, Colloid and Interface Chemistry, Addison-Wesley, 1983.			
	5. A. Vincent & B. Sacrosati, Modern Batteries, John Wiley, NewYork, 1997.			
	6. J. O. M. Bockris & S. Srinivasan, Fuelcells: Their Electrochemistry, McGraw-			
	HillBook Co., 1969.			
	7. A. A. J. Torriero, Electrochemistry in Ionic Liquids, Vol. 1: Fundamentals, Springer			
	International Publishing, 2015			
	8. B. A.J., Stratmann M., Licht D, Encyclopedia of Electrochemistry, Semiconductor			
	Electrodes and Photoelectrochemistry, Wiley-VCH, 2002.			
Course outcomes:	1. Students will be in a position to explain various fundamental and core concepts of electrochemistry.			
	2. Students should be in a position to apply the knowledge of electrochemistry for their			
	dissertation and research work			
	3. Students should be in a position to apply these concepts during the lab course in			
	physical chemistry			
	4. Students will be able to explain the concepts of Photoelectrochemistry.			

M.Sc. Organic/Inorganic/Analytical/Physical Chemistry Part-II syllabus for AY 2023-24 (SEM III and SEM IV) based on NEP 2020

		SEM III & IV			
	Research Specific Elective (RSE) Courses				
Sr. No.	Subject code	Paper title	Credits		
1.	<u>CHO-600</u>	Practical Course in Organic Chemistry-III	4		
2.	<u>CHO-601</u>	Practical Course in Organic Chemistry-IV	4		
3.	<u>CHO-602</u>	Retrosynthesis and Heterocyclic Chemistry	4		
4.	<u>CHO-603</u>	Chemistry of Natural Products	4		
5.	<u>CHI-600</u>	Practical Course in Inorganic Chemistry-III	4		
6.	<u>CHI-601</u>	Practical Course in Inorganic Chemistry-IV	4		
7.	CHI-602	Principles and applications in catalysis	4		
8.	CHI-603	Selected Topics in Inorganic Chemistry	4		
9.	CHA-600	Practical Course in Analytical Chemistry-III	4		
10.	CHA-601	Practical Course in Analytical Chemistry-IV	4		
11.	CHA-602	Advanced Mass Spectrometry	4		
12.	CHA-603	Selected Topics in Analytical Chemistry	4		
13.	CHP-600	Practical Course in Physical Chemistry-III	4		
14.	CHP-601	Practical Course in Physical Chemistry-IV	4		
15.	<u>CHP-602</u>	Heterogeneous Catalysis: Fundamentals and Applications	4		
16.	<u>CHP-603</u>	Applied Electrochemistry	4		
17.	<u>CHC-600</u>	Research Methodology and instrumental techniques-I	4		
18.	<u>CHC-601</u>	Research Methodology and instrumental techniques- II	4		
19.	<u>CHC-651</u>	Discipline Specific Dissertation	16		
C. N.		Generic Elective (GE) Courses			
Sr. No.	Subject code	Paper title	Credits		
1.	<u>CHO-621</u>	Polymer Chemistry: Concepts, Synthesis and Processing of Polymers	4		
2.	<u>CHO-622</u>	Concepts in Medicinal Chemistry	4		
3.	СНО-623	Concepts in Green Chemistry	4		
4.	СНО-624	Chemistry of Life	4		
5.	<u>CHO-625</u>	Organometallic Chemistry and Rearrangement Reactions	4		
6.	<u>CHI-621</u>	Bioinorganic Chemistry	4		
7.	CHI-622	Chemistry of p-block elements & their compounds	4		

8.	<u>CHI-623</u>	Environmental Chemistry	4
9.	<u>CHI-624</u>	Inorganic Chemistry: Industrial Perspective	4
10.	<u>CHA-621</u>	Fundamentals of Crystallography	4
11.	<u>CHA-622</u>	Advanced NMR and combined Spectroscopy	4
12.	<u>CHA-623</u>	Bioanalytical Techniques	4
13.	<u>CHA-624</u>	Calibration and Validation in Analytical Chemistry	4
14.	<u>CHP-621</u>	Solid State Chemistry: Concepts and Applications	4
15.	<u>CHP-622</u>	Nanoscience: Concepts and Applications	4
16.	<u>CHP-623</u>	Physical aspects of Polymer Chemistry	4
17.	<u>CHP-624</u>	Colloids and Surface Chemistry	4
		Dissertation	
1.	<u>CHC-651</u>	Discipline Specific Dissertation	16

	SEM III ORGANIC CHEMISTRY				
Sr. No.	Subject	Paper title	Credits		
	code				
1	CHP-600	Practical Course in Physical Chemistry-III	4		
2	CHP-601	Practical Course in Physical Chemistry-IV	4		
3	CHC-600	Research Methodology and instrumental techniques-I	4		
4	CHC-601	Research Methodology and instrumental techniques-II	4		
5	CHP-621	Solid State Chemistry: Concepts and Applications	4		
6	CHP-622	Nanoscience: Concepts and Applications	4		
7	CHP-623	Physical aspects of Polymer Chemistry	4		
8	CHP-624	Colloids and Surface Chemistry	4		
	•	SEM-IV ORGANIC CHEMISTRY			
1	CHP-602	Heterogeneous Catalysis: Fundamentals and	4		
		Applications			
2	CHP-603	Applied Electrochemistry	4		
3	CHC-651	Discipline Specific Dissertation	16		

M.Sc. Physical Chemistry Part-II syllabus for AY 2023-24 (SEM III and SEM IV)

Course Code: CHP-600 Title of the course: Practical Course in Physical Chemistry -

III

Number of Credits: 4

Prerequisites	Should have studied Physical chemistry practical course at M.Sc. Part-I.	
for the		
course:		
Course	1. To introduce concepts of Kinetics and Thermodynamics	
Objectives:	2. To introduce concepts of Surface science and Catalysis	
	3. To introduce various concepts of Electrochemistry	
	4. Introduction to the use of computers and computational tools in chemi	strv
Contents	Note: A minimum of 7 experiments from each Unit I-III are to be	No o
	completed.	hours
	Unit - I. Instrumental	nouis
	a. To determine the redox potential of Fe^{2+}/Fe^{3+} system using rotating	40
	disk voltammetry method.	10
	b. To determine the instability constant of the reaction	
	$[Ag(NH_3)_2]$ > $Ag + 2NH_3$ potentiometrically.	
	c. To determine the transport number of ions using moving boundary	
	method.	
	d. To verify Nernst equation and determine the standard oxidation	
	potential of copper and zinc electrodes.	
	e. To study effect of ionic strength on activity coefficient of Ag^+ ions.	
	f. To investigate the reaction kinetics between Potassium Persulphate	
	and Potassium Iodide colorimetrically.	
	g. To determine the equivalent conductance of a strong electrolyte	
	(KCl) at several concentrations and verify Onsager's equation.	
	h. To estimate the concentration of Sulphuric acid, Acetic acid and	
	Copper sulphate in a given solution conductometrically.	
	i. To determine the concentration of Fe^{2+} ions by titrating with	
	potassium dichromate conductometrically.	
	j. To study the kinetics of hydrolysis of tertiary butyl chloride by	
	conductometry.	
	k. To determine the half wave potential of $Cu^{2+}/Cd^{2+}/Zn^{2+}$ by using	
	polarography.	
	1. To study the effect of sol-gel and hydrothermal method of synthesis	
	on crystallite size and surface area of a semiconductor catalyst.	
	m. To investigate the effect of catalyst loading on photocatalytic	
	degradation of azo dye using semiconductor catalyst.	
	n. To study the stress-strain response of polymeric materials and	
	compare their strength.	
I	T	

	o. To determine the degradation rate of the polymers using thermogravimetric methods.	
	p. To determine the curie temperature of conducting polymer samples.q. To determine the resistivity of polymeric material using four probe	
	method.	
_	Unit - II. Non-Instrumental	40
	a. To determine the critical micelle concentration of three types of surfactants using stalagmometer.	
	b. To determine the partial molal volume of sodium chloride-water, ethanol-water and methanol-water system by apparent molal volume method.	
	c. To study the effect of surfactants on surface tension of water using stalagmometer.	
	 d. To study the variation of viscosity with composition of mixtures and to verify the formation of compounds by Oswald's viscometer. 	
	 e. To study the effect of pH on the kinetics of iodination of Aniline. f. To study the kinetics of reaction between H₂O₂ and KI (clock reaction). 	
	g. To study the kinetics of rapid reaction between Bromine and Iodine in aqueous media.	
	h. To investigate the autocatalytic reaction between Potassium Permanganate and Oxalic acid.	
	i. To study the electroless deposition of Ni on non-conductor substrate and to determine the rate of deposition.	
	j. To study the variation in catalytic activity of three different metal oxides for H_2O_2 decomposition reaction.	
	k. To investigate the effect of pH on adsorptive separation of azodye	
	from water using MCM-41.	
	Unit - 3. Computational Chemistry	40
	a. To generate a mark sheet and understand various features of spreadsheets.	
	 b. To generate a plot for a given function such as solutions of 1D box, harmonic oscillator, H-like atom wave functions, Gaussians distributions etc. 	
	c. To write a computer program to obtain equivalence point in pH metry and potentiometric experiments (derivative method).	
	d. To write a computer program to find percent composition for various atoms of a given molecular formula.	
	e. To write a computer program to obtain slope and intercept for linear data using least square fit method.	
	f. To write a computer program to obtain center of mass of a given molecule and moment of inertia, hence obtain classification of the	

	 given molecule. g. To write a computer program to find out various parameters for data analysis viz. minimum, maximum, average, standard deviation, variance, covariance, correlation coefficient, frequency distribution etc. h. To write a computer program to obtain thermodynamic probability. i. To write a computer program to obtain degeneracy of a given energy level for a particle in a cube. j. Calculate the ground state energy of hydrogen atom using various basis sets using <i>ab-initio</i> program. k. Calculate and interpret the IR, RAMAN and NMR spectra of simple organic molecules using <i>ab-initio</i> program.
Pedagogy:	Mainly pre-labs / practicals or a combination of some of these could also be used to some extent.
References / Readings:	 A. Finlay and J.A. Kitchener, Practical Physical Chemistry, Longman Publisher, 1963. A. M. James, Practical Physical Chemistry, Longman Publisher, 1974. D.P. Shoemaker and C.W. Garland, Experimental Physical Chemistry, McGraw-Hil, 1981. J. B. Yadav, Advance Practical Physical Chemistry, Krishna Educational Publishers, 2014. S. Attila, and N. S. Ostlund. Modern quantum chemistry: introduction to advanced electronic structure theory. Courier Corporation, 2012. P.P. Morajkar, A. P. Naik, S. T. Bugde, B. R. Naik, CH-20: Photocatalytic and microbial degradation of Amaranth dye, Advances in Biological Science Research-A Practical Approach 2019, 327-345, Academic Press. J.B. Foresman, E. Frisch, Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian, 2nd Ed. Gaussian, 1996
Course Outcomes:	 Student should be able to apply the concepts of physical chemistry in M.Sc. Dissertations. Students shall be equipped with practical skills needed for research and development. Students will understand the instrumental and non-instrumental methods of analysis. Students will understand use of computers and computational tools in chemistry.

Course Code: CHP-601 Title of the course: Practical Course in Physical Chemistry -

IV

Number of Credits: 4

Prerequisites	Should have studied Physical chemistry practical course at M.Sc. Part-	·I.
for the		
course:		
Course	1. To introduce concepts of Kinetics and Thermodynamics	
Objectives:	2. To introduce concepts of Surface science and Catalysis	
	3. To introduce various concepts of Electrochemistry	
	4. Introduction to the use of computers and computational tools in cher	mistry
		-
Content	Unit - I. Instrumental	No of
	a. To estimate the concentration of glucose calorimetrically.	hours
	b. To determine the redox potential of Fe^{3+}/Fe^{2+} system using	
	rotating disk voltammetry method.	40
	c. To determine the transport number of ions using moving boundary method.	
	d. To verify Nernst equation and determine the standard reduction potential of Ag and Zn electrodes.	
	e. To determine the equivalent conductance of a strong electrolyte (NaCl) at several concentrations and verify Onsager's equation.	
	f. To estimate the concentration of Hydrochloric acid, Monochloro acetic acid and Copper sulphate in a given solution conductometrically.	
	g. To determine the half wave potential of Ni ²⁺ /Cd ²⁺ /Cu ²⁺ by using polarography.	
	h. To study the effect of precipitation and hydrothermal method of synthesis on acidic sites of a semiconductor catalyst using NH ₃ TPD method.	
	i. To investigate the effect of solution pH on photocatalytic degradation of methylene blue using semiconductor photocatalyst.	
	j. To determine the curie temperature of polyaniline.	
	Unit II. Non-Instrumental	
	a. To determine the critical micelle concentration of Sodium	
	dodecyl sulphate, Cetrimonium bromide using stalagmometer.	40
	b. To study the kinetics of the reaction between acetone and Iodine	
	using titrimetry.	
	c. To study the effect of pH on the kinetics of iodination of aniline.	
	d. To study the kinetics of Briggs Rauscher reaction (oscillatory	

	reaction).
e.	To study the kinetics of rapid reaction between Bromine and
	Iodine in aqueous media
f.	To investigate the autocatalytic reaction between Potassium
	Permanganate and Citric acid.
g. ′	To study the electroless deposition of Cu on alpha-alumina and to
U	determine the rate of deposition.
h. 7	To compare the catalytic activity of MnO ₂ , NiO with Degussa-P25
	towards H_2O_2 decomposition reaction.
i.	To investigate the effect of pH on adsorptive separation of
	Amaranth dye from water over NiO catalyst.
j. '	To determine the radius of a glycerol molecule by viscosity
-	measurements.
Un	it III. Computational Chemistry
a.	To write a computer program to find out various parameters for
	data analysis viz. minimum, maximum, average, standard
	deviation, variance, covariance, correlation coefficient,
	frequency distribution etc.
b.	To write a computer program to obtain slope and intercept for
	linear data using least square fit method
c.	To analyze the Gaussian output files and extracts molecular
	coordinates.
d.	To construct and optimize the molecular structure of H_2O , H_2O_2
	and HOF using Gaussian/ NWCHEM and calculate bond
	distances and bond angles.
e.	To obtain the transition state of the reaction between CH ₃ Br and
_	OH ions using Gaussian/ NWCHEM.
f.	To study the effect of solvent on the transition state of the
	reaction between CH ₃ Br and OH ⁻ using Gaussian/ NWCHEM.
g.	To study the thermochemistry of the reaction between CH_3Cl
1	and OH ⁻ using Gaussian/ NWCHEM.
h.	To generate a plot for a given function such as solutions of 1D
	box, harmonic oscillator, H-like atom wave functions,
	Gaussians distributions etc.
1.	To write a computer program to obtain degeneracy of a given
: /	energy level for a particle in a rectangular box.
j. C	Calculate the ground state energy of hydrogen atom using various
	basis sets using Gaussian 16 program.
х	Joto: A minimum of 7 or portimonts from agab Unit I III mate ha
Γ	<i>Note: A minimum of 7 experiments from each Unit I-III are to be</i>
	completed.

Pedagogy:	Mainly pre-labs / practicals or a combination of some of these could also be used to some extent.
References /	
Readings:	 A. Finlay and J.A. Kitchener, Practical Physical Chemistry, Longman Publisher, 1963. A. M. James, Practical Physical Chemistry, Longman Publisher, 1974. D.P. Shoemaker and C.W. Garland, Experimental Physical Chemistry, McGraw-Hil, 1981. J. B. Yadav, Advance Practical Physical Chemistry, Krishna Educational Publishers, 2014. S. Attila, and N.S. Ostlund. Modern quantum chemistry: introduction to advanced electronic structure theory. Courier Corporation, 2012. P. P. Morajkar, A. P. Naik, S. T. Bugde, B. R. Naik, CH-20: Photocatalytic and microbial degradation of Amaranth dye, Advances in Biological Science Research-A Practical Approach 2019, 327-345, Academic Press. J.B. Foresman, E. Frisch, Exploring Chemistry With Electronic Structure
	Methods: A Guide to Using Gaussian, 2nd ed. Gaussian, 1996.
Course Outcomes:	 Student should be able to apply the concepts of physical chemistry in M.Sc. Dissertations. Students shall be equipped with practical skills needed for research and development. Students will understand the instrumental and non-instrumental methods of analysis. Students will understand use of computers and computational tools in chemistry.

Course Code: CHP-602 **Title of the course:** Heterogeneous Catalysis: Fundamentals

and Applications

Number of Credits: 4

Prerequisites	Students should have studied Chemistry courses at MSc Part-I.	
for the	Statents should have statical chemistry courses at most rart h	
course:		
Course	1. To introduce concepts of surface science and catalysis.	
		0.000000000
Objectives:	2. To provide fundamental knowledge of theories that govern heter	ogeneous
	catalytic reactions.	1 4
	3. To introduce newer methods of synthesizing nanocatalysts	and its
	characterization.	
	4. To introduce latest developments about application of ca	talyst in
	environment and energy sector.	
Concepts	1. Basic Concepts	No of
	a. General Introduction: Catalysis and activation energy.	hours
	Heterogeneous reactions with suitable illustrations. Catalytic	• •
	activity, selectivity and stability. Steps in a heterogeneous	20
	catalytic reaction. Factors affecting rate of reaction such as	
	temperature, flow rates, molar composition etc.	
	b. Adsorption and Surface Area: Cause of adsorption. No of	
	molecules striking the surface and sticking probability. Types of	
	adsorption and potential energy profiles for adsorption of H_2 .	
	Adsorption isotherms for gases and solutes. Basic types of BET	
	isotherms. Gibbs adsorption equation and changes in surface	
	tension. Free energy, enthalpy and entropy of adsorption.	
	Chemisorption of H_2 , O_2 and CO. Surface area and Porosity:	
	Determination of surface area. Porosity and pore size	
	distribution.	
	c. Classification of catalysts based on electrical conduction.	
	Adsorption on specific crystal planes; geometric factor in	
	catalysis: Balandin's multiplet theory and Valence angle	
	conservation. Cumulative & depletive adsorption, Electronic	
	effect in catalysis by metals. Role of diffusion in catalysis.	
	2. Kinetics and mechanisms of catalyzed reactions	5
	Kinetics of catalyzed reactions and rate expressions.	
	Mechanism of catalyzed reactions obeying Langmuir-	
	Hinshelwood, Eley- Rideal and Mars van Krevelen models	
	with suitable examples.	

	3. Preparation of Catalysts Various methods for preparation of bulk catalysts: Precipitation method, Impregnation method catalyst impregnation with or without interaction between support and catalyst. Synthesis of microporous solids. Synthesis of mesoporous solids.	5
	4. Thermal and Spectroscopic Methods in Heterogeneous Catalysis Characterization of the catalysts by temperature programmed desorption using probes such as ammonia and pyridine molecules. Characterization of surface area using BET method. Characterization of adsorbed molecules/intermediates by IR spectroscopy and XPS. Introduction to EXAFS and Mössbauer spectroscopy in characterizing catalysts.	10
	5. Zeolite based Catalysis and industrial applications Structure building in zeolites such ZSM-5. Nature of active sites and their characterization. Role of Zeolite acidity and Shape Selectivity in catalytic reactions. Zeolite based catalysis in MTG process.	5
	6. Semiconductor catalysis and its application in energy and environmental sector Introduction to semi-conductor surface and catalysis with application in photocatalytic water splitting and CO ₂ reduction to value added chemicals. Case studies on photocatalytic degradation of dyes. Practical demonstration of photocatalytic treatment of laboratory waste water contaminated with dyes, adsorptive separation and kinetic analysis.	10
	 Flectrocatalysis and applications Basic electro-catalytic concepts, comparison of electro- catalysts. Electrocatalytic water splitting reaction. Role of catalytic materials in energy storage applications. 	5
Pedagogy:	Mainly lectures, tutorials, assignments, demonstration, self-stud combination of some of these could also be used to some extent.	dy or a
Reference / Readings:	 D. K. Chakrabarty and B. Viswanathan, Heterogeneous Cataly Age International Publishers, 2008. G. A. Somorjai, Introduction to Surface Chemistry and Cataly Wiley, 2002. M. Thomas and W. J. Thomas, Principles and Practice of Hetero Catalysis, VCH Publishers, 1996. 	vsis, John
	4. P.P. Morajkar, A. P. Naik, S. T. Bugde, B. R. Naik,	CH-20:

	Photocatalytic and microbial degradation of Amaranth dye, Advances in
	Biological Science Research-A Practical Approach 2019, 327-345,
	Academic Press.
	5. B.H.R. Suryanto, Y. Wang, R. K. Hocking, Overall electrochemical
	splitting of water at the heterogeneous interface of nickel and iron oxide.
	Nature Commun. 2019, 10, 5599.
	6. A. V. Salkar; S. V. Bhosale; P. P. Morajkar, CH-6: Nanostructured
	WO _{3-x} Based Advanced Supercapacitors for Sustainable Energy
	Applications, Advances in Metal Oxides and Their Composites for
	Emerging Applications; Elsevier, 2022, 213–238. ELSEVIER.
	7. A.V. Salker, Catalysis: Principles and Basic Concepts, Scientific
	International, 2019.
Course	1. Students will be able to design a nanocatalysts for adsorption application.
Outcomes:	2. Students will be able to interpret characterization data of nano catalysts.
	3. Students will be able to design a catalyst for environmental and energy
	applications.
	4. Students will learn about semiconductor catalysis.

Course Code: CHP-603 Title of the course: Applied Electrochemistry

Number of Credits: 4

Prerequisites	Students should have studied Chemistry courses at M.Sc. Part-I.	
for the		
course:		
Course	1.Introduction to core concepts of electrochemical applications	
Objective:	2. To enable design and development of electrochemical systems for	or specific
	applications	
	3. Introduction of applications and working principles of electr	ochemical
	devices in day-today life eg. batteries, solar cells, capacitors	
Content	1. Electroanalytical Techniques	No of
	Principles and applications of the following techniques:	hours
	a. Amperometry	
	b. Cyclic voltammetry	10
	c. Voltammetry at rotating disk electrodes	
	d. Electrochemical impedance spectroscopy	
	2. Corrosion	10
	a. Corrosion and electrochemical kinetics. Pourbaix diagrams	
	Mechanism of electrochemical corrosion.	
	b. Mixed electrode and mixed potential. Overpotential and	
	polarization.	
	c. Current density – potential curves and determination of	
	corrosion current density.	
	d. Hydrogen and oxygen overpotentials and corrosion	
	e. Types of electrolytic corrosion and forms of localized	
	corrosion, practical cases of corrosion. Corrosivity and passivity	
	f. Corrosion prevention. Corrosion inhibitors. Corrosion Testing.	
	Cathodic and anodic protection	
	g. Polarization tests and impedance spectroscopic measurements.	
	3. Electrochemical Power Sources: Batteries, Fuel Cells and	10
	Supercapacitors	
	a. Electrical characteristics of batteries. Batteries with aqueous and	
	non-aqueous electrolytes. Types of batteries, Ohmic losses and	
	thermal processes in batteries. Next generation batteries: Lithium	
	ion batteries, Sodium ion batteries	
	b. Thermodynamic aspects of fuel cells. Working principles of fuel	
	cells. Types of fuel cells: polymer electrolyte membrane fuel cells	
	(PEMFCs), direct liquid fuel cells (DLFCs), molten carbonate fuel	
	cells (MCFCs), solid oxide fuel cells (SOFCs), alkaline fuel cells	
	(AFCs)	
	c. Properties of electrical double layer capacitors. Energy density.	

		· · · · · · · · · · · · · · · · · · ·
	Power density. Electrochemical supercapacitors with carbon	
	electrodes. Pseudocapacitor electrodes and supercapacitors. Hybrid	
	supercapacitors: metal oxide (MeO _x /C) and electronically	
	conducting polymer/carbon (ECP/C) types	
	4. Electrocatalysis and Electrochemical Sensors	15
	a. Introductory aspects to fuel cell electrocatalysis.	
	Electrochemical energy conversion.	
	b. Electrocatalytic surfaces. Structure stability and mass transport	
	on electrode surfaces, Basic electrocatalytic mechanisms and	
	kinetics	
	c. Electrochemistry of methanol electrooxidation	
	d. Types of electrocatalysts, Electrochemistry of ORR and HER	
	e. Introduction to principles of chemical sensing; Signal	
	transduction; Physico-chemical and biological transducers; Sensor	
	types and technologies, Chemically modified electrodes for sensing	
	f. Types of electrochemical sensors (voltammetric, potentiometric,	
	amperometric, impedimetric), Methods for sensors fabrication: self-	
	assembled monolayers, screen printing, photolithography,	
	microcontact printing, MEMS	
	g. Test-strips for glucose monitoring	
	5. Photoelectrochemical devices	15
	a.Photoelectrochemical cell design, photoconversion efficiency,	
	photoelectrochemical water splitting	
	b. Principles and applications of dual-working-electrode	
	photoelectrochemistry	
	c. Principles and working of first and second generation solar cells	
	d. Fabrication and operational principles of third generation	
	photovoltaics: perovskite solar cells, dye-sensitized solar cells,	
	quantum dot solar cells	
	e. Tandem photovoltaic cells	
	1	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assig	nments /
	presentations / self-study or a combination of some of these can also	
	ICT mode should be preferred. Sessions should be interactive in	
	enable peer group learning.	nature to
References /	J.O.M. Bockris and A.K.N. Reddy, Modern Electrochemistry,	
	and 3, Kluwer Academic Publishers, New York, 2002	<u> </u>
Readings		W Vort
	A. Vincent & B. Sacrosati, Modern Batteries, John Wiley, No.	-W T ()FK
	1997.	
	J.O.M.Bockris & S.Sriniva san, Fuel cells: Their Electroch	emistry,
	McGraw-HillBookCo., 1969.	
	E. Santos & W. Schmickler, Catalysis in Electrochemistr	v From
	Fundamental to Strategies for Fuel Cell Development, Wiley, 20	

	J. Lipkowski& P. N. Ross, Electrocatalysis, Wiley-VCII, New York,
	1998
	A.J. Bard, M. Stratmann, S. Lield, Englished in C.Electrochemistry
	Semiconductor Electrodes and Photoelectrochemistry, Wiley-VCH,
	2002.
	S. Gimenez & J. Bisquert, Photoelectrochemical Solar Fuel Production:
	From Basic Principles to Advanced Devices, Springer International
	Publishing, 2016
	V. S. Bagotsky, A. M. Skunding V M Vol@ovich, Electrochemical
	Power Sources: Batteries, Fuel Cells, and Supercapacitors, John Wiley
	& Sons, Inc., New Jersey, 2015
	N. Perez, Electrochemistry and Convision Science, Whiwer Academic
	Publishers, Boston, 2004.
	C. Jiang, S. J. A. Moniz, A. W. g. T. Tinng, I. Tang,
	Photoelectrochemical devices for solar water splitting - materials and
	challenges, Chem. Soc. Rev., 2017, 46, 4645-4660.
	M. Stanley, W. R. F. Savinell, T. Zawodzinski, Introduction: Batteries
	and Fuel Cells, Chem. Rev., 2004, 104, 10, 4243
	E. Bakker, Y. Qin, Electrochemical Sensors, Fric Bakker, Anal Chem
	2006, 78, 3965-3984
Course	1. Students will be in a position to apply these concepts during the lab
Outcome:	course in physical chemistry.
	2. Students will gain knowledge and apply the same in electrochemistry
	dissertation and research work.
	3. Students will learn about electrochemical sensors.
	4. Students will learn about fuel cells.

Course Code: CHP-621 **Title of the course:** Solid State Chemistry: Concepts and

Applications

Number of Credits: 4

Prerequisites	Students should have studied the chemistry/physics courses at M.Sc	. Part-I
for the		
course:		
Course Objective:	 To introduce concepts and provide fundamental knowledge of proof materials chemistry, characterization methods and techniques To provide fundamental knowledge of molecular solids, descric crystal chemistry and classification of phase structure and significations in solids. To provide basic understanding of temperature dependence of structure, phase modifications and its influence on magnetic and eleproperties of materials To provide a comparative evaluation of data obtained from techniques and their use in elucidating the chemical and morph structure of solid materials 	ption of cance of f crystal lectronic various
Content	1. Solid State: Introduction	No of
	General Principles and experimental procedure.	hours
	Various methods in solid-state synthesis	
	c. Kinetics of solid-state reactions, ion exchange, and intercalation reactions.	6
	2. Crystal Chemistry and X-Ray Diffraction:	
	a. Crystal systems, Bravais lattices and Quasicrystals.	
	b. Ionic structures and covalent networks.	
	c. Some important structure types -rock salt, zinc blende,	
	wurtzite, nickel arsenide, rutile, and van der Waals	
	heterostructures.	
	d. Factors that Influence Crystal Structures: valences and	
	coordination numbers.	15
	e. Significance of radius ratio rule and non-bonding electron effects.	10
	f. Powder X-ray diffraction experiment, instrumentation	
	g. Introduction to single-crystal X-ray diffraction. Applications	
	of high-temperature powder diffraction.	
	h. Identification of crystal phases and evaluation of lattice	
	characteristics	
	3. Crystal Defects and non-stoichiometry	6
	a. Types of defects. Point defects and thermodynamics.	

h Calour Contras vacancias and interstitials in non	
b. Colour Centres, vacancies, and interstitials in non-	
stoichiometric crystals.	
c. Dislocations, mechanical properties, and reactivity of solids	
4. Phase Diagrams and Phase Transitions	
a. Basic Concepts and definitions.	6
b. Three-component condensed systems. Martensitic	
transformations. Order-disorder transitions.	
5. Electronic Properties and Band Theory	
a. Electronic structure and band theory of solids. Band	
structure of metals and semiconductors.	
b. Magnetic properties of transition metal oxides and	
applications Electrical conductivity, free electron theory, fermi	6
energy, insulators, semiconductor and conductors, band theory	
of semiconductor, Brilliouin zones, Hall effect, the Seebeck	
effect, Superconductivity, BCS theory, Meissner effect, high	
temperature superconductor.	
6. Electronic Microscopic Techniques	
a. Introduction to Electron Microscopy: Generation of electron	
beam, elastic and inelastic scattering of electrons by atoms.	
b. Scanning Electron Microscopy (SEM): Instrumentation,	
optics, resolution and compositional imagining, Preparation of	
specimen, crystallographic information from SEM and	
Environmental Scanning Electron Microscopy (E-SEM)	8
c. High Resolution Transmission Electron Microscopy (HR-	
TEM): Instrumentation, contrast mechanism, high voltage and	
Scanning Transmission Electron microscopy (STEM),	
preparation of specimen and data interpretation.	
d. Cryogenic Electron Microscopy (Cryo-TEM)	
7. X-Ray Spectroscopy	
a. Intensities: scattering of X-Rays and factors that affect	
intensities, powder x-ray pattern	
b. XRF, X-ray absorption near edge structure (XANES) and	
extended x-ray absorption fine structure (EXAFS): Absorption	
coefficient, absorption edges, resonance emission, extended	
absorption and photoelectron scattering.	8
c. X-ray photoelectron spectroscopy (XPS): Surface analysis,	
sensitivity and specificity, photoelectron intensities, binding	
energies and spectra analysis	
c. Instrumentation and design, characterization of transition metal	
oxides.	
8. Thermal Analysis	_
a. Thermogravimetric analysis, Differential Thermal Analysis	5
b. Differential scanning calorimetry	

	c. Application to the characterization of materials	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /	
	presentations / self-study or a combination of some of these can also be	
	used. ICT mode should be preferred. Sessions should be interactive in	
	nature to enable peer group learning.	
References /	A. R. West, Solid State Chemistry and Its Applications, John Wiley &	
Readings	Sons 2003.	
8	H. V. Keer, Principles of the Solid State, New Age International	
	Publishers, 1993.	
	C. N. Banwell, E. M. McCash, Fundamentals of Molecular	
	Spectroscopy, McGraw-Hill Education (India) Private Limited, 1994	
	P. van der Heide, X ray Photoelectron Spectroscopy An Introduction	
	to Principles and Practices, John Wiley & Sons, Inc. 2012	
	1. Students will be in a position to explain the concept of solid state	
	synthesis, identify different crystal structure	
	2. Students will be in a position to explain the design of the instrumental	
	techniques, data acquisition, and analysis to elucidate structural	
Course	information of solid materials	
Outcome:		
	3. Students will be able to apply the concepts learned to make the best	
	choice of a characterization technique(s) for elucidation of unknown	
	solids under investigation.	
	4. Students will learn about electronic microscopic techniques.	

Course Code: CHP-622 Title of the course: Nanoscience: Concepts and

Applications

Number of Credits: 4

Prerequisites	Students should have studied the M.Sc. I courses of chemistry,	/ physics/
for the	biological sciences	
course:		
	1. Introduction of various concepts for nanoscience.	
Course	2. Introduction of various synthesis methods of nanomaterials.	
Objective:	3. Introduction of various characterisation techniques and	
	application study of nanomaterials	
	1. Essential Concepts and definitions	No of
	Nanoscale, quantum effects, thermal properties of nanomaterials,	hours
	optical properties of nanomaterials, electrical properties of	
	nanomaterials, Metallic nanowires and quantum conductance,	15
	Surface to volume ratio of nanoparticles, surface effects and	
	surface energy on	
	Nanoparticle surface. Chemistry of solid surfaces.	
	2. Methods of nanomaterial synthesis	10
	Principles, methods, formation mechanism and structures of	
	nanomaterials for:	
	Gas-phase processes, Liquid-phase processes, Solid-phase	
	processes, Self-assembly processes	
	3. Characterization techniques	
Content	Beam Probe methods (SEM, TEM), Scanning probe method	10
Content	(STM, AFM), optical method: principle, sample preparation	
	technique and applications. Case studies: core-shell	
	nanoparticles, metal nanoparticles, composite nanoparticles.	
	4. Important nanomaterials	15
	Silica: discussion of sol-gel and liquid crystal synthesis method,	
	self-assembly of colloidal silica particles, photoluminescence	
	property of opals, different surface functionalization methods	
	and application study.	
	Gold: Different colloidal synthesis methods, self-assembly	
	methods, surface Plasmon resonance (SPR) of colloidal gold	
	nanoparticles surface functionalization strategies and application	
	study.	
	CdSe: Different synthesis methods, synthesis of core-shell	
	particles, Study of CdSe excitons and CdSe quantum dots,	
	functionalization and application study.	

	,
**	
•	
	8
· · · · ·	
	<mark>2</mark>
nanomaterials, environmental, health, and safety issues.	
Mainly lectures and tutorials. Seminars / term papers /assig	e
presentations / self-study or a combination of some of these ca	in also be
used. ICT mode should be preferred. Sessions should be inter-	ractive in
nature to enable peer group learning.	
L. Cademartiri and G.A.Ozin, Concepts of Nanochemistry	, Wiley-
VCH, 2009.	
C.N.R. Rao and A. Govind araj, Nanotubes and nanowire	s, Royal
society of Chemistry, 2005.	
G. Cao, Nanostructures and Nanomaterials, Imperial Colleg	ge Press,
2004.	
J. M. Tour, Molecular Electronics, Imperial College Press, 20	04
H. S. Nalwa (Ed), Encyclopedia of Nanoscience and Nanorec	innoingy,
American Scientific Publishers,2004.	
E. Roduner, Nanoscop ie Materiale Sim Dagante de Di	, RSC,
Publishing, Cambridge, 2006.	
G.A. Ozin and A.C. Arsenault, Nanochemistry: A (Themical
Approach to Nanomaterials, RSC Publishing, Cambridge, 20	05.
C.P. Poole and F.J. Owens, Introduction to Nanourlandia	gy Iolm
Wiley and Sons, 2003.	
•	Themical
	emistry
Elsevier, 2020.	
,	
A. Barhoum and A. S. H. Makhlouf Emerging Applics	ations of
A. Barhoum and A. S. H. Makhlouf, Fmerging Applica Nanoparticles and Architecture Nanostructures: Current F	
A. Barhoum and A. S. H. Makhlouf, <i>Emerging Applica</i> Nanoparticles and Architecture Nanostructures: Current H and Future Trends, Elsevier, 2018.	
	 presentations / self-study or a combination of some of these caused. ICT mode should be preferred. Sessions should be intenature to enable peer group learning. L. Cademartiri and G.A.Ozin, Concepts of Nanochemistry, VCH, 2009. C.N.R. Rao and A. Govindaraj, Nanotubes and nanowire society of Chemistry, 2005. G. Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004. J. M. Tour, Molecular Electronice, Imperial College Press, 2004. J. M. Tour, Molecular Electronice, Imperial College Press, 2004. J. M. Tour, Molecular Electronice, Imperial College Press, 2004. E. Roduner, Nanoscopie Materiale Sim Dependence and Nanoscience and Nan

	properties, synthesis mechanisms, characterization, and applications, Chemical reviews ACS, 2012, 112, 2373-2433.
Course Outcome:	 Students will learn different techniques of synthesis and characterisation of nanomaterials. Students should be in a position to understand and explain magnetic, electrical, optical and catalytic properties of materials at nanoscale. Students should be in a position to apply the knowledge of subject for their dissertation and research work. Students will learn about applications of nanomaterials.

Course Code: CHP-623 **Title of the course:** Physical aspects of Polymer Chemistry

Number of Credits: 4

Prerequisites	Students should have studied chemistry courses at M.Sc. I.	
for the		
course:		
Course	1. To introduce physical and chemical aspects of polymer chemist	•
Objective:	2. To introduce kinetics of polymerization, different character	istics of
	polymers, applications of biodegradable and thermoset polymers.	
Content	1. Introduction to polymer chemistry	No of
	a. Historical development in polymer chemistry, polymer	hours
	industry in 21^{st} century.	10
	b. Classification of polymers, Polymer nomenclature. Polymer	10
	tacticity, geometry and stereoregularity. c. Thermoplastics and thermosets- Plastics, elastomers, fibres.	
	Concepts of Functionality, terminal groups,	
	homopolymers and copolymers etc.	
	d. Addition and condensation polymers linear, branched,	
	IPN and cross-linked polymers-graft and block co-	
	polymers.	
	2. Molecular weight and other classification of polymers	10
	a. Polymer molecular weight, arithmetic mean - Number	
	average, weight average, polydispersity and Polydispersity	
	index (PDI))	
	b. Degree of polymerization and its impact on MW and	
	mechanical properties.	
	c. Amorphous and crystalline polymers. Methods of analysis	
	of crystallinity. d. Glass transition temperature and other thermal transitions.	
	Importance of T_g –Plasticizers and their action. Secondary	
	bonding forces in polymers.	
	3. Polymerization techniques	10
	a. Methods of polymerization (homogeneous and	
	heterogenous polymerization)	
	b. Co-ordination polymerization, Zeigler-Natta and other	
	catalytic polymerization techniques.	
	c. Atom transfer radical polymerization (ATRP), Reversible	
	addition-fragmentation chain transfer polymerization	
	(RAFT).	
	d. Advantages and disadvantages of polymerization techniques	

	4 Delymon melecular weight and its determination	8
	 4. Polymer molecular weight and its determination a. Molecular weight averages: Arithmetic mean; Number average molecular weight; Weight average molecular weight. b. Molecular weight determination: end group analysis; colligative property measurement; dilute solution viscosity; Mark-Houwink-Sakurada (MHS) equation. c. Gel permeation Chromatography 5. Kinetics of polymerization Introduction; Free radical chain polymerization; Equation for kinetic chain length; degree of polymerization; ceiling temperature, Anionic polymerization, Cationic polymerization; catalyzed polycondensation; catalyzed polycondensation 	8 8
	 6. Characterization of polymers by various techniques a. Instruments and testing methods for polymer characterization b. Characterization of chemical structure of polymers: by chemical reaction methods; IR spectroscopy; Raman spectroscopy; UV-Visible spectroscopy; NMR and ESR spectroscopy. c. Characterization of polymer morphology and Physical structure of Polymers: TEM; X-ray scattering; WAXS; SAXS; AFM. d. Characterization of Thermal Properties of Polymers: Differential thermal analysis (DTA), Physical transitions, melting thermograms, Melt crystallization; Differential Scanning coulometry (DSC); Thermogravimetric analysis (TGA). 	14
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assign presentations / self-study or a combination of some of these can used. ICT mode should be preferred. Sessions should be intera nature to enable peer group learning.	also be
References / Readings	 V. R. Gowarikar, N. V. Viswanathan, and J. Sreedhar, P. Science, Wiley Eastern Ltd., 1986. P. Bahadur and N. V. Sastry, Principles of Polymer science, Publishing House, 2003. J. R. Fried, Polymer Science and Technology, PHI Pvt Ltd., 2 R. Sinha, Outlines of Polymer Technology Manufact Polymers, PHI Pvt Ltd., 2000. R. Sinha, Outlines of Polymer Technology Tracessing Technology PHI Pvt Ltd., 2003. 	Narosa

	J. A. Brydson, Plastic Materials, Name Detter 1079-3rd
	edition.
	J. Urbanski, W. Czerwinski, K. Janicka, F. Majewska, and H.
	Zowall, Handbook of analysis of synthetic polymers and plastics,
	John Wiley, 1977.
	K. Y. Saunders, Organic polymer chemistry, Chapman and Hall, UK, 1976.
	R. W. Lenz, Organic chemistry of symbolic high polymers, 1967
	R. P. Brown, Handbook of plastic to the hypersection of the state of t
	Ltd., 1981, 2 nd edition.
	M. P. Stevens, Polymer Chemistry- An Introduction, Oxford Univ
	Press, 1990, 2 nd edition.
	W. Y. Mijs, New methods in polymer synthesis, Plenum Press Ltd
	NY, 1992.
	P. C. Hiemenz, Polymer chemistry- the basic concepts, Marcell
	Dekker Inc., 1984.
	W. R. Moore, Introduction to polymer chemistry, University of London
	Press, 1961.
	N. P. Cheremisinoff (Ed), Handb rock of polymer science and and the science an
	technology, Marcel Dekker Inc., 1989.
	M. Chanda, Introduc tion to polyment in the integral of the state of t
	problem-solving approach, CRC press, 2006.
	W. F. Su, Principles of Polymer design and synthesis, Volume 82,
	Springer, 2013.
	R. M. Silverstein, F. X. Webster, B. I. Kimley, F. I. Beyer, S. D.
	Samant, V. S. Nadkarni, Spectrometric Identification of Organic
	Compounds, An Indian Adaptation, 8 th Ed. Wiley, 2022.
	1. Students will be able to explain various fundamental concepts of
	polymer chemistry.
Course	2. Students should be in a position to apply the knowledge of polymer
Outcome:	chemistry for their dissertation and research work.
	3. Students should be in a position to apply these concepts during the lab
	course.
	4. Students will learn about characterisation of polymers.

Course Code: CHP-624 **Title of the course:** Colloids and Surface Chemistry

Number of Credits: 4

Prerequisites	Students should have studied chemistry courses at M.Sc. I.	
for the		
course:		
	1. To introduce some core concepts of colloidal chemistry	including
Course	DLVO theory, electrokinetic phenomena and diversity in colloid	ds.
Objective:	2. To introduce fundamental concepts and applications of colloids in	
	day-today life.	
Content	1. Colloids and Liquid Surfaces	No of
	a. Colloids: General introduction, classification and	hours
	structural characteristics of colloidal system,	
	preparation and purification	10
	b. Microscopic picture of liquid surface	
	c. Surface tension and its measurement. Surfactant and	
	reduction of surface tension. Curved liquid surfaces.	
	d. Nucleation theory.	
	e. Surface modification: self-assembly monolayer	
	formation. Physisorption of polymers. Polymerization	
	on surfaces.	
	2. Electrostatic Forces and Electrokinetic Phenomenon	12
	a. Electrical double layer. Surface interactions between	
	surfaces (dipole, induced dipole, H-bonding)	
	b. Surface forces: Van der Waals forces between	
	molecules. Surface energy and Hamaker constant.	
	Measurement of surface forces. The DLVO theory	
	c. Charged surfaces such as mercury, silver iodide and	
	oxides. Measurement of surface charge densities	
	d. Electrocapillarity - theory and measurement	
	e. Electrokinetic phenomena: concept of zeta potential.	
	Electroosmosis and streaming potential. Electrophoresis	
	and sedimentation potential.	
	f. Contact angle and its measurements. Wetting and	
	dewetting. Important wetting geometries.	
	3. Colloidal Stability	8
	a. Charged colloids. Electrical charge distribution at	
	interfaces	
	b. Factors affecting colloidal stability. Effect of	
	electrolyte.	
	J	L

	c. Flocculation and coagulation. Kinetics of coagulation
	d. Steric stabilization of solid and liquid colloids
	4. Preparation of colloids 12
	a. Chemical methods for synthesis of colloids: Sol-gel
	method, polyol synthesis, plasma enhanced chemical
	vapor deposition, hydrothermal synthesis
	b. Colloidal synthesis of semiconductor nanoparticles:
	Hot-injection synthesis. Synthesis of colloidal core-shell
	heterostructures
	c. Surface directed colloidal patterning: Colloidal self-
	assembly approaches
	d. Reducing agents in colloidal nanoparticle synthesis
	5. Surfactants, Micelles, Emulsions and Thin Liquid 13
	Films
	a. Classification of surfactants. Solubilization and
	micelle formation
	b. Spherical micelles: cmc and influence of temperature.
	Thermodynamics of micellization. Structure of surfactant
	aggregates.
	c. Emulsions: Macro and microemulsions, properties,
	formation and factors affecting the stability. Evolution
	and aging. Coalescence and demulsification. Size of
	droplets. Elasticity of surfactant films.
	d. Thin films on surfaces of liquids: Introduction and
	phases. Bubbles and foams. Optical and X-Ray methods
	to study monolayers.
	e. Langmuir Blodgett Transfer
	6. Applications of Colloids in Science, Technology and 5
	Industry
	a. Colloids as drug delivery agents
	b. Colloidal nanocrystals for optical applications and
	solar cells.
	c. Biomedical applications
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /
	presentations / self-study or a combination of some of these can also be
	used. ICT mode should be preferred. Sessions should be interactive in
	nature to enable peer group learning.
References /	H. J. Butt, K. Graf and M. Kappl , Physics and Chemistry of
Readings	
INCAUTIES	
8-	Interfaces, Wiley-VCH, 2003.
	A. W. Adamson and A.P.Gast, Physical Chemistry of Surfaces;
9 -	A. W. Adamson and A.P.Gast, Physical Chemistry of Surfaces; Wiley-VCH, 1997, 6 th edition
	A. W. Adamson and A.P.Gast, Physical Chemistry of Surfaces;

	K. S. Birdi, Surface and Colloid Chemistry, Principles and
	Applications; Taylor & Francis Group ,2010.
	D. Meyers, Surfaces, Interfaces and Colloids, Principles and
	Applications; John Wiley & Sons, Inc. 1999. 2 nd edition.
	E. D. Shchukin, A. V. Pertsey, E. A. Ameline, A. S. Z. Lerry,
	Studies in Interface Science, Colloid and Surface Chemistry;
	Elsevier, 2001.
	D. J. Shaw, Introduction to Colloid and Surface Chemistry, 4 th Ed
	Elsevier, 1992.
	F. Caruso, Colloids and Colloid Assemblies, Wiley-WCH, 2004
	V. Lesnyak, M . Yarema, S. Miao, Colloidal Semiconductor
	Nanocrystals: Synthesis, Properties and Applications, Frontiers
	Media SA, 2020.
	1. Students will be able to explain various fundamental and core
	concepts of colloid chemistry.
Course	2. Students should be in a position to apply the knowledge of colloidal
Outcome:	chemistry for their dissertation and research work
Guicome.	3. Students should be in a position to apply these concepts during the lab
	course in physical chemistry.
	4. Students will understand applications of colloids.

Course Code: CHC-600 **Title of the course:** Research Methodology and instrumental

techniques-I

Number of Credits: 4

Prerequisites	Students should have studied chemistry courses at MSc-I level.		
for the			
course:			
Course	1. To introduce various aspects of research methodology.		
Objective:	2. To provide understanding ethics & scientific conduct.		
	3. To introduce academic writing.		
	4. To introduce databases used in chemistry.		
	5. To provide understanding and importance of lab safety.		
	6. To understand the usefulness of various instrumental techniques in		
	characterization of chemical compounds.		
Content	1. Introduction to Research Methodology	No of	
	Research- meaning, objectives, motivation, types and	hours	
	methodology.		
	Process- formulating the research problem; literature survey;	5	
	developing the hypothesis and the research design; sample		
	design and collection of the data; execution of the project;		
	analysis of data; testing of hypothesis; generalizations and		
	interpretation, and preparation of the report or presentation of		
	the results & conclusions.		
	2. Scientific conduct and ethics	5	
	Ethics: definition, nature of moral judgements and reactions,		
	Ethics with respect to science and research.		
	Intellectual honesty and research integrity.		
	Scientific misconducts: Falsification, Fabrication, and		
	Plagiarism (FFP).		
	Redundant publications: duplicate and overlapping		
	publications.		
	Selective reporting and misrepresentation of data.	5	
	3. Academic writing Publication ethics: definition, introduction and importance	5	
	Conflicts of interest		
	Publication misconduct: definition, concept, problems that lead		
	to unethical behaviour and vice versa		
	Violation of publication ethics, authorship and contributorship		
	Identification of publication misconduct, complaints and		
	appeals		
	Predatory publishers and journals		
	reautory publishers and journals		

		2
	4. Data bases and research metrics	3
	Databases: 1. Indexing databases 2. Citation databases: Web of	
	Science, Scopus, UGC-Care List etc.	
	Research Metrics: 1. Impact Factor of journal as per Journal	
	Citation Report, SNIP, SJR, IPP, Cite Score 2. Metrics: h-index,	
	g index, i10 index etc	
	5. Safety aspects in Chemistry	5
	Good laboratory practices.	
	Handling of various chemicals, solvents & glassware.	
	Fires and fighting with fires.	
	Hazardous substances, classification and handling	
	Safety Data Sheet	
	6. Softwares in Chemistry	7
	Data plotting	
	Structure Drawing	
	Reference management software	
	7. Instrumental methods of analysis:	30
	Demonstration and/ or data analysis in following techniques:	
	Elemental analysis: CHNS analysis and AES	
	Infrared (IR), Raman, Ultraviolet-Visible (UV-Vis)	
	Nuclear magnetic resonance (¹ H, ¹³ C)	
	Chromatographic techniques: HPLC, GC,	
	Hyphenated Techniques: LC-MS & GC-MS,	
	Diffraction methods: XRD	
	Thermal analysis: DSC	
	Microscopy: SEM, TEM	
	Methods for determination of magnetic & dielectric	
	properties.	
	Cyclic voltammetry	
Podegogy	Mainly lectures/recorded video lectures/ tutorials, discussions, se	minars
Pedagogy	internal exams/ assignments, / demonstration/ self-study	
	combination of some of these. ICT mode should be preferred. S	essions
References /	should be interactive in nature to enable peer group learning.1. C. R. Kothari, Research Methodology: Methods & Technique	Nav
		s, new
Readings	Age International Pvt. Ltd., 2004.2. Bird, Philosophy of Science, Routledge, 2006.	
		ffactive
	3. M. Coghill & L. R. Garson, The ACS Style Guide: E	
	Communication of Scientific Information, American Cl	
	Society Washington, DC & OXFORD University Press Nev	v YOrk,
	2006.	
	4. Y. K. Singh, Fundamentals of Research Methodology & St	atistics,
	New Age International Pvt. Ltd., 2006.	
	5. National Research Council, Prudent practices in the laboratory:	
	handling and management of chemical hazards, The N	ational

	Academies Press, USA, 2011.
	6. B. S. Furniss, A. J. Hannaford, P. W. G. Smith & A. R. Tatchell,
	Vogel's Text book of Practical Organic Chemistry, 5th Ed.;
	Longmann, 1989
	7. E. A. V. Ebsworth, D. W. H. Rankin & S. Craddock, Structural
	Methods in Inorganic Chemistry, Blackwell Scientific Publishers.
	1986.
	8. R. S. Drago, Physical Methods in Chemistry, 2nd Ed. W. B. Saunders
	Co. Ltd. 2016
	9. R. M. Silverstein, F. X. Webster; Spectrometric identification of
	Organic Compounds; 6th Ed, Wiley, 2011.
	10.J. Mendham, R. C. Denny, J. D. Barnes & M. Thomas, Vogel's
	Textbook of Quantitative Chemical Analysis, 6th Ed.; Pearson
	Education Asia, 2002.
	11.H. V. Keer, Principles of the Solid State, 1st Ed. New Age
	International (P) Ltd., 2005.
	12.G. D. Christian, Analytical Chemistry, 6th Ed.; Wiley, 2004.
	13.Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of
	Analytical Chemistry, 9th Ed.; Cengage learning.
	14.Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental
	Analysis, 7th Ed.; Cengage learning.
	15.P. G. Lampman, G. Kriz and J. Vyvyan, Introduction to Organic
	Spectroscopy, 5th Ed.; Cengage Learning, 2015.
	16.N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T.
	Eisenhart, and J. L. Dempsey, A Practical Beginner's Guide to Cyclic
	Voltammetry, J. Chem. Educ. ACS, 2018, 95, 197–206.
	17.V. Rajaraman, Computer Programming in Fortran 90 And 95, PHI
	Learning Pvt. Ltd., 2013.
	18.Szabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction to
	Advanced Electronic Structure Theory, Dover Publications, Inc.
	Mineola, 1989.
Course	1. Students will be able to apply research methodology concepts.
Outcome:	2. Students will be able to apply computer technology to solve their
	research problems in chemistry.
	3. Students will know in advance the safety precautions to be taken in
	the chemical lab.
	4. Students will gain fundamental knowledge on characterization
	techniques.

Course Code: CHC-601 **Title of the course:** Research Methodology and instrumental

techniques-II

Number of Credits: 4

Prerequisites	Students should have studied chemistry courses at MSc-I.		
for the course:			
Course	1. To introduce various aspects of research methodology.		
Objective:	2. To provide understanding ethics & scientific conduct.		
3	3. To introduce academic writing.		
	4. To introduce databases used in chemistry.		
	5. To provide understanding and importance of lab safety.		
	6. To understand the usefulness of various instrumental techniques in		
	characterization of chemical compounds.	1	
Content	1. Research Methodology, Scientific conduct, ethics &	No of	
	academic writing	hours	
	Research- meaning, objectives, motivation, types and		
	methodology.	15	
	Process- formulating the research problem; literature survey;		
	developing the hypothesis and the research design; sample		
	design and collection of the data; execution of the project;		
	analysis of data; testing of hypothesis; generalizations and		
	interpretation, and preparation of the report or presentation		
	of the results & conclusions.		
	Ethics: definition, nature of moral judgements and reactions,		
	Ethics with respect to science and research.		
	Intellectual honesty and research integrity.		
	Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP).		
	Redundant publications: duplicate and overlapping		
	publications.		
	Selective reporting and misrepresentation of data.		
	Publication ethics: definition, introduction and importance		
	Conflicts of interest		
	Publication misconduct: definition, concept, problems that		
	lead to unethical behaviour and vice versa		
	Violation of publication ethics, authorship and		
	contributorship		
	Identification of publication misconduct, complaints and		
	appeals		
	Predatory publishers and journals		
	2. Softwares in chemistry, Data bases and Research metrics	10	

	Data plotting using GNU plot; Structure Drawing using ChemSktech; Reference management software such as Mendeley and Zotero. Databases: Indexing databases, Citation databases: Web of Science, Scopus, UGC-Care List, Scimago etc. Research Metrics: Impact Factor of journal as per Journal Citation Report, SNIP, SJR, IPP, Cite Score; Metrics: h- index, g-index, i10-index etc Molecular Docking software	
	3. Safety practices in Chemical research	5
	Introduction to lab safety.	
	Handling of various chemicals, solvents & glassware.	
	Fires and fighting with fires.	
	Hazardous substances, classification and handling	
	Safety Data Sheet	20
	4. Instrumental methods	30
	UV-Visible spectroscopy in elucidation of mechanisms of	
	C-H activation reactions, epoxidation etc by transition metal	
	catalyst. Understanding water oxidation reaction using Cyclic	
	voltammetry (CV) & Linear Sweep voltammetry (LSV)	
	Determining capacity of supercapacitors using	
	Galvanostatic Charge-Discharge (GCD)	
	Electrochemical Impedance Spectroscopy (EIS)	
	Resonance Raman and isotope labelling studies.	
	Infrared (IR) spectroscopy applications	
	¹ H, ¹³ C- NMR spectroscopy and applications	
	Selected chromatographic techniques such as HPLC, GC.	
	Hyphenated Techniques/applications: LC-MS, GC-MS, LC-	
	NMR-MS, GC-IR, ICP-MS	
	Diffraction methods: High temperature XRD	
	Thermal analysis: TG/DTA/DSC	
	Microscopy: Fe-SEM, HR-TEM	
	Methods for determination Ms, Mr, Hc, Tc, ϵ^{l} and Tan δ .	
	Potentiometry	
Pedagogy	Mainly lectures/recorded video lectures/ tutorials, discu	ussions,
	seminars, internal exams/ assignments, / demonstration/ self-stu	idy or a
	combination of some of these. ICT mode should be preferred. Sessions	
	should be interactive in nature to enable peer group learning.	
References /	1. C. R. Kothari, Research Methodology: Methods & Techniques,	
Readings	New Age International Pvt. Ltd., 2004.	
	 Bird, Philosophy of Science, Routledge, 2006. M. Coghill & L. R. Garson, The ACS Style Guide: Effective 	
	Communication of Scientific Information, American Cl	
	Society Washington, DC & OXFORD University Press New	v York,

	2006
	 2006. Y. K. Singh, Fundamentals of Research Methodology & Statistics, New Age International Pvt. Ltd., 2006. National Research Council, Prudent practices in the laboratory: handling and management of chemical hazards, The National Academies Press, USA, 2011. B. S. Furniss, A. J. Hannaford, P. W. G. Smith & A. R. Tatchell, Vogel's Text book of Practical Organic Chemistry, 5th Ed.; Longmann, 1989 E. A. V. Ebsworth, D. W. H. Rankin & S. Craddock, Structural Methods in Inorganic Chemistry, Blackwell Scientific Publishers. 1986. R. S. Drago, Physical Methods in Chemistry, 2nd Ed. W. B. Saunders Co. Ltd. 2016 R. M. Silverstein, F. X. Webster; Spectrometric identification of Organic Compounds; 6th Ed, Wiley, 2011. J. Mendham, R. C. Denny, J. D. Barnes & M. Thomas, Vogel's Textbook of Quantitative Chemical Analysis, 6th Ed.; Pearson Education Asia, 2002. H. V. Keer, Principles of the Solid State, 1st Ed. New Age International (P) Ltd., 2005.
	 G. D. Christian, Analytical Chemistry, 6th Ed.; Wiley, 2004. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of
	 Analytical Chemistry, 9th Ed.; Cengage learning. 14. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysis, 7th Ed.; Cengage learning.
	 Pavia, G. Lampman, G. Kriz and J. Vyvyan, Introduction to Organic Spectroscopy, 5th Ed.; Cengage Learning, 2015. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T.
	 Eisenhart, and J. L. Dempsey, A Practical Beginner's Guide to Cyclic Voltammetry, J. Chem. Educ. ACS, 2018, 95, 197–206. 17. V. Rajaraman, Computer Programming in Fortran 90 And 95, PHI
	 Learning Pvt. Ltd., 2013. 18. Attila Szabo, Neil S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Publications, Inc. Mineola, 1989.
	 Leach, Molecular Modelling, Principles and applications, Longman, 1998.
	20. W. Nam et al, Dioxygen activation by Metalloenzymes & models, Accounts of Chemical Research, 2007, Volume 40 & references cited therein.
Course	1. Students will be familiar with research methodology concepts.
Outcome:	 Students will be able to apply computer technology to solve their research problems in chemistry.
	3. Students will know in advance the safety precautions to be taken in the chemical lab.
	4. Students will gain fundamental knowledge on characterization techniques.

Course Code: CHC-651 **Title of the course:** Discipline Specific Dissertation

Number of Credits: 16

Prerequisites	Students should have studied chemistry courses at MSc-I level.	
for the course:		
Course	To develop the skills of preparing and conducting independent research.	
Objective:		
Content	As per OA-35	No of Hours
		480
Pedagogy:	Dissertation carried out individually by each student throughout the	
	academic year.	
References /	As required for the development of review and methodology.	
Readings:		
Course	Students will be able to understand and apply the tools and techniques of	
Outcome:	chemistry in conducting independent research.	