

गोंय विद्यापीठ ताळगांव पठार गोंय - ४०३ २०६ फोन: +९१-८६६९६०९०४८

Goa University

Taleigao Plateau, Goa - 403 206 Tel : +91-8669609048 Email : registrar@unigoa.ac.in Website: www.unigoa.ac.in

(Accredited by NAAC)

GU/Acad -PG/BoS -NEP/2023/78/4

Date:24.05.2023

Ref: GU/Acad –PG/BoS -NEP/2022/339/11 dated 19.08.22

CIRCULAR

In supersession to the above referred Circular, the updated approved Syllabus with revised Course Codes of the **Master of Science in Chemistry Programme** is enclosed.

The approved Syllabus of the **Master of Science in Chemistry** Programme (Organic, Inorganic, Analytical and Physical, Pharmaceutical Chemistry) is attached.

The Dean/ Vice-Deans of the School of Chemical Sciences/ Principals of Affiliated Colleges offering the **Master of Science in Chemistry** Programme are requested to take note of the above and bring the contents of the Circular to the notice of all concerned.

ASHWIN Digitally signed by ASHWIN VYAS VYAS LAWANDE LAWANDE Date: 2023.05.24 17:31:44 +05'30'

(Ashwin Lawande) Assistant Registrar – Academic-PG

Τo,

- 1. The Dean, School of Chemical Sciences, Goa University.
- 2. The Vice-Deans, School of Chemical Sciences, Goa University.
- 3. The Principals of Affiliated Colleges offering the Master in Sciences in Chemistry Programme.

Copy to:

- 1. The Chairperson, Board of Studies in Chemistry PG.
- 2. The Programme Director, M. Sc. Chemistry, Goa University.
- 3. The Controller of Examinations, Goa University.
- 4. The Assistant Registrar, PG Examinations, Goa University.
- 5. Directorate of Internal Quality Assurance, Goa University for uploading the Syllabus on the University website.

ANNEXURE-I

M.Sc. Pharmaceutical Chemistry AY 2022-23

	SEM I		
Sr. No.	Subject code	Paper title	Credits
1.	<u>CHO-500</u>	Fundamentals of Organic Chemistry	4
2.	<u>CHH - 500</u>	Fundamentals of Pharmaceutical Chemistry-I	4
3.	<u>CHP-500</u>	General Physical Chemistry	4
4.	<u>CHA-500</u>	Techniques in Analytical Chemistry-I	4
5.	<u>CHO-521</u>	Practical Course in Organic Chemistry-I	2
6.	<u>CHO-522</u>	Practical Course in Organic Chemistry-II	2
7.	<u>CHH - 521</u>	Practical Course in Pharmaceutical Chemistry-I	2
8.	<u>CHH - 522</u>	Practical Course in Pharmaceutical Chemistry-II	2
9.	<u>CHP-521</u>	Practical Course in Physical Chemistry-I	2
10.	<u>CHP-522</u>	Practical Course in Physical Chemistry-II	2
11.	<u>CHA-521</u>	Practical Course inAnalytical Chemistry-I	2
12.	<u>CHA-522</u>	Practical Course in Analytical Chemistry-II	2
		SEM II (Pharmaceutical Chemistry)	
1.	<u>CHH - 501</u>	Fundamentals of Pharmaceutical Chemistry-II	4
2.	<u>CHH - 502</u>	Drug Product Formulation, Development and Manufacture	4
3.	<u>CHH - 503</u>	Drug Design, Discovery and Development	4
4.	<u>CHH - 504</u>	Biopharmaceutics and Pharmacokinetics	4

SEM III			
1.	<u>CHH-600</u>	Practical Course in Pharmaceutical Chemistry-III	4
2.	<u>CHH-601</u>	Practical Course in Pharmaceutical Chemistry-IV	4
3.	<u>CHH-604</u>	Retrosynthetic Approach and Heterocyclic Drug Synthesis	4
4.	<u>CHH-605</u>	Research Methodology in Pharmaceutical Chemistry and instrumental techniques	4
5.	<u>CHH-621</u>	Polymers in Pharmaceuticals and novel drug delivery systems	4
6.	<u>CHH-622</u>	Pharmacotherapeutics	4
7.	<u>CHH-623</u>	API Process, Manufacture and Green Chemistry	4
8.	<u>CHH-624</u>	Pharmaceutical and Spectral analysis	4
9.	<u>CHH-625</u>	Bioorganic and Medicinal Chemistry	4
	1	SEM IV	
1.	<u>CHH-602</u>	Pilot Plant Scale-Up Techniques for Pharmaceuticals	4
2.	<u>CHH-603</u>	Pharmacological and Toxicological Screening Techniques	4
3.	<u>CHC-651</u>	Discipline Specific Dissertation	16

M.Sc. Part-I (Chemistry)

Title of the course: Fundamentals of Organic Chemistry

Course Code: CHO-500

Number of Credits: 04

Prerequisites for the course:	Students should have studied chemistry courses at graduate level have cleared change of discipline entrance test conducted l University.	
Course Objective:	 To study the various concepts based on molecular orbital theory. To understand the concepts of topicity, prostereoisomerism and chemo-, regio- and stereoselectivity in organic reactions. To understand the mechanistic aspects of various type of reaction organic synthesis. 	
Content	1.Molecular orbitals and delocalized chemical bonding	No of
	a. Qualitative description of molecular orbitals of simple acyclic and monocyclic systems, frontier molecular orbitals.	hours
	b.Conjugation, cross conjugation, resonance, hyperconjugation and tautomerism (types and examples).	08
	c. Aromaticity: Origin of Huckel's rule, examples of aromatic, non-aromatic and antiaromatic compounds; concept of Mobius aromaticity.	
	 2.Structure & Reactivity a. Acidity, basicity and pKa of organic compounds; Acid and base strengths; HSAB concept & Factors affecting it, effect of structure & medium on acid and base strength. b. Concept of superacids and superbases. c. Electrophilicity & nucleophilicity, examples of ambident nucleophiles &electrophiles. (Including revision of aromatic electrophilic and nucleophilic substitution) 	08
	 3.Stereochemistry a. Brief revision of configurational nomenclature: R & S; D & L; E & Z; cis & trans and syn & anti nomenclature. Chirality in molecules with two and more chiral centres. b. Conformational analysis of open chain compounds (Butane, 2, 3-butane diol, 2,3-dibromobutane etc.). Erythro and threo nomenclature. c. Topicity and Prostereoisomerism: Topicity of ligands and faces-homotopic, enantiotopic and Cram's rule /diastereotopic ligands and faces. 	14

 d. Introduction to chemoselective, regioselective and stereoselective reactions. e. Stereochemistry of <i>cis</i>- and <i>trans</i>-decalins, conformation and reactivity of cyclohexane and substituted cyclohexanes cyclohexene / cyclohexanone. conformational isomerism and analysis in acyclic and simple cyclic systems –substituted ethanes, cyclopentane, cyclohexane cycloheptane, cyclooctane and decalins, f. optical isomerism - optical activity - molecular dissymmetry and chirality - elements of symmetry. optical isomerism in biphenyls, allenes and spirans - optical isomerism of nitrogenous compounds racemisation and resolution. 4.Reaction Mechanism a. Brief revision of carbocations, carbanions, free radicals carbenes, Arynes and nitrenes with reference to generation structure, stability and reactivity; b. Turnes of mechanisms turnes of reactions thermodynamic 	08
 b. Types of mechanisms, types of reactions, thermodynamic and kinetic control. c. The Hammond postulate and principle of microscopic reversibility, d. Methods of determining reaction mechanisms like- i. Identification of products, ii. Determination of the presence of intermediates (isolation detection, trapping and addition of suspected intermediate, iii. Isotopic labelling, iv. Stereochemical evidence, v. Kinetic evidence and vi. Isotope effect (at least two reactions to exemplify each method be studied) 	,
 5.Aliphatic Nucleophilic substitution a. Brief revision of nucleophilic substitutions with respect to Mechanism, various factors affecting such reactions; b. The Neighbouring Group Participation (NGP)/ Anchimeric assistance: General approach to various NGP processes; NGP by unshared/lone pair of electrons; NGP by π-electrons; NGP by aromatic rings (formation of phenonium ion intermediate) NGP by sigma bonds with special reference to bornyl and nor bornyl system (formation of nonclassical carbocation) 	c / / ;
 6.Elimination reactions a. The E2, E1 and E1cB mechanisms. Orientation of the double bond, Saytzeff and Hofmann rule. b. Effects of changes in the substrate, base, leaving group and 	

	medium on	
	i. Overall reactivity,	
	ii. E1 vs. E2 vs. E1cB	
	iii. Elimination vs substitution, Mechanism and orientation in	
	pyrolytic syn elimination (various examples involving cyclic and	
	acyclic substrates to be studied).	
	7. Selective reagents for Organic transformation	06
	a. Oxidation of organic compounds, PCC, PDC and MnO ₂ ,	
	ozonolysis, peracids.	
	b. Reduction of organic compounds: NaBH ₄ , LAH, DIBAL	
	reduction and reduction with borane and dialkylboranes.	
	Clemmensen reduction, Birch reduction and Wolff-Kishner	
	reduction	
Pedagogy	Mainly lectures and tutorials. Seminar	s/term
1 Cuugogy	papers/assignments/presentations/ self-study or a combination o	-
	of these can also be used. ICT mode should be preferred. Sessions	
	be interactive in nature to enable peer group learning.	Siloulu
References /	1. W. Caruthers, I. Coldham, Modern Methods of Organic Syr	thocic
-	Cambridge University Press, 4 th Ed., 2016.	itilesis,
Readings		ational
	2. M. B. Smith, Organic Synthesis, McGraw–HILL, New York, Intern	ational
	Edition, 1994.	
	3. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Che Oxford University Press, 2 nd Ed., 2012.	mistry,
	4. R. Bruckner, Advanced Organic Chemistry – Reaction Mechanisr	ns, San
	Diego, CA: Harcourt /Academic Press, San Diego, 2002.	
	5. J. Fuhrhop, G. Penxlin, Organic Synthesis – Concepts, Methods, S	Starting
	Materials, VCH Publishers Inc., New York, 1994.	0
	6. H. O. House, Modern Synthetic Reactions, W. A. Benjamin, 2 nd Ed.	1965
	7. M. Nogradi, Stereoselective Synthesis, VCH Publishers, Inc., Revis	
	Enlarged Edition, 1994.	
	8. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Springe	er India
	Private Limited, 5 th Ed, 2007.	
	9. T. Laue, A. Plagens, Named Organic Reactions, John Wiley and	d Sons,
	Inc., 2005.	,
Course	1. Students will be in a position to evaluate the effect of delocalizati	on of
outcomes:	electrons & presence or absence of aromaticity in organic compoun	
	2. Students will be able to apply various concepts in stereochemistry	
	understand stereochemical outcome in a reaction.	
	3. Students shall be in a position to understand/propose plausible	
	mechanism of organic reactions.	
	4. Students will be able to understand and apply various reage	nts for
	desired organic transformations.	

Title of the course: Fundamentals of Pharmaceutical Chemistry-I

Course Code: CHH-500

Number of Credits: 04

Prerequisites	Students should have studied chemistry courses at graduate lev	ol or must
for the course:	have cleared change of discipline entrance test conducted by Goa	
	University. Knowledge of Pharmaceutical Chemistry is added advantage	
	but not mandatory. This is to understand the basics in pharmaceutical	
	chemistry and importance of chemistry in pharmacy.	
Course	1. To get introduced to pharmaceutical chemistry and terms	s involved.
Objective:	2. To understand the various classes of drugs with exam	nples with
	special reference to Structure, IUPAC name, Mechanism	of action,
	Structure Activity Relationships and Synthesis.	
Content	1. Pharmaceutical chemistry, physicochemical properties	_
	of drugs, drug metabolism and assay of drugs: Role of	No of
	Chemistry in Pharmacy: Introduction to pharmaceutical	hours
	chemistry. Need to study pharmaceutical chemistry.	
	Important terminologies: Pharmacodynamics,	12
	Pharmacokinetics, Pharmacognosy, Materia medica,	12
	Toxicology, Pharmacopoeia, Pharmacophore- Effect of	
	functional groups on physiological activity of drugs: hydroxy,	
	acidic, alkyl, aldehyde, ketone, cyano, halogens, ether and	
	ester groups with examples.	
	Physicochemical properties of Drugs: Effect of Solubility,	
	Partition Coefficient, Ionisation constant, Surface Active	
	agents, Chelation, Hydrogen bonding, stereoisomers on the	
	pharmacological action of drugs (specific example of API to	
	be given). Drug Action, Drug Metabolism-Significance of drug	
	metabolism. Phase I, Phase II pathways with reactions.	
	Factors on which drug metabolism depends. Assay of drugs-	
	Chemical, biological and immunological assay.	
	Classification of Chemotherapeutic Drugs: Development of	
	the following drugs including structure activity relationship	
	(S.A.R.), mechanisms of action (MA), outline of synthesis	
	(\$), chemical nomenclature, generic names (GN) and side	
	effects (SE) (outline of synthesis only of those marked\$)	
	2. Anti-Infective agents-I:	
	Antiseptics and Disinfectants: Alcohols, substituted phenols,	
	methenamine mandalate, Chloramine-T (MA), 8-hydroxy	12

quinoline derivatives, Acridine derivatives, Mercurials like (Mercurochrome, Thiomersal) and Nitrofurantoin derivative,Triclosan \$. Antitubercular agents - Aminosalicylic acid, PAS (MA), Pyrazinamide\$, Ethambutol (SAR and \$), Clofazemine, Antimalarials : Life cycle of parasite, drug acting on different stages- Quinine, Chloroquine\$, Primaquine, Trimethoprim, Proguanil (MA), Cycloguanil, Drug combinations. Antiamoebics : General aspect of infection, Life cycle of parasite, Hydroxyl quinolines, Metronidazole (SAR and \$), Lucanthone (MA), Anthelmentics : Diethylcarbamazine, Niclosamide, Mebendazole\$, Oxamniquine.	
3. Anti-Infective agents-II: Antivirals including drugs acting on HIV Idoxuridines, Amantadine Hydrochloride\$,Acylclovir. Antineoplastics: 6- Mercaptopurine (MA), Thiotepa\$, Chlorombucil, Taxol, Antifungal: Antibiotics like Nystatin, Tolnaflate\$, Clotrimazole\$. Sulfonamides and other antifolics: Sulfonamides (MA) and other para-aminobenzoic acid antagonist, Sulfacetamide\$, Sulfamethoxazole, Newer antibacterial agents: Quinoline carboxylic acids such as Ciprofloxacin, Temafloxacin. Hypoglycemics: Insulin and various sulfonyl ureas like tolbutamide\$, Tolazamide, phenformin, Glipizide.	12
 Anti-lipidemics, Diuretics, and diagnostic agents: Anti-lipidemics: Clofibrate\$, nicotinic acid, boxidineDiuretics: Acid forming osmotic diuretics, Mercurials-Meralurides,Sulfonamides-Acetazolamide\$. Chlorthiazide\$, Hydrochlorthiazide, Ethacrynic acid. Synthetic sweeteners. Diagnostic agents Inorganic compounds- Iodoxyl, Iodophendylate. Dyes- Rose Bengal, Fluorescein, Aminohippuric acid\$. 	
5. Hypotensive agents, General and Local Anaesthetics: Hypotensive agents acting on vascular smooth muscles: Nitrites, Amylnitrites, Glyceryl nitrite\$, Pentaerythritol	

	tetranitrate, Isosorbide dinitrate (MA). General		
	Anaesthetics: Ether, Nitrous oxide, Halothane\$, Ultra short		
	acting Barbiturates-Thiopental sodium \$. Local		
	anaesthetics: Cocaine, Benzocaine\$, Procaine (MA),		
	Lidocaine\$, Purgatives and cathartics: Phenolphthalein,		
	Castor oil.		
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /		
1 Cuugosy	presentations / self-study or a combination of some of these can also be		
	used. ICT mode should be preferred. Sessions should be interactive in		
	nature to enable peer group learning.		
References /	1. D. A. Williams & T. L. Lemke, Foye's principles of medicinal chemistry, 5th		
Readings	edition, Lippincott Williams and Wilkins, 2006.		
	2. J. M. Beale & J. M. Block, Wilson & Gisvold's Text book of Organic		
	Medicinal & Pharmaceutical Chemistry, Lippincott Williams and Wilkins		
	2004.		
	3. D. J. Abraham & D.P. Rotella, Burger's Medicinal Chemistry Drug		
	Discovery and Development (John Wiley & Sons N.Y), 7 th edition, 2010.		
	4. D. Shriram, P. Yogeshwari, Medicinal Chemistry, Pearson Education 2007.		
	5. G. L. Patrick: Introduction to Medicinal Chemistry, Oxford University Press, UK. 6 th edition, 2017.		
	6. D. Lednicer& L.A. Mitscher, The Organic Chemistry of Drug Synthesis. (6 volume set) III. John Wiley & Sons, 2005.		
	7. H. Singh & V. K. Kapoor: Medicinal and Pharmaceutical Chemistry,		
	Vallabh Prakashan, Pitampura, New Delhi, 2010.		
	8.G. R Chatwal, Medicinal Chemistry (Organic Pharmaceutical Chemistry),		
	Himalaya Publishing house, 2002.		
Course	1. Students will be able to identify the examples in different classes of		
Outcome:	drugs.		
	2. Students will be able to write IUPAC names and Structure of drugs.		
	3. Students will be in a position to understand the mechanism of action of		
	selected classes of drugs.		
	4. The students will have a clear understanding of concepts on SAR		
	analysis. 5. The students will be able to apply synthetic organic chemistry		
	knowledge in devising a synthesis for a drug.		
	knowledge in devising a synthesis for a drug.		

Title of the course: General Physical Chemistry

Course Code: CHP-500

Number of Credits: 04

Prerequisites	Students should have studied chemistry courses at graduate level	or must
for the	have cleared change of discipline entrance test conducted	
course:	University.	.,
Course Objective:	 Introduction of various concepts on thermodynamics. Introduction of electro chemistry and kinetics. Learning quantum chemistry. 	
Content	1. Mathematical Preparations	No of
	a. Introduction to various functions and function plotting (exponential, logarithmic, trigonometric etc.), functions of	hours
	 many variables. Complex numbers and complex functions. b. Linear equations, vectors, matrices and determinants. c. Basic rules of differentiation and integration, Partial differentiation, location and characterization of critical points of a function, Regression methods, curve fitting. d. Introduction to series, convergence and divergence, power series, Fourier series e. Probability (permutations and combinations). 	12
	2. Quantum Chemistry	20
	a. Operators, Functions, Eigen value equations, Postulates. b. Schrodinger equation, application to simple system viz. free particle, particle in one dimensional, two dimensional and three-dimensional box (quantization, separation of variables, degenerate wave functions). c. Hydrogen like atoms, Schrodinger equation and its solutions, atomic orbital wave functions and interpretation. d. Hückel MO theory, Secular equations, Secular determinant, delocalization energy, charge density, π -bond order, free valence, applications to C ₂ H ₄ , C ₃ H ₅ (radical), C ₄ H ₆ , C ₄ H ₄ , C ₆ H ₆ , C ₆ H ₈ .	
	 3. Thermodynamics a. Thermodynamic properties: Gas laws, Real gasses, Boyle temperature, Critical temperature, State and path properties. Intensive and extensive properties. Exact and inexact differentials. Internal energy, enthalpy, entropy, free energy and their relations and significances. Maxwell relations. Thermodynamic equations of state b. Joule-Thomson effect. Joule-Thomson coefficient for van 	12

der Waals' gas. Joule-Thomson effect and production of low temperature, adiabatic demagnetization, Joule-Thompson coefficient, inversion temperature. c. The third law of thermodynamics. Need for the third law. Apparent exceptions to third law. Application of third law. Use of thermodynamic functions in predicting direction of chemical change. Entropy and third law of thermodynamics. d. Phase equilibria: Phase rule, Discussion of two component systems forming solid solutions with and without maximum or minimum in freezing point curve. Systems with partially miscible solid phases.	
e. Three component systems: Graphical representation. Three component liquid systems with one pair of partially miscible liquids. Influence of temperature. Systems with two pairs and three pairs of partially miscible liquids. The role of	
added salts.	
 4. Electrochemistry a. EMF series, The cell potential: The Nernst equation, Cells at equilibrium. Determination of thermodynamic functions. b. Decomposition potential and overvoltage, electronegativity, basic principles, completeness of deposition, Separation with controlled potentials, constant current electrolysis, composition of electrolyte, potential buffers, physical characteristics of metal deposits. c. Electroplating and electroless plating, electrosynthesis. d. Concepts of acid-base aqueous and non-aqueous solvents, hard and soft acid-base concept and applications. 	8
 5. Chemical Kinetics a. General introduction to various types of order of reaction including fractional order, Molecularity of the reaction. b. Introduction to reversible and irreversible reactions and reactions leading to equilibrium. Van'tHoffs equation and analysis of Gibbs free energy of equilibrium reactions. c. Collision Theory and Maxwell Boltzmann distribution of energies of colliding molecules (derivation not required). The concept of collisional cross section and reactive cross section and its significance. d. Comparative study of transition state and collision state theory (derivation not required). e. Reaction Mechanisms: elementary reactions, Consecutive elementary reactions, steady state approximation, the rate determining step and pre-equilibria f. Free radical reactions, Complex reactions such as acetaldehyde decomposition and reaction between H₂ and 	8

	Br ₂ , Homogeneous reactions and acid-base catalysis. g. Elementary enzyme reactions. Lineweaver-Burk plot and its analysis
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / presentations / self-study or a combination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning.
References / Readings	 P. W. Atkins and J. D. Paula, Physical Chemistry, 8th Ed., Oxford University Press, New Delhi. 2007 G. M. Barrow, Physical Chemistry, 5th Ed., Tata McGraw Hill, New Delhi. 2016 J. E. House, Principles of Chemical Kinetics, 2nd Ed., Academic Press, Elsevier Burlington, USA 2007 I. N. Levine, Quantum Chemistry, 7th Ed., Prentice-Hall, New Delhi. 1999
Course outcomes:	 Students should be in a position to understand and explain various concepts in physical chemistry. Students should be in a position to apply these concepts during the lab course in physical chemistry. Students will be able to understand concepts of electrochemistry. Students will be able to apply fundamentals of chemical kinetics for understanding reaction mechanisms.

Title of the course: Techniques in Analytical Chemistry - I

Course Code: CHA-500

Number of Credits: 04

Prerequisites	Students should have studied chemistry courses at graduate level of	or must
for the course:	have cleared change of discipline entrance test conducted b	
	University.	,
Course	1. Learning various methods of data handling in analysis.	
Objective:	2. Understanding the significance of sampling and calibration technic	lues.
	3. Understanding principles and applications of various types of	
	techniques	
	4. Training the students to deduce structures based on IR, NN	/IR, MS
	combined data.	
Content:	1. Analytical Objectives and Data Handling	No. of
	Importance of analytical chemistry in research and industry;	Hours
	statistics and data handling in analytical chemistry, standard	5
	operating procedures, good laboratory practices: quality	
	assurance, method validation and quality control.	
	2. Sampling and Calibration Techniques	5
	Sampling and sample preparation, general steps in chemical	
	analysis, calibration of glass wares. Finding the best straight line-	
	least square regression, correlation coefficient; Calibration curves,	
	standard addition technique and internal standards. Chemical	
	concentrations.	6
	3. Classical methods of Analysis	6
	Gravimetry and Titrimetric methods, Principle, methodology,	
	Advantages & Disadvantages over instrumental methods.	
	Conditions for identifying a givenreaction as method of Analysis,	
	Classification of reactions in titrimetricanalysis (Acid-Base, redox,	
	complexometric and precipitation), Standardsolutions and their preparation. Selection of Visual Indicators in titrimetric Analysis	
	4. Introduction to Electroanalytical techniques	4
	Introduction to electrochemical cell, electrode potential,	4
	Classification of electroanalytical techniques, working principles,	
	and their applications	
	5. Introduction to Thermoanalyticaltechniques	5
	Principle, Instrumentation and applications of Thermo Gravimetric	-
	Analysis, Differential Thermal Analysis, and Differential Scanning	
	Calorimetry. Numericals based on TGA.	
	6. Introduction to Chromatographic Techniques	15
	a. Principles of chromatography, classification of	

 chromatographic techniques based on mechani retention, configuration, mobile and stationary Efficiency of separation- plate theory (theoretica concept) and rate theory (van Deemter equation). b. Principles and applications of Paper chromatograph layer chromatography, HPTLC, Size exclusion ar exchange chromatography. Counter-current chromatofor isolation of natural products. c. Gas and Liquid Chromatography: Introduction; Instru Modules; The Separation System; Choice of Condit Analysis; Sample Inlet Systems; Detectors; P Considerations in Qualitative and Quantitative A 	phase. I plate ny, thin nd Ion ography mental ions of ractical
Coupled Systems-introduction to GCMS, LCMS; Applic	ability-
interpretation and numericals.	
7. Introduction to Spectroscopic Techniques	20
 a. Interaction of Electromagnetic Radiation with I Electromagnetic spectra, regions of spectrum, numeric b. Ultraviolet and visible Spectroscopy: Electronic spectronic Molecular structure: types of electronic tra Chromophore and auxochrome, absorption by i 	Matter: cals. tra and nsition, solated romatic ax for turated fect of ambert vity of known; n Beer-
 c. Infrared Spectroscopy: Infrared absorption and mostructures, molecular vibrations, types of vibrations spectra, overtones and bands-basis of NIR absorption and mostpectral interpretation, Frequencies of functional Spectral Databases, Identification of unknown compound. Spectrometric Instrumentation of UV-Vis and IR: S monochromators, sample cells, detectors, instrumentation. e. Proton and Carbon NMR Spectroscopy: Theory of Instrumentation, Chemical shift, factors influencing cheshift, solvents used in NMR, spin-spin splitting, c constant calculation, factors influencing coupling const. 	ons, IR protion. group, unds. ources, mental ^E NMR, nemical oupling tant.

	fragmentation patterns.	
	g. Conjoint spectrometry problems: Structural elucidation of	
	organic molecules using IR, UV, NMR and MS.	
	h. Raman Spectroscopy: Theory, Basic instrumentation and	
	Structural analysis using Raman Spectra.	
	(Note: Assignment based on all above spectrometric methods	
	should be given to student. More weightage of lectures shall be	
	given for solving IR and NMR data problems for structure	
	elucidation)	
Pedagogy:	Mainly lectures and tutorials. Seminars / term papers /assignments /	
reuagogy.	presentations / self-study or a combination of some of these can also be	
	used. ICT mode should be preferred. Sessions should be interactive in	
	nature to enable peer group learning.	
References /	1. G. D. Christian, Analytical Chemistry, 6 th Ed.; Wiley, 2004.	
Readings:	2. J. H. Kennedy, Analytical Chemistry: Principles, 2 nd Ed.; Saunders	
	College Publishing, 1990.	
	3. G. W. Ewing, Instrumental Methods of Chemical Analysis, 5 th Ed.;	
	McGraw- Hill Int., 1985.	
	4. W. Kemp, Organic Spectroscopy, 3 rd Ed.; Palgrave, 1991.	
	5. D. A. Skoog, D. M. West, F. J. Hollar, S. R. Crouch, Fundamentals of	
	Analytical Chemistry, 9 th Ed.; Cengage learning, 2014.	
	6. F. J. Holler, D. A. Skoog, S. R. Crouch, Principles of Instrumental	
	Analysis, 6 th Ed.; Thomson Books, 2007.	
	7. H. Willard, L. L. Merritt, J. A. Dean, F. A. Settle, Instrumental methods	
	of Analysis, 7 th Ed.; HCBS Publishing, 2004.	
	8. C. N. Banwell, E. M. McCash, Fundamentals of Molecular	
	Spectroscopy, 4 th Ed.; Tata McGraw- Hill, 2006.	
	9. R. M. Silverstein, F. X. Webster, Spectrometric identification of	
	Organic Compounds, 6 th Ed.; Wiley, 1998.	
	10. H. Gunzler, A. Williams, Handbook of Analytical Techniques, 1 st Ed.;	
	Wiley, 2001.	
	11. P. S. Kalsi, Spectroscopy of Organic Compounds, 2 nd Ed.; New Age	
	International, 2000.	
	12. E. Pretsch, P. Buhlmann, C. Affolter, Structural Determination of	
	Organic Compounds, 2 nd Ed.; Springer, 2005.	
	13. L. D. Field, S. Sternhell, J. R. Kalman; Organic Structures from	
	Spectra, 4 th Ed.; Wiley, 2007.	
	14. R. A. Day, A. L. Underwood, Quantitative Analysis, 6 th Ed.; Prentice	
	Hall, 2001.	
	15. B. K Sharma, Instrumental methods of chemical analysis, Goel	
	Publishing House, Meerut, 2004.	
	16. K. Nakamoto, Infrared and Raman Spectra of Inorganic and	
	Coordination Compounds, 6 th Ed.; Wiley, 2009.	
	17. P. J. Larkin, Infrared and Raman Spectroscopy: principles and	

	spectral interpretation, 2 th Ed.; Elsevier, 2018. 18. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, B. Sivasankar, Vogel's Text Book of Quantitative Chemical Analysis, 6 th Ed.; Pearson, 2009.
Course outcomes:	 Students will be able to analyse the role of statistical tools for determination of error and organised data management for systematic interpretation. Student will be able to apply the sampling and calibration methods for obtaining reliable results. Students will be able to understand basic principles and scope of different methods of Analysis Students will be able to solve problems based on IR, NMR, MS combined spectral data.

Title of the course: Practical Course in Organic Chemistry-I

Course Code: CHO-521

Number of Credits: 02

Dronomulaitas	Students should have studied shemistry prostical sources at gradu	ata laval
Prerequisites	Students should have studied chemistry practical courses at graduate	
for the	or must have cleared change of discipline entrance test conducted	i by Goa
course	University.	
Course	To translate certain theoretical concepts learnt earlier into expe	
Objective:	knowledge by providing hands on experience of basic lal	poratory
	techniques required for organic syntheses.	
Content	Minimum 13 experiments from the list shall be conducted.	No of
		hours
	1. Introduction to laboratory equipments, apparatus and safety	
	a. Use of common laboratory equipments like fume hoods,	04
	vacuum pumps, weighing balance etc. to be explained to the	
	students.	
	b. Introduction to various types of quick fit joints and apparatus	
	to the students.	
	c. Discussion of Safety Techniques:	
	i Disposal of chemicals	
	ii Usage of protective equipment's	
	iii First aid	
	iv Fire extinguishers, types of fire	
	v Hazards of chemicals and risk assessment	
	2. Laboratory Techniques	24
	a. Simple distillation (any one):	
	i. Toluene-dichloromethane mixture using water condenser.	
	ii. Nitrobenzene and aniline using air condenser.	
	b. Steam distillation (anyone):	
	i. Separation of <i>o</i> - and <i>p</i> - nitrophenols.	
	ii. Naphthalene from its suspension in water,	
	iii. Clove oil from cloves.	
	c. Crystallisation: Concept of induction of crystallization (any one)	
	i. Crystallisation of phthalic acid from hot water using fluted filter	
	paper and stemless funnel.	
	ii. Acetanilide from boiling water	
	iii. Naphthalene from ethanol.	
	iv. Decolorisation and crystallization of brown sugar (sucrose)	
	with animal charcoal using gravity filtration.	
	d. Sublimation: Simple or vacuum sublimation of camphor,	
ł		

naphthalene, anthracene or succinic acid (any one). e. Vacuum distillation (any one): o-dichlorobenzene, diphenyl ether. Also use of nomograph should be explained. f. Thin layer Chromatography (any one):	
i. Separation of <i>o</i> and <i>p</i> -nitroanilines.	
ii. Separation of analgesic drugs	
iii. Separation of <i>o</i> and <i>p</i> -nitrophenols,	
3. Organic synthesis (Any Seven experiments)	24
a. Aliphatic electrophilic substitution: Preparation of iodoform	
from ethanol &acetone.	
b. Aromatic electrophilic substitution (anyone):	
i. Preparation of <i>p</i> -bromoacetanilide.	
ii. Bromination of acetophenone to phenacyl bromide	
iii. Nitration of napththalene to 1-nitronaphthalene	
iv. Nitration of benzaldehyde to 3-nitrobenzaldehdye.	
c. Oxidation (any one)	
i. Benzoic acid from toluene.	
ii. Cyclohexanone from cyclohexanol.	
iii Isoborneol to camphor using Jones reagent.	
d. Reduction (any one)	
i. Reduction of <i>o</i> -nitroaniline to <i>o</i> -phenylenediamine using Sn/HCl	
ii. Reduction of p -nitro benzaldehyde to p -nitrobenzyl alcohol using NaBH ₄ .	
e. Bromination of an alcohol using CBr ₄ / triphenylphosphine.	
f. Grignard reaction: Triphenylmethanol from benzoic acid ester	
or benzophenone.	
g. Aldol condensation: Dibenzal acetone from benzaldehyde	
h. Acetoacetic ester condensation: Preparation of ethyl n-	
butylacetoacetate or ethyl acetoacetate.	
i. Cannizzaro reaction using 4-chlorobenzaldehyde as substrate.	
j. Friedel Craft's reaction (any one):	
i. using toluene and succinic anhydride	
ii. Resorcinol to resacetophenone, benzene and maleic anhydride	
to β -benzoylacrylic acid	
k. Solvent free preparation of coumarin by the Knoevenagel	
condensation under MW irradiation.	
I. Preparation of oxidizing agent (any one): Pyridinium	
chlorochromate-silica, pyridinium chlorochromate-alumina,	
MnO_2 .	
m. Preparation of cuprous chloride.	
4. Isolation from natural sources (Any two)	8
i. Caffeine from tea powder.	
ii. Piperine from pepper.	
iii. Cinnamaldehyde from cinnamon	

	iv. Lemongrass oil from lemongrass
Pedagogy:	Students should be given suitable pre- and post-lab assignments
reuagogy.	and explanation revising the theoretical aspects of laboratory
	experiments prior to the conduct of each experiment. Each of the
Defenses	experiments should be done individually by the students.
References /	1. A.I. Vogel, A., R. Tatchell, B. S. Furniss, A.J. Hannaford, Vogel's
Readings	Textbook of Practical Organic Chemistry, 5 th Ed., Prentice Hall;
	2. D. Pasto, C. Johnson and M. Miller, Experiments and
	Techniques in Organic Chemistry, 1 st Ed., Prentice Hall, 1991.
	3. L.F. Fieser, K.L. Williamson, Organic Experiments, 7 th edition D.
	C. Heath, 1992.
	4. K.L. Williamson, K.M. Masters, Macroscale and Microscale
	Organic Experiments, 6 th Edition, Cengage Learning, 2010
	5. R.K. Bansal, Laboratory Manual in Organic Chemistry, New Age
	International, 5 th Edition, 2016.
	6. S. Delvin, Green Chemistry, Sarup& Sons, 2005.
	7. O.R. Rodig, C.E. Bell Jr. and A.K. Clark, Organic Chemistry
	Laboratory Standard and Microscale Experiments, Saunders
	College Publishing, 3 rd edition, 2009.
	8. J. Mohan, Organic Analytical Chemistry, Narosa Publishing
6	House, 2014.
Course	1. Students will be in a position to understand stoichiometric requirements
outcomes	during organic syntheses.
	2. Students will be in a position to understand Safe and good laboratory
	practices, handling laboratory glassware, equipment and chemical
	reagents.
	3. Students will be in a position to apply the practical knowledge to
	perform
	experiments involving common laboratory techniques like reflux,
	distillation, steam distillation, vacuum distillation, aqueous extraction,
	thin layer chromatography (TLC) etc.
	4. Students will be able to acquire hands-on experience on isolation of
	some important natural products.

Title of the course: Practical Course in Organic Chemistry-II

Course Code: CHO-522

Number of Credits: 02

Prerequisites	Students should have studied chemistry practical courses at grad	uate level	
for the	or must have cleared change of discipline entrance test conducted by Goa		
course	University.		
Course	To translate certain theoretical concepts learnt earlier into exper	imental	
Objective:	knowledge by providing hands on experience of basic laboratory		
	techniques required for organic syntheses.		
Content	Minimum 13 experiments from the list shall be conducted.	No of	
		hours	
	1. Introduction to laboratory equipments, apparatus and		
	safety	04	
	a. Common Hazards in Chemical Laboratory, Risk assessment		
	b. Accidents and Emergency procedures		
	2. Laboratory Techniques (Any Two)	08	
	a. Simple distillation		
	i. Simple distillation of thionyl chloride under anhydrous		
	condition		
	ii. Simple distillation under Nitrogen atmosphere		
	b. Fractional distillation		
	i. Chloroform-dichloromethane mixture using water condenser.		
	ii. Toluene and cyclohexane by fractionating column.		
	c. Vacuum distillation under inert atmosphere		
	Dry Distillation of DMF, o-dichlorobenzene, POCl ₃		
	d. Thin layer Chromatography		
	i. Purification and isolation of mixture of acids by using		
	Preparative TLC. ii. Purification and isolation of mixture of phenols by using		
	Preparative TLC.		
	iii. Purification and isolation of pharmaceutical drugs using		
	Preparative TLC.		
	3. Organic Synthesis (Any Four)	16	
	a. <i>p</i> -lodonitrobenzene by Sandmeyer reaction		
	b. Pinacol- Pinacolone rearrangement		
	c. Hydrogenation of Maleic acid (Hydrogen balloon)		
	d. Preparation of nitrostyrene from aldehyde		
	e. Preparation of α , β -dibromocinnamic acid		
	f. Reduction of nitro compounds		

	g. Synthesis of Urea from ammonium cyanate	
	4. Solvent Free Organic synthesis (Any Two)	08
	a. Reduction using ball milling technique	
	b. Oxidation of 2° alcohol using KMnO ₄ /Alumina by grinding	
	technique.	
	c. Synthesis of (±)-Binol from β -naphthol	
	d. Hunsdiecker reaction of cinnamic acid derivatives	
	e. Beckmann rearrangement of oxime derivatives	
	5. Two-step Organic Synthesis (Any Two)	16
	a. Benzamide-Benzoic acid-Ethyl Benzoate	10
	b. Phthalic anhydride – Phthalimide – Anthranilic acid.	
	c. Methyl benzoate- <i>m</i> -nitrobenzoate- <i>m</i> -nitrobenzoic acid	
	d. Chlorobenzene – 2, 4 – dinitrochlorobenzene – 2,4-	
	dinitrophenol	
	e. Acetanilide – p –Bromo acetanilide – p –Bromoaniline	
	f. Acetophenone – Oxime – Acetanilide	
	6. Separation, Isolation and Identification of Organic	08
	compounds (Any One)	08
	a. Separation, purification and identification of compounds	
	of binary mixture (Solid-Solid, Solid-liquid and Liquid-liquid)	
	using the TLC and column chromatography, chemical tests.	
	IR spectra to be used for functional group identification.	
Pedagogy	Students should be given suitable pre- and post-lab assignments a	and
	explanation revising the theoretical aspects of laboratory experim	
	prior to the conduct of each experiment.	
References	1. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's	Textbook
/ Readings	of Practical Organic Chemistry, 5 th Ed., Prentice Hall; 2011.	
	2. K. Tanaka, Solvent-free Organic Synthesis, Wiley-VCH, 2 nd Ed., 2	2009
	3. L. F. Fieser, K. L. Williamson "Organic Experiments" 7 th edit	
	Heath, 1992.	
	4. K. L. Williamson, K. M. Masters, Macroscale and Microscale	e Organic
	Experiments, 6 th Edition, Cengage Learning, 2010	-
	5. R. K. Bansal, Laboratory Manual in Organic Chemistry, I	New Age
	International, 5 th Edition, 2016.	
	6. S. Delvin, Green Chemistry, Sarup& Sons, 2005.	
	7. O. R. Rodig, C. E. Bell Jr., A. K. Clark, Organic Chemistry La	aboratory
	Standard and Microscale Experiments, Saunders College P	ublishing,
	3 rd edition, 2009.	
	8. J. Mohan, Organic Analytical Chemistry, Narosa Publishing Hou	se, 2014.
Course	1. Students will be in a position to adopt Safe and good la	aboratory
outcomes	practices, handling laboratory glassware, equipment and	chemical
	reagents.	
	2. Students will be in a position to understand and calculate stoic	hiometric

requirements during organic syntheses.
3. Students will be in a position to perform common laboratory techniques
including reflux, distillation, vacuum distillation, aqueous extraction, thin
layer chromatography (TLC).
4. Students will be able to acquire hands-on experience on isolation of
some important natural products.

Title of the course: Practical Course in Pharmaceutical Chemistry-I

Course Code: CHH-521

Number of Credits: 02

Prerequisites	Students should have studied chemistry practical courses at gradu	uate level	
for the	or must have cleared change of discipline entrance test conducted by Goa		
course	University.		
Course	1. To acquire hands on training in laboratory techniques.		
Objective:	 To understand organic synthesis with reference to compound preparations. 	medicinal	
Content	1) Qualitative and Quantitative tests of (Any 1)	No of	
	(1) Purified Water as per IP Monograph	hours	
	(2) Ibuprofen as per IP Monograph		
		10	
	2) Titrimetric Assay of the following bulk drugs:	08	
	(4 x 2 = 8) (Any 2)		
	a) Pheniramine Maleate		
	b) Salbutamol		
	c) Ofloxacin		
	3) UV. Spectrophotometric Assay of the following drugs (in	16	
	different dosage forms):		
	(4 x 4= 16) (Any 4)		
	Rifampicin, Meloxicam, Salbutamol, Ofloxacin,Isoniazid, Diazepam, Acyclovir, Bisacodyl, Tinidazole,		
	4) Synthesis of following bioactive or drug molecules	06	
	(2x3=6 hours) Any 2		
	a) 3-Acetylcoumarin		
	b) 2-Phenylbenzimidazole		
	c) 2,3-Diphenyl Quinoxaline		
	5) Multistep synthesis (Any one)	08	
	a) Flavone from 2-hydroxyacetophenone		
	b) Paracetamol from Acetanilide		
	6)Dissolution experiment:	06	
	To study the dissolution rate of sustained release		
	Theophylline tablets IP.		
	7) High Performance liquid Chromatographic experiment:	06	
	To develop and validate the analytical method of any one		
	drug using high performance liquid chromatography.		
Pedagogy	Pre-lab and Post-lab exercises. Demonstrations of experiments. Ex	kplanation	

	of procedures.		
References/	1. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook		
Readings	of Practical Organic Chemistry, 5 th Edition, Prentice Hall; 2011.		
	 K. A. Connors, Text book of Pharmaceutical analysis, 3rdEdition, Wiley Interscience Publication, 1990. J. Bassett, J. Mendhan, R. C. Denny, Vogel's Text book of quantitative chemical analysis revised by G.H. Jeffery, 6th Edition, Pearson Education Publication, 2007. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia. J. E. F. Reynolds, Martindale-The Extra Pharmacopoeia, 30th Edition, 		
	Pharmaceutical Press, London, 1993.		
	 J. Moini, Pharmaceutical Laboratory Procedures, 1st Edition, Cengage Learning India Pvt. Ltd., New Delhi, 2010. 		
Course	1. Students will be able to understand the theoretical concepts and		
Outcome	practical applications.		
	2. Students will be able to handle analytical instruments like UV-VIS		
	spectrophotometer and carry out drug analysis.		
	3. Students will be able to perform multistep synthesis.		
	4. Students will be able to perform HPLC analysis		

Title of the course: Practical Course in Pharmaceutical Chemistry-II

Course Code: CHH-522

Number of Credits: 02

Prerequisites	Students should have studied chemistry practical courses at grad	luate level
for the	or must have cleared change of discipline entrance test conducted by Goa	
course	University.	
Course	1. To acquire hands on training in laboratory techniques.	
Objective:	2. To understand organic synthesis with reference to medicinal preparations.	compound
Content	1) Qualitative and Quantitative tests of (Any 1)	No of
	(1) Paracetamol as per IP Monograph	hours
	(2) Aspirin as per IP Monograph	
		10
	2) Titrimetric Assay of the following bulk drugs: (2 x 4 = 8)	08
	Any 2	
	a) Chloramphenicol capsules IP	
	b) Furosemide injection IP	
	c) Ketoprofen	
	d) Phenytoin	
	3) UV Spectrophotometric Assay of the following drugs	08
	(in different dosage forms): (4 x 2= 8) Any 2	
	Mefenamic acid, Furosemide, Chloramphenicol	
	4) Synthesis of following bioactive or drug molecules: (2 x 4	08
	= 8 hours) Any 2	
	a) Warfarin	
	b) 2-(<i>p</i> -Chlorophenyl)benzoxazole	
	c) Monastrol	
	d) Nitazoxanide	
	5)Dissolution experiment:	06
	Dissolution rate study of sustained release Diclofenac tablets	
	IP.	
	6) Thin Layer Chromatographic experiments on	04
	Pharmaceuticals (Any 1)	
	a) To identify the given drug amongst the paracetamol,	
	aspirin and caffeine citrate with the help of thin layer	
	chromatography and calculate its <i>Rf</i> value.	
	b) To identify the given sulpha drug among the	
	sulphadiazine, sulphamethoxazole and trimethoprim with	
	the help of thin layer chromatography and calculate its Rf	

	value.	
	7) High Performance liquid Chromatographic experiment:	06
	To demonstrate high Performance liquid chromatography	
	and analyse Diazepam Tablets by High Pressure Liquid	
	Chromatography.	
	8)Separation of mixture of o-nitroaniline and p-nitroaniline	06
	using column chromatography.	
	9)Infrared Spectroscopic analysis	04
	Demonstration of Instrumentation and Interpretation of	
	Representative Spectra (Any 1)	
	a) To differentiate between analgesic-NSAIDs:Aspirin, Ibuprofen, Paracetamol.	
	b) To differentiate between Acetophenone, <i>p</i> - Nitroacetophenone, Benzamide	
Pedagogy	Pre-lab and Post-lab exercises. Demonstrations of experiments.	·
	Explanation of procedures.	
References/ Readings	 A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, 5th Edition, Prentice Hall; 2011. K. A. Connors, Text book of Pharmaceutical analysis, 3rdEdition, Wiley Interscience Publication, 1990. J. Bassett, J. Mendhan, R. C. Denny, Vogel's Text book of quantitative chemical analysis revised by G.H. Jeffery, 6th Edition, Pearson Education Publication, 2007. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia. 	
	5. J. E. F. Reynolds, Martindale-The Extra Pharmacopoeia, 30 th Ed Pharmaceutical Press, London, 1993.	ition,
	6. J. Moini, Pharmaceutical Laboratory Procedures, 1 st Edition, Ce Learning India Pvt. Ltd., New Delhi, 2010	ngage
Course	1. Students will be able to understand the theoretical cond	cepts and
Outcome	practical applications.	
	2. Students will be able to handle analytical instruments like	ke UV-VIS
	spectrophotometer and carry our drug analysis.	
	3. Students will be able to perform synthesis	
	4. Students will be able to perform HPLC analysis	

Title of the course: Practical course in Physical Chemistry-I

Course Code: CHP-521

Number of Credits: 02

Prerequisites	Students should have studied chemistry courses at graduate	loval or
for the	must have cleared change of discipline entrance test conducte	
course:	University.	u by 00a
Course	1. To develop experimental skills on basic lab techniques in phys	ical
Objective:	chemistry	icai
Objective.	2. To acquire skills for data analysis and interpretation	
	3. To help the students to develop research skills	
Content	Minimum 13 Experiments to be performed per Semester	No of
	Non-instrumental Experiments (any 7)	hours
	Non instrumental Experiments (any 7)	
	1 To study the linetice of hydrolysis of other contate and to	
	1. To study the kinetics of hydrolysis of ethyl acetate and to	30
	determine a)Energy of activation b) Entropy of activation	
	and c) Free energychange.	
	2. To determine the order of reaction between potassium	
	persulphateand potassium iodide by graphical, fractional	
	change and differential methods.	
	3. To study the three-component system such as acetic	
	acid, chloroform; and water and obtain tieline.	
	4. To determine the molecular weight of polyvinyl alcohol	
	by viscosity measurement.	
	5. To study the electro-kinetics of rapid reaction between	
	SO_4^{2-} and I^- in an aqueous solution.	
	6. To determine the buffer capacity of acidic buffer	
	solution.	
	7. To determine the partial molal volume of ethanol-water	
	mixture at a given temperature.	
	8. To measure energy content of various types of plastics	
	using bomb calorimetry	
	9. To determine number average molecular weight of a	
	polymer sample with an indirect titration method.	
	10. To investigate basic hydrolysis of ethyl acetate at four	
	different temperatures and find out energy of activation	
	Instrumental Experiments (any 6)	30

	 11. To determine the degree of hydrolysis of salt of weak base and strong acid usingconductometer. 12. To determine the dissociation constants of a tribasic acid (Phosphoricacid obtain derivative plot to get equivalencepoint. 13. To determine formal redox potential of Fe²⁺/Fe³⁺ and Ce³⁺/Ce⁴⁺ system obtain derivative plot to get equivalencepoint. 14. To study spectrophotometric titration of ferrous ammonium sulphate with potassium permanganate (or dichromate vs permanganate) 15. To determine Avogadro's number by improved electroplating. 16. To determine the zeta potential of colloidal system and investigate the effect of different surfactants on stability of the colloids 17. To verify the Kohlrausch's law for weak electrolyte by conductometry 18. To determine the transport numbers of Cu²⁺ and SO₄²⁻
Pedagogy	ions in CuSO ₄ solution by Hittorf's method. Mainly pre-laboratory exercises Seminars / term papers /assignments / presentations / lab hand-out /self-study or a combination of some of
	these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning.
References /	1. A. Finlay & J.A. Kitchener, Practical Physical Chemistry,Longman, 2. F. Daniels & J.H. Mathews, Experimental Physical Chemistry,Longman
Readings	3. A.M.James, Practical PhysicalChemistry, Longman
	4. D.P. Shoemaker & C.W. Garland, Experimental Physical Chemistry, McGraw-Hill
Course	1. Students will able to explain various fundamental lab techniques.
outcomes:	2. Students should be in a position to apply the knowledge for their
	dissertation and research work. 3. Students will be able to use spectrophotometric titrations for
	appropriate analysis.
	4. Students will be able to determine molecular weight of some
	polymers.

Title of the course: Practical course in Physical Chemistry-II

Course Code: CHP-522

Number of Credits: 02

Prerequisites	Students should have studied chemistry courses at graduate level	or must
for the	have cleared change of discipline entrance test.	
course:		
	1. To develop experimental skills on basic lab techniques in physic	al
Course	chemistry	
Objective:	2. To acquire skills for data analysis and interpretation	
	3. To help the students to develop research skills	
Content	Minimum 13 experiments to be conducted per Semester	No of
	Non-instrumental Experiments (any 8)	hours
	1. To determine the radius of a molecule by viscosity measurements.	35
	2. To determine ΔG , ΔH and ΔS of silver benzoate by solubility product method	
	3. To investigate the adsorption of oxalic acid by activated charcoal and test the validity of Freundlich and Langmuir's isotherms.	
	4. To determine the molecular weight of a given polymer by turbidimetry	
	5. To study the rate of reaction between ethyl bromoacetate and sodium thiosulphate kinetically.	
	6. To determine the percentage composition of a given mixture of two liquids by stalagmometer method.	
	7. To study the kinetics of hydrolysis of methyl acetate and to determine a) Energy of activation b) Entropy of activation	
	and c) Free energy change. 8. To study the kinetics of the reaction between Potassium per sulphate (K ₂ S ₂ O ₈), and Potassium iodide (KI), and to determine a) Energy of activation b) Entropy of activation and c) Free energy change.	
	 9. To determine the order of reaction for hydrolysis of ethyl acetate by graphical, fractional change and differential methods. 10. To determine the molecular weight of polystyrene by 	

	viscosity measurement.	
	Instrumental Experiments (any 5)	
	11. To determine the relative strength of chloroacetic acid and	
	acetic acid by conductometry.	25
	12. To determine the degree of hydrolysis of salt of weak base	25
	and strong acid using conductometry.	
	13. To determine the composition of a mixture of acetic acid,	
	dichloroacetic acid and hydrochloric acid by conductometric	
	titration.	
	14. To determine the dissociation constants of monobasic acid	
	and dibasic acid and obtain derivative plot to get	
	equivalence point.	
	15. To determine the redox potential of Fe^{2+}/Fe^{3+} system by	
	titrating it with standard K ₂ Cr ₂ O ₇ solution.	
	16. To study the electrodeposition of metal.	
Pedagogy	Mainly pre-laboratory exercises Seminars / term papers /assign	-
	presentations / lab hand-out /self-study or a combination of	
	these can also be used. ICT mode should be preferred. Sessions sl	nould be
References /	interactive in nature to enable peer group learning. 1. A. Finlay & J.A. Kitchener, Practical Physical Chemistry,Longmar	۱.
Readings	2. F. Daniels & J.H. Mathews, Experimental Physical Chemistry, Lor	
0	3. A. M. James, F. E. Prichard, Practical Physical Chemistry, Longma	
	 D.P. Shoemaker & C.W. Garland, Experimental Physical Chemis McGraw-Hill, 	ιry,
Course	1. Students will gain knowledge of various fundamental lab technic	ques.
outcomes:	2. Students should be in a position to apply the knowledge for their	r
	dissertation and research work.	
	3. Students will be able to use spectrophotometric titrati	ons for
	appropriate analysis. 4. Students will be able to determine molecular weight of some po	lymers
		iyilleis.

Title of the course: Practical Course in Analytical Chemistry - I

Course Code: CHA-521

Number of Credits: 02

Prerequisites	Students should have studied chemistry practical courses at graduate le	evel or
for the course:	must have cleared change of discipline entrance test conducted by Goa	1
	University.	
Course	1. Introduction of various experimental techniques for analysis.	
Objectives:	2. Learning data analysis, handling and interpretation of spectra.	
Content:	This course consists of 7 units of experiments in various areas of	No of
	Analytical chemistry. Minimum 13 experiments which include at least	hours
	02 experiments from unit 1-6 and 01 experiment from unit 7 shall be	
	conducted.	
	Unit 1: Statistics	
	i. Calibration of selected Volumetric apparatus	9
	ii. Calibration of selected Laboratory instruments	
	Preparation of standard solutions and standardisation.	
	Unit 2: Colorimetry/ UV-Visible Spectrophotometry	8
	i. Estimation of Iron from Pharmaceutical sample (capsule) by	
	thiocyanate method	
	ii. Estimation of phosphoric acid in cola drinks by molybdenum	
	blue method.	
	iii. Estimation of KNO_3 by UV spectroscopy and $K_2Cr_2O_7$ by Visible	
	spectroscopy	
	iv. Simultaneous determination and Verification of law of	
	additivity of absorbances (K ₂ Cr ₂ O ₇ and KMnO ₄).	
	Unit 3: Flame Spectrophotometry and AES/AAS/ICP Spectroscopy	9
	i. Estimation of Na and K in food supplements or cosmetic	
	products.	
	ii. Estimation of Pb in water sample by AES/AAS/ICP.	
	iii. Estimation of Fe and Al in Iron ore sample by AES/AAS/ICP.	
	Unit 4: Ion Exchange Chromatography and High Pressure Liquid	10
	Chromatography	
	i. Separation and Estimation of chloride and bromide.	
	ii. Separation of Anthracene and Naphthalene using reverse	
	phase chromatography	
	iii. Separation of Benzaldehyde and Benzyl alcohol using normal phase chromatography	
	Unit 5: Volumetric Titrations	10

	i. Estimation of Ca in pharmaceutical tablet.	
	ii. Estimation of Al and Mg in antacid tablet.	
	iii. Estimation of CaO in cement.	
	Unit 6: Solvent Extraction and spectrophotometry	10
	i. Extraction of Cu as copper dithiocarbamate (DTC) using	
	solvent extraction and estimation by spectrophotometry.	
	ii. Determination of Ni as Dimethylglyoxime complex by	
	spectrophotometry.	
	iii. Determination of Silver as ion association complex with 1,10-	
	Phenanthroline and Bromopyrogallol red.	
	Unit 7: Interpretation Exercises	4
	i. Thermal studies: TG/DTA and Isothermal weight loss studies	
	of various hydrated solids like CuSO ₄ ·5H ₂ O, Ca ₂ C ₂ O ₄ ·H ₂ O,	
	Fe ₂ C ₂ O ₄ ·2H ₂ O.	
	ii. X-ray powder diffractometry: Calculation of lattice parameters	
	from X-ray powder pattern of cubic system such as NiMn ₂ O ₄ ,	
	$CoFe_2O_4$ etc.	
	iii. IR spectra of Urea, benzoic acid, Copper sulphate	
	pentahydrate etc.	
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-out or a com	nination
	of some of these. Sessions shall be interactive in nature to enable peer	
	learning.	9.00p
References /	1. J. H. Kennedy, Analytical Chemistry Principles, Saunders College Pub	lishing.
Readings:	2 nd Ed., 1990.	
	2. G. D. Christian, Analytical chemistry, 5 th Ed., John Willey and Sons, 19	94
	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B. Sivasankar, Vo	
	Textbook of Quantitative Chemical Analysis, 6 th Ed., Pearson Education	-
	2009.	
	4. A. J. Elias, Collection of interesting chemistry experiments, University	v press.
	2002.	, 1,
	5. R.A. Day & A.L. Underwood, Quantitative Analysis, 6 th Ed., Prentice H	all.
	2001.	,
	6. J. Kenkel, Analytical Chemistry for Technicians, 3 rd Ed., Lewis publishe	ers.
	2002.	-,
Course	1. Students will be able to explain how to determine an unknown	
outcomes:	concentration of solution.	
	2. Students will use statistical methods to analyse data in laboratory.	
	3. Students will be able to use different techniques for qualitative and	
	quantitative estimation.	
	4. Students will be able to interpret TG/X-Ray/IR spectra.	
	T. Students will be able to interpret TO/A-hay/in spectra.	

Title of the course: Practical Course in Analytical Chemistry - II

Course Code: CHA-522

Number of Credits: 02

Prerequisitesfor	Students should have studied chemistry practical courses at graduat	e level or
the course:	must have cleared change of discipline entrance test conducted by 0	
	University.	
Course	1. Introduction of various experimental techniques for analysis.	
Objectives:	2. Learning data analysis, handling and interpretation of spectra.	
Content:	This course consists of 7 units of experiments in various areas of	No of
	Analytical chemistry. Minimum 13 experiments which include at	hours
	least 02 experiments from unit 1-6 and 01 experiment from unit	
	7 shall be conducted.	
	Unit 1: Statistics	
	i. Calibration of selected Volumetric apparatus	9
	ii. Calibration of selected Laboratory instruments	_
	iii. Preparation of standard solutions and standardisation.	
	Unit 2: Titrimetric Analysis	8
	i. Standardisation and estimation of Chloride using	
	precipitation titration (Mohr's method)	
	ii. Analysis of commercial caustic soda by neutralisation	
	titrimetric method	
	iii. Determination of sulphates by complexometric titrations	
	using EDTA.	
	Unit 3: Flame Spectrophotometry and AES/AAS/ICP	10
	Spectroscopy	
	i. Estimation of Na and K in food supplements or cosmetic	
	products using flame photometer.	
	ii. Estimation of chromium in water sample by AES/AAS/ICP.	
	iii. Estimation of nickel, molybdenum in Hastelloy C-22 using	
	AES/AAS/ICP.	
	Unit 4: Natural product isolation and Ion Exchange	9
	Chromatography	
	i. Isolation of cinnamaldehyde from cinnamon	
	ii. Isolation of Caffeine from tea powder	
	iii. Separation and estimation of Cadmium and Zinc	
	Unit 5: UV-Visible Spectrophotometry and High-Pressure	10
	Liquid Chromatography	
	i. Estimation of KNO ₃ and K ₂ Cr ₂ O ₇ using UV- Visible	
	spectroscopy	

	ii. Separation of Benzaldehyde and benzoic acid using	
	reverse phase HPLC.	
	iii. Quantification of naphthalene in a sample using reverse	
	phase HPLC.	
	Unit 6: Solvent Extraction and spectrophotometry	10
	i. Spectrophotometric determination of aspirin/phenacetin/	
	caffeine in APC tablet using solvent extraction	
	ii. Colorimetric determination of iron with salicylic acid.	
	iii. Determination of copper in brass sample by colorimetry.	
	Unit 7: Data Interpretation Exercises	4
	i. NMR/Mass spectra	
	ii. HPLC and GC chromatograph	
	iii. XRD powder pattern of cubic systems	
	iv. Thermogram of coordination compounds	
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-out or a	
	combination of some of these. Sessions shall be interactive in nature	to
	enable peer group learning.	
References /	1. J. H. Kennedy, Analytical Chemistry Principles, Saunders College	
Readings:	Publishing, 2 nd Ed., 1990.	
	2. G. D. Christian, Analytical chemistry, 5 th Ed., John Willey and Sor	is, 1994
	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B. Sivasanka	r,
	Vogel's Textbook of Quantitative Chemical Analysis, 6 th Ed., Pear	rson
	Education Asia 2009.	
	4. J. Elias, Collection of interesting chemistry experiments, Univers	ity
	press, 2002.	
	5. R.A. Day & A.L. Underwood, Quantitative Analysis, 6 th Ed., Prent	ice Hall,
	2001.	
	6. J. Kenkel, Analytical Chemistry for Technicians, 3 rd Ed., Lewis pub	olishers,
	2002.	
Course	1. Students will be able to standardize a material to determine an un	known
outcomes:	concentration.	
	2. Students will use statistical methods to analyse data in laboratory.	
	3. Students will be able to use different techniques for qualitative an	d
	quantitative estimation.	
	4. Students will be able to interpret TG/X-Ray/IR spectra.	

Title of the course: Fundamentals of Pharmaceutical Chemistry-II

Course Code: CHH-501

Number of Credits: 04

Prerequisites	Should have studied Pharmaceutical Chemistry at Semester I.	
for the course:		
Course Objective:	 To learn major classes of drugs w.r.t. IUPAC nomenclature, structu functional groups. To understand the SAR of selected drugs and their Mechanism of a 3. To get acquainted with the synthesis of selected drug molecules 	
Content	Classification of Chemotherapeutic Drugs: Development of the following drugs including structure activity relationship (S.A.R.), mechanisms of action (MA), outline of synthesis (\$), chemical nomenclature, generic names (GN) and side effects (SE) (outline of synthesis only of those marked\$)	
	1. Cholinergic and Adrenergic Agents, General Anaesthetics	
	and Hypotensive agents	No of hours
	Classification of cholinergic agents: Drugs acting on cholinergic nervous system: Bethanechol\$, Methacholine\$, Neostigmine, Pyridostigmine, Parathion, Malathion, Atropine, Dicyclomine\$, Tropicamide\$, Papaverine,	12
	Classification of adrenergic agents, Drugs acting on adrenergic nervous system: Methyldopa (MA,\$), Guanethidine, Ephedrine, Amphetamine, Tranylcypromine, Pragyline, Norepinephrine, Epinephrine, Pronethalol, Propranalol\$, Atenolol\$, Metoprolol.(SAR)	
	 Drugs acting on the central nervous system: Hypnotics and sedatives: Chloral hydrate, Phenobarbital\$, Secobarbital, Thiopental\$, Nitrazepam, (SAR) Drugs acting as anticonvulsants: Phenytoin\$, phenacemide, Clonazepam, Phensuximide, Phenobarbital, (Classification of Barbiturates), Primidone, Carbamazepine\$. Psychotherapeutic agents: Phenothiazines such as Chloropromazine, Chlorodiazepoxide\$, Oxazepam, Diazepam\$, Imipramine, Nialamide, Tranylcypromine, Pargyline. CNS stimulants: Phenmetrazine, Nikethamide\$, Iproniazid, Picrotoxines, Tetrazole, Amphetamine. 	12

)
	3. Antihistaminics, antiemetic, antiulcer drugs, Drugs used in	
	parkinsonism and Alzhemeier's:	
	Diphenhydramine, Triprolidine, Cyclizine, Promethazine\$(SAR), Cimetidine, Omeprazole (MA), Ranitidine, Sumatriptan, Ondansetron. Drugs used in Parkinsonism: Benzotronine mesylate, Levodopa, Carbidopa, Amantadine hydrochloride. Drugs for Alzheimer's diseases: Serine, Velnacrine (MA), Aniracetam.	10
	4. Cardiovascular drugs, antihypertensive agents, and	
	antibiotics:	
	 Digitoxin, Quinidine, Procainamide, Verapamil. Antihypertensive agents which elicit their action through autonomous nervous system previously described under 1 and 2, Clonidine, Hydralazine, ACE inhibitors- Enalapril and related drugs vasodilators such as Nitroglycerine, Isoxsuprine, Nylidrin, Antibiotics: Penicillin and semisynthetic penicillin's and Cephalosporins, Amoxicillin, Cloxacillin, Streptomycin, Chloramphenicol, Tetracycline and derivatives, Erythromycin. 5. Analgesics, Antipyretics and Inflammatory agents: Sodium 	10
	salicylate, Acetaminophen\$, Phenacetin, Phenylbutazone, Oxyphenabutazone\$, Naproxen\$, Probenecid, Allopurinol, Profen, Diclofenac \$. Narcotic analgesic agents: Morphine, Codeine, Meperidine, Methadone, Dextropropoxyphene. Non-narcotic analgesic agents: Dextropropoxyphene Levallorphan.	10
	 6. Neglected Tropical diseases. Background, overview of Neglected tropical diseases, (Poverty diseases) Human Schistosomiasis, African trypanosomiasis (Chagas), leishmaniasis, sleeping sickness. Nitroheterocycles, Benznidazole, Nifurtimox (\$, MA and side-effects) 	06
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignr presentations / self-study or a combination of some of these can used. ICT mode should be preferred. Sessions should be intera nature to enable peer group learning.	also be
References /	1. D. A. Williams & T. L. Lemke, Foye's principles of medicinal cher	nistry, 5 th
Readings:	edition, Lippincott Williams and Wilkins, 2006.	
	 J. M. Beale & J. M. Block, Wilson & Gisvold's Text book of Medicinal & Pharmaceutical Chemistry, Lippincott Williams and 	-

	 2004. D. J. Abraham & D. P. Rotella, Burger's Medicinal Chemistry Drug Discovery, and Development, 7th edition, John Wiley & Sons N.Y, 2010. D. Shriram, P. Yogeshwari, Medicinal Chemistry, Pearson Education, 2007. G. L. Patrick: Introduction to Medicinal Chemistry, Oxford University Press, UK. 6th edition, 2017. D. Lednicer& L. A. Mitscher, The Organic Chemistry of Drug Synthesis. (6 volume set) III. John Wiley & Sons, 2005. H. Singh & V. K. Kapoor, Medicinal and Pharmaceutical Chemistry, Vallabh Prakashan, 2010.
	8.G. R Chatwal, Medicinal Chemistry (Organic Pharmaceutical Chemistry), Himalaya Publishing house, 2002.
Course Outcome:	 Students will be able to identify the examples in different classes of drugs. Students will be able to write IUPAC names and Structure of drugs. Students will be in a position to understand the mechanism of action of
	 selected classes of drugs. 4. The students will have a clear understanding of concepts on SAR analysis. 5. The students will be able to apply synthetic organic chemistry knowledge in devising a synthesis for a drug.

Title of the course: Drug Product Formulation, Development and Manufacture

Course Code: CHH-502

Number of Credits: 04

Prerequisites	Should have studied Pharmaceutical Chemistry at Semester I.	
for the course:		
Course	1. To understand the concept of drug dosage forms,	types of
Objective:	formulations and pilot plant processes.	.,
	2. To study the drug formulation development with	specific
	examples.	
Content	1. Introduction and Classification:	
	Introduction to drugs, Dosage Forms & Drug Delivery system –	
	Definitions of Common terms. Development of dosage forms:	No of
	Four stage development including preformulation.	hours
	Preformulation studies, objectives, factors to be considered,	
	study protocol, including prototype development, scale up	
	studies and commercialization. For example analysing	15
	polymorphs using ultraviolet, infra-red, solid state NMR, DSA-	
	DTA and X-Ray Crystallography. Drug Regulation and control,	
	pharmacopoeias-formularies, sources of drug, drug	
	nomenclature, routes of administration of drugs products their	
	advantages and disadvantages, need for a dosage form,	
	classification of dosage forms & brief description, study of	
	excipients.	
	2. Pilot plant	
	Scale up techniques, Benefits of pilot plant- Broad guidelines	
	of process development. General Consideration. Industrial	15
	manufacturing method and flow charts of sulphamethoxazole,	15
	Rifampicin, Chloramphenicol maleate, Actinobolin, BTZO43,	
	Piperaquine, Propranolol hydrochloride.	
	3. Pharmaceutical manufacturing operations	
	Brief discussion on unit operations and types of equipments/	
	machines used. Unit operations like size reduction,	15
	mixing/blending, drying, compression, granulation, coating	10
	etc. Three most frequently used unit operations within	
	biopharmaceutical manufacturing, that includes	
	chromatography, virus filtration, and tangential flow filtration (TFF), Quality by design (QbD): Fundamentals of	
	pharmaceutical quality by design (QDD): Fundamentals of	
	quality attributes, critical material attributes, critical process	
	parameters and quality risk management.	
	parameters and quanty lisk management.	

	 4. Dosage forms-formulation components, manufacturing and QC Types of dosage forms: Liquids-monophase & biophase including ENT preparation, sprays. Semisolid eg. Ointment, creams, gels, liniment, paste, lotion etc. Solid dosage forms eg. Tablets-Types of tablets, capsules, granules, powders, pastilles, lozenges, Sterile dosage forms eg. Injectables and ophthalmic preparations. Suppositories etc. Routes of drug administration, their advantages and disadvantages. Details pertaining to manufacturing processes for variety of dosage forms as listed above. Quality control evaluation of the dosage forms for assurance. 	15
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignment presentations / self-study or a combination of some of these can a used. ICT mode should be preferred. Sessions should be interact nature to enable peer group learning.	also be
References / Readings:	 L. V. Allen Jr., N. G. Popovich, H. C. Ansel, Ansel's pharmace dosage forms and drug delivery systems, Lippincott Williams & W 2005. R. K. Khar, Lachman/Lieberman's The Theory and Practice of Ind Pharmacy, 4th Edition, CBS Publishers & Distributors, 2020. G. Banker, Modern Pharmaceutics, Marcel Dekker, Inc, 2002. S. J. Carter, Dispensing for Pharmaceuticals students, CBS Publi & Distributors, Delhi, 2007. J. P. Remington, Remington's Pharmaceuticals Sciences, Publishers, 1990. M. E. Aulton, Pharmaceutics Science of Dosage forms and a Kevin Taylor Elsevier, Health Sciences Division, 2001. 	Vilkins, <i>lustrial</i> lishers Mack
Course Outcome:	 Students should will be able to formulate APIs. Students will be able to apply this knowledge for formulation experiments in laboratory. Students will be able to evaluate formulations qualitatively. Students will be able to understand Pharmaceutical manufac operations 	cturing

Title of the course: Drug Design, Discovery and Development

Course Code: CHH-503

Number of Credits: 04

Prerequisites	Should have studied Pharmaceutical Chemistry at Semester I.	
for the course:		
Course Objective:	 To make the students well versed with theories of drug actio To make the students understand the Structure Activity Relationship studies citing various examples. To acquaint the students with the concepts ofdrug designing molecular modelling. To introduce various terms involved in patenting and IPR. 	
Content	1. Introduction to Drug design, Lead compounds and Pro-drug	No of
	Concept.	hour
		S
	Development of new drugs: Introduction, procedure followed in drug design, the search for lead compounds, molecular modification of lead compounds, prodrugs and soft drugs, prodrug; introduction, prodrug formation of compounds containing various chemical groups, multiple prodrug formation, soft drugs; design of soft drugs.	12
	2.SAR and QSAR Studies in drug discovery Structure-Activity Relationship (SAR): Factors effecting bioactivity, resonance, inductive effect, isosterism, bioisosterism, spatial considerations, biological properties of simple functional groups. 4-5 illustrative examples depicting structural activity relationship studies. Theories of drug activity, occupancy theory, rate theory, induced-fit theory. Quantitative structure-activity relationship (QSAR): history and development of QSAR, drug receptor interactions, the additivity of group contributions, physico- chemical parameters, lipophilicity parameters, electronic parameter, ionization constants, steric parameters, chelation parameters, redox potential, indicator-variables, quantitative models.	12
	3. QSAR Approaches in drug designing and modern methods in discovery Hansch analysis- Advantages and drawbacks. Free-Wilson analysis, Advantages and drawbacks. Their application, relationship between Hansch and Free-Wilson analysis (the mixed approach), non-linear relationship, Introduction to other QSAR approaches- Free Topliss Method-Postulates and Illustration.	12

	Introduction to molecular modelling using computers and docking, uses of molecular modelling manual use, further computer programming.	
	4.Designing of Enzyme Inhibitors as drugs Structure-based drug design: Process of structure based drug design, deactivation of certain drugs necessary for T cell functioning, determination of the active site with special reference to chymotryspin, design of inhibitors. Design of Enzyme Inhibitors, 9-alkylpurines, 9-mercaptopurines and allopurines, active site directed irreversible enzyme inhibition, suicide enzyme inactivators.	12
	5. Development of New drugs High throughput screening. Drug Design software's and its applications. Intellectual property rights, patents, industrial designs, geographical indications, trademarks, trade secrets. Patentable inventions. Patentable drugs. Role of patents in Pharmaceutical industry. Trade related aspects (TRIPS), international & regional agreements. Patent writing for drug designed. Examples of new drugs developed.(5 examples with one designing strategy)	12
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignm presentations / self-study or a combination of some of these can a used. ICT mode should be preferred. Sessions should be interac nature to enable peer group learning.	also be
References / Readings:	 S. S. Pandeya and J. R. Dimmock, An Introduction to Drug Desig Age International (P) Ltd. Publishers, 2007. M. E. Wolff., Burger's Medicinal Chemistry and Drug Discovery, Vo 9 and 14), John Wiley and Sons, New York, 1997. Alen-Gringauz, Introduction to Medicinal Chemistry, 1st edition, V VCH,1996. D. Lednicer and L. A. Mitscher, The Organic Chemistry of Drug Syn Vol. I to V, John Wiley, 2005. Alen-Gringauz, Introduction to Medicinal Chemistry, Wiley-VCH, 1 R.B. Silverman, Organic Chemistry of Drug design and Drug action edition, Academic Press, 2014. A. Leach, Molecular Modelling: Principles and applications, 2nd ed Pearson India, 2001. Norman Bailey, Statistical methods in Biology, 3rd edition, Cambrid University Press, 1995. P. Krogsgaard-Larsen, U. Madsen, T. Liljefors A Textbook of Drug D 	I I (Ch Viley- thesis, .997. n, 3 rd ition,

	· · · · · · · · · · · · · · · · · · ·
	and Development, 2 nd edition, CRC Press, 1996.
	10. G. Jolles and R. H. Wooldridge, Drug Design–Fact or Fantasy, Academic
	Press, 1984.
	11. E. B. Roche, Design of Biopharmaceutical properties through prodrug
	and analogs, Am. Pharm. Assoc. Academy of Pharm. Sci., 1977.
	12. G. L. Patrick, An Introduction to Medicinal Chemistry, 2 nd edition,
	(Indian edition), Oxford University Press, 2001
	13. N.R. Subbaran, What everyone should know about Patent, Pharma
	Book Syndicate, 2005.
	14. Current Patent Acts of various countries.
	15. P. W. Grubb, Patents for Chemicals, Pharmaceuticals & Biotechnology,
	4 th edition, Oxford University Press, 2005.
Course	1. Students will be able to explain the theories of drug action.
Outcome:	2. Students will have a clear understanding of concepts on SAR analysis
	and will be able to apply Quantitative Structure Activity Relationship
	knowledge in drug designing.
	3. Students will be able to analyze the effect of different functional
	groups on the biological activity of drugs.
	4. The students will be able to illustrate an example of drug designing
	by molecular modelling.
	5. The students will be able to explain the terms in patents.

Title of the course: Biopharmaceutics and Pharmacokinetics

Course Code: CHH-504

Number of Credits: 04

Prerequisites	Should have studied Pharmaceutical Chemistry at Semester I.	
for the course:		
Course Objective:	 To learn ADMET. Drug absorption drug distribution Drug a Drug metabolism and excretion. To learn how bioavailability is important in understanding efficacy of a drug product. 	
Content	1. Introduction: Definitions, ADME, concentration time profile, plotting the data, different fluid compartments and blood flow rate compartment models, biological half life, elimination rate constant. Biopharmaceutics and pharmacokinetics in drug research.	No of hours 08
	2. Drug Absorption, Dissolution and Distribution GIT Absorption of drugs: Mechanism, physico-chemical, biological and pharmaceutical factors affecting drug absorption through GIT. Techniques for the GIT absorption assessment. mechanisms of drug absorption, factors affecting drug absorption: Biological, physiological, physico-chemical and pharmaceutical. Noyes-Whitney's dissolution rate law, study of various approaches to improve dissolution of poorly soluble drugs, In-vitro dissolution testing models, In-vitro-in- Vivo correlation. Factors affecting drug distribution, volume of distribution, protein binding – factors affecting, significance and kinetics of protein binding.	12
	3.Drug Metabolism and Excretion Metabolism of drugs, Xenobiotics, Drug metabolizing organs and enzymes (microsomal &nonmicrosomal), Chemical pathways - Phase I reactions (Oxidative, reductive and hydrolytic reactions) and Phase II reactions (Conjugation), Significance of cytochrome P ₄₅₀ oxidation – reduction cycle, Factors affecting biotransformation of drugs. Renal excretion – Glomerular filtration, Active tubular secretion, Active (or) passive tubular reabsorption. Factors affecting renal excretions of drugs. Non renal excretions – Biliary, pulmonary, salivary, mammary, skin/dermal, gastrointestinal and genital excretions	12

4. Ob De of Pro eq Me ab Bio bio 5. Pro kin dif pro Ph of firs inj De	drugs (Any two types). Bioavailability and Bioequivalency studies ojectives and considerations in bioavailability studies, efinitions, federal requirements, methods of determination bioavailability using blood and urinary excretion data. otocol design for bioavailability assessment. Concept of quivalence, Methods for bioequivalence determination. easurements of bioavailability, Determination of the rate of osorption, Bioequivalence studies and its importance. opharmaceutical classification of drugs, Importance of opharmaceuticals. Pharmacokinetics: otein and tissue binding: Factors affecting protein binding, netics of protein binding, determination of rate constant and fferent plots (direct, scatchard and reciprocal), Implication of otein binding on pharmacokinetic parameters. marmacokinetic characterization of drugs: Pharmacokinetics	12
Ob De of Pro eq Me ab Bio bio 5.1 Pro kin dif pro Ph of firs inj De	bjectives and considerations in bioavailability studies, efinitions, federal requirements, methods of determination bioavailability using blood and urinary excretion data. otocol design for bioavailability assessment. Concept of quivalence, Methods for bioequivalence determination. easurements of bioavailability, Determination of the rate of psorption, Bioequivalence studies and its importance. opharmaceutical classification of drugs, Importance of opharmaceuticals. Pharmacokinetics: otein and tissue binding: Factors affecting protein binding, netics of protein binding, determination of rate constant and fferent plots (direct, scatchard and reciprocal), Implication of otein binding on pharmacokinetic parameters.	12
De of Pro eq Me ab Bio bio 5.1 Pro kin dif pro Ph of firs inj De	efinitions, federal requirements, methods of determination bioavailability using blood and urinary excretion data. otocol design for bioavailability assessment. Concept of quivalence, Methods for bioequivalence determination. easurements of bioavailability, Determination of the rate of psorption, Bioequivalence studies and its importance. opharmaceutical classification of drugs, Importance of opharmaceuticals. Pharmacokinetics: otein and tissue binding: Factors affecting protein binding, netics of protein binding, determination of rate constant and fferent plots (direct, scatchard and reciprocal), Implication of otein binding on pharmacokinetic parameters.	12
bic 5. I Pro kin dif pro Ph of firs inj De	opharmaceuticals. Pharmacokinetics: otein and tissue binding: Factors affecting protein binding, netics of protein binding, determination of rate constant and fferent plots (direct, scatchard and reciprocal), Implication of rotein binding on pharmacokinetic parameters.	
5. I Pro kin dif pro Ph of firs inj De	Pharmacokinetics: otein and tissue binding: Factors affecting protein binding, netics of protein binding, determination of rate constant and fferent plots (direct, scatchard and reciprocal), Implication of otein binding on pharmacokinetic parameters.	
Pro kin dif pro Ph of firs inj De	otein and tissue binding: Factors affecting protein binding, netics of protein binding, determination of rate constant and fferent plots (direct, scatchard and reciprocal), Implication of rotein binding on pharmacokinetic parameters.	
kin dif pro Ph of firs inj De	netics of protein binding, determination of rate constant and fferent plots (direct, scatchard and reciprocal), Implication of otein binding on pharmacokinetic parameters.	
firs inj De		
Va viv ph Mo ph Ch ph ph	drugs following one/ two compartment open models with est order elimination kinetics as applied to rapid intravenous jection, Intravenous transfusion and oral administration. etermination of absorption rate constant using Wagner- elson, Loo Riegelman methods. Non Linear Pharmacokinetics: arious causes of non-linearity, Michaelis-Menten kinetics, In- vo estimation of Km and Vm. Case studies. Physiologic narmacokinetics models: Mean Residence Time; Statistical oment Theory; Application and limitations of physiologic narmacokinetic models. Miscellaneous Topics: nonopharmacokinetics, Drug toxicity and forensic narmacokinetics, kinetics of maternal-fetal drug transfer, narmacokinetics v/s pharmacological/ clinical response, etabolic kinetics.	16
pre use na	ainly lectures and tutorials. Seminars / term papers /assign resentations / self-study or a combination of some of these ca sed. ICT mode should be preferred. Sessions should be inter ature to enable peer group learning.	n also be ractive in
Readings: 2.	 M. Gibaldi, Biopharmaceutics and Clinical Pharmacokina edition, Philadelphia, Lea & Febiger, 1991. D.M. Brahmankar& Sunil B. Jaiswal, Biopharmaceut Pharmacokinetics: A Treatise, Vallabh Prakasan, Pitambur 1998. L Sharjel. & A. B. C. Yu, Applied Biopharmaceut Pharmacokinetics, 2nd edition, Connecticut, Appleton Centur 	tics and ra, Delhi, tics and

	1985.
	4. J. Swarbrick., Lea & Febiger, Current Concepts in Pharmaceutical
	Sciences: Biopharmaceutics, Philadelphia, 1970.
	5. H. M. Abdou, Dissolution, Bioavailability and Bioequivalence, Mack
	Publishing Company, Pennsylvania, 1989.
	6. R. E. Notari, Biopharmaceutics and Clinical Pharmacokinetics-An
	Introduction, 4 th edition, Marcel Dekker Inc, New York and Basel,
	1987.
	7. J. G. Wagner and M. Pernarowski, Biopharmaceutics and
	<i>RelevantPharmacokinetics</i> , 1 st edition, Drug intelligence Publications,
	Hamilton, Illionois, 1971.
	8. J. Swarbrick, J. C. Boylan, Encyclopedia of Pharmaceutical Technology,
	Vol. I, 2 nd edition, Marcel Dekker Inc, New York, 2002.
	9. S. K. Niazi, Textbook of Biopharmaceutics and Clinical
	Pharmacokinetics, BSP Books Private Limited, 2010.
	10. Niazi, S. K., Handbook of Bioequivalence Testing, 1 st edition, CRS
	Press, 2007.
Course	1. Students will be able to relate drug absorption to bioavailability.
Outcome:	Students will be able to get an in depth knowledge of drug
	metabolism concept.
	3. Students will be able to understand Bioavailability
	4. Students will be able to understand Pharmacokinetics

Title of the course: Practical Course in Pharmaceutical Chemistry-III

Course Code: CHH-600

Number of Credits:4

Prerequisites	Should have studied the courses at M.Sc. Part-I.	
for the		
course		
Course	1.To translate certain theoretical concepts learnt earlier into expe	rimental
Objective:	knowledge.	
	2.To provide hands-on experience of laboratory techniques requ	ired for
	drugsyntheses, analysis and purification.	
Content	1. Syntheses of drugs and drug like entities (Minimum 8	No of
	experiments of 6h each)	hours
	a) Phenothiazine from diphenylamine	
	b) Propranolol from α-Naphthol	48
	c) Eosin from Fluorescein	
	d) Gramine from Indole	
	e) 3-Methyl-1-phenyl pyrazolone from phenyl hydrazine	
	f) Schiff base of Antipyrine with p-bromobenzaldehyde	
	g) Methyl Salicylate from Salicylic acid	
	h) Sulphanilamide from p-acetamido benzene sulphanilamide	
	i) Chlorbutanol from acetone	
	j) 1,2,3,4-Tetrahydrocarbazole from cyclohexanone	
	k) 1,5-Benzodiazepine from acetophenone	
	I) Ethyl Nalidixate from 2-amino-6-methylpyridine	
	m) 2-Phenyl Benzothiazole from 2-Amino thiophenol	
	n) 2-Methylbenzimidazole from o-phenylene diammine	
	o) Monastrol from thiourea, ethylacetoacetate and 3-	
	hydroxybenzaldehyde p) Substituted chalcone from 4-	
	chlorobenzaldehyde (Claisen Schmidt condensation)	
	2. Selected experimentsin organic synthesis (Minimum 3	12
	experiments of 4h each)	
	a) p-lodotoluene from p-toluidine. (Diazotisation)	
	b) Cinnamic acid from benzaldehyde (Perkin reaction)	
	c) Benzanilide from benzophenone (Beckmann Rearrangement)	
	d) Vanillin to Vanillyl alcohol (using NaBH ₄)	

e) Me	thyl orange from sulphanilic acid (coupling diazotization	
proces		
-	zhydrol from Benzaldehyde (Grignard reaction)	
	metric assay of the following bulk drug/tablets. (Any 2)	6
	acetamol, Isoniazid, Dapsone, Metronidazole, Calcium	
Glucon	late	
4. Spec	ctrophotometric assay of the following tablets. (Any 2)	6
Allop	ourinol, Propranolol, p-Aminosalicylic acid	
5.Disso	olution Experiments (Any 2)	
Carban	nazepine tablets, Diclofenac, Ibuprofen, Isoniazid	8
6. Qua	lity Control Evaluation of Tablets (1 experiment)	4
Hard	ness tests, friability testing and disintegration testing to be	
perfor	med.	
7. Chr	omatographic techniques	
a. T	hin Layer Chromatography (Any 1)	20
i.	To identify the given drug amongst the Ibuprofen, Aspirin	
	and caffeinecitrate with the help of thin layer	
	chromatography and calculate its Rf value.	
ii.	To identify the given sulpha drug amongst the	
	sulphacetamide, sulphanilamide and trimethoprim with the	
	help of thin layer chromatography and calculate its Rf value.	
b. Colu	ımn Chromatography (Any 1)	
i.	Salicylic acid and Acetylsalicylic acid	
ii.	p-Aminobenzoic acid and Benzocaine	
iii.	Benzil and Dilantin	
iv.	Salicylaldehyde and 3-Acetyl coumarin	
с. Н	PLC analysis of the following drugs and combination of	
drugs:	(Any 2)	
	i. Paracetamol	
i	ii. Ibuprofen	
ii	ii. Celecoxib	
iv	v. Sulphanilamide	
	v. Diclofenac sodium and Paracetamol in combined	I

	dosage form.	
	8. Identification of following drugs by IR spectroscopy (Any 2)	4
	Celecoxib, Antipyrine, Chloramphenicol, Sulphanilamide	
	 9. Drug Design Experiments Use of software packages in chemistry for the following: Towrite a computer program to obtain a slope and intercept forlinear data using least square fit. a. Use of ChemDraw, ISISDraw for drawing structures, chemicalreactions, equations. b. Molecular docking softwares such as Hex software orautodocking. 	12
	 c. Energy minimization of molecules and finding intermolecularinteractions of small molecule with macromolecule such as Coxinhibitor, thymidilate synthase, glycogen synthase, E.Coli protein. (Any 2) d. Viewing Tools and Graphics Tools: Rasmol (http://www.umass.edu/microbio/rasmol/) VMD (http://www.umass.edu/microbio/rasmol/) Molscript (http://www.avatar.se/molscript/) e. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares. f. 2D based experiments. 	
Pedagogy	Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiment to the conduct of each experiment.	
References	1. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley	/
/Readings	Interscience Publication 1990,	
	 J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text B Quantitative Chemical Analysis, revised by G.H. 6th Ed., Pearson Education Publication, 2007. Indian Pharmacopoeia., United States Pharmacopoeia, Pharmacopoeia. European Pharmacopoeia. JEF Reynolds, Martindale, The Extra Pharmacopoeia Pharmaceutical Press, London, 1989. M. Jahangir, Pharmaceutical Laboratory Procedures, 1st Ed., Network 	Jeffery, British a, The

Cengage Learning India Pvt. Ltd. 2010.	
5. A. Kar, Advanced Practical Medicinal Chemistry, New Age	
International Limited Publishers 2004.	
7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook	
of Practical Organic Chemistry, 5 th Ed., Prentice Hall 2011.	
 N.K. Vishnoi, Advanced Practical Organic Chemistry, South Asia Books, 2010. 	
 L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. 	
10.R. K. Bansal, Laboratory Manual in Organic Chemistry, 5 th Ed. New Age International, 2016.	
.1. S. Delvin, Green Chemistry, Sarup& Sons, 2005.	
12. J. Mohan, Organic Analytical Chemistry, Narosa Publishing House, 2014.	
13. F. D. King, Medicinal Chemistry: Principles and	
Practice, Royal Society of Chemistry: Cambridge, 1994.	
.4. K. V. Raman, Computers in Chemistry, Tata Mc.Graw-Hill,	
1993.	
15. S. K Pundir, A. Bansal, Computers for Chemists,	
Pragati Prakashan, 2010.	
16. A. Leach, Molecular Modelling, Principles and	
applications, Longman, 1998.	
. Students will be in a position to perform synthesis of drugs.	
2. Students will be in a position to understand stoichiometric requirements	
in drug syntheses.	
B.Students will be able to analyse drug spectrophotometrically and	
chromatographically	
Students will be able to carry out purification of drug by column	
separation.	
. Students will be able to apply this knowledge for their dissertation work.	

Title of the course: Practical Course in Pharmaceutical Chemistry-IV

Course Code: CHH-601

Number of Credits:4

Prerequisites	Should have studied the courses at M.Sc. Part-I.	
for the		
course		
Course	1. To translate certain theoretical concepts learnt earlie	r into
Objective:	experimental	
	knowledge.	
	2. To provide hands-on experience of laboratory techniques require	ed for
	drug syntheses, analysis and purification.	
Content	1. Syntheses of drugs and drug like entities (Minimum 8	No of
	experiments of 6h each)	hours
	a. 2-Phenylbenzimidazole from o-phenylene diammine and	
	benzoic acid	48
	b. 6-Bromo-2-chloro-3-formylquinoline from acetanilide	
	c. Schiff base of Antipyrine with p-Chlorobenzaldehyde	
	d. Sodium benzoate from Salicylic acid	
	e. Sorbic acid from crotonaldehyde	
	f. Barbiturate from diethyl-n-butylmalonate	
	g. Tolbutamide from p-toluene sulphonamide	
	h. 1,4-dihyropyridine from ethylacetoacetate	
	i. 2-MethylBenzothiazole from 2-Amino thiophenol	
	j. Substituted of 2'-hydroxychalcone (Claisen Schmidt	
	condensation)	
	k. Synthesis of azo-stilbene compounds	
	2. Selected experimentsin organic synthesis (Minimum 3	<mark>12</mark>
	experiments of 4h each)	
	a)Benzhydrol from benzophenone (Reduction)	
	b) p-lodobenzoic acid from p-aminobenzoic acid (Diazotization)	
	c) 3-Acetylindole from Indole (Friedal Crafts reaction)	
	d)Acetophenone oxime to Acetanilide (Beckmann Rearrangement)	
	e) Enzymatic reduction of ethylacetoacetate using Baker's yeast	
	f) Terephthalic acid from p-xylene (Oxidation process).	
	3.Titrimetric assay of the following bulk drug/tablets. (Any 2)	6

	errous sulphate, Chlorpheniramine Maleate , Benzyl Penicillin, henobarbitone	
Chlo	Dectrophotometric assay of the following tablets. (Any 2) roquine phosphate (CHP) Zolmitriptan. Promethazine HCl, methacin,	6
5.Dis	ssolution Experiments (Any 2)	
Sacc	harin, Celecoxib, Chlorpheniramine maleate, Chloramphenicol	8
Harc	uality Control Evaluation of Capsules (1 experiment) Iness tests, friability testing and disintegration testing to be ormed.	4
a) i. ii. b) Co	 hromatographic techniques Thin Layer Chromatography (Any 1) To identify the given drug amongst the paracetamol, acetanilide, and caffeine citrate with the help of thin layer chromatography and calculate its Rf value. To identify the given sulpha drugs amongst the Dapsone, sulphaacetamide and trimethoprim with the help of thin layer chromatography and calculate its Rf value. blumn Chromatography (Any 1) Benzil and Benzilic acid Glycine and Hippuric acid o-phenylene diamine and 2,3-diphenylquinoxaline Salicylaldehyde and coumarin PLC analysis of the following drugs: (Any 1) Methyl Dopa Sulphaacetamide 	20
	entification of following drugs by IR spectroscopy (Any 2) cocaine, Caffeine, Phenytoin, Suphaacetamide	4
	rug Design Experiments of software packages in chemistry for the following: Towrite a	12

	computer program to obtain a slope and intercept forlinear data
	using least square fit.
	a. Use of ChemDraw, ISISDraw for drawing structures,
	chemicalreactions, equations.
	b. Molecular docking softwares such as Hex software
	orautodocking.
	c. Energy minimization of molecules and finding
	intermolecularinteractions of small molecule with
	macromolecule such as Coxinhibitor, thymidilate synthase,
	glycogen synthase, E.Coli protein. (Any 2)
	d. Viewing Tools and Graphics Tools:
	Rasmol (http://www.umass.edu/microbio/rasmol/)
	VMD (http://www.ks.uiuc.edu/Research/vmd/)
	Molscript (http://www.avatar.se/molscript/)
	e. Determination of log P, MR, hydrogen bond donors and
	acceptors of selected drugs using softwares.
	2D based experiments.
Pedagogy	Students should be given suitable pre- and post-lab assignments and
	explanations revising the theoretical aspects of laboratory experiments
	prior to the conduct of each experiment.
References	1. 1. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley
/Readings	Interscience Publication 1990.
	2. 2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of
	Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson
	Education Publication, 2007.
	3. 3. Indian Pharmacopoeia., United States Pharmacopoeia, British
	Pharmacopoeia. European Pharmacopoeia.
	4. 4. J.E.F. Reynolds, Martindale, The Extra Pharmacopoeia, The
	Pharmaceutical Press, London, 1989.
	5. 5. M. Jahangir, Pharmaceutical Laboratory Procedures, 1 st Ed., New Delhi
	Cengage Learning India Pvt. Ltd. 2010.
	6. 6.A. Kar, Advanced Practical Medicinal Chemistry, New Age
	International Limited Publishers 2004.
	7. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's
	Textbook of Practical Organic Chemistry, 5 th Ed., Prentice Hall 2011.
	8. 8. N.K. Vishnoi, Advanced Practical Organic Chemistry, South Asia Books,

	2010.	
	9. 9. L. F. Fieser, K. L. Williamson, Organic Experiments, 7 th Ed., D. C. Heath,	
	1992.	
	10. R. K. Bansal, Laboratory Manual in Organic Chemistry, 5 th Ed. New Age	
	International, 2016.	
	11. S. Delvin, Green Chemistry, Swarup & Sons, 2005.	
	12. J. Mohan, Organic Analytical Chemistry, Narosa Publishing House, 2014.	
	13.F. D. King, Medicinal Chemistry: Principles and	
	Practice, Royal Society of Chemistry: Cambridge, 1994.	
	14.K. V. Raman, Computers in Chemistry, Tata Mc.Graw-Hill,	
	1993.	
	15.S. K Pundir, A. Bansal, Computers for Chemists,	
	Pragati Prakashan, 2010.	
	16.A. Leach, Molecular Modelling, Principles and	
	applications, Longman, 1998.	
Course	1. Students will be in a position to perform synthesis of drugs.	
Outcome:	2. Students will be in a position to understand stoichiometric requirements	
	in drug syntheses.	
	3. Students will be able to analyse drug spectrophotometrically and	
	chromatographically	
	4. Students will be able to carry out purification of drug by column	
	separation.	
	5. Students will be able to apply this knowledge for their dissertation work.	

Title of the course: Retrosynthetic Approach and Heterocyclic Drug Synthesis

Course Code: CHH-604

Number of Credits:4

Prerequisites	Students should have studied Pharmaceutical Chemistry course	es at M.Sc.
for the course	Part-I.	
Course	1.To apply the knowledge gained in organic synthesis for m	naking new
Objective:	molecules.	
	2.To understand various strategies involved in retrosynthesis	of organic
	molecules	
	3.To understand the concepts of heterocyclic chemistry in drug d	esigning
	4. To be able to propose routes for synthesis of heterocycles	
Content	1. Synthon approach and retrosynthetic applications	No of
	a. Basic principles, terminologies and advantages of	hours
	retrosynthesis; guidelines for dissection of molecules.	
	Functional group interconvertion and addition (FGI and	12
	FGA)	
	b. C-X disconnections; C-C disconnections – alcohols and	
	carbonyl compounds; 1,2-, 1,3-,1,4-, 1,5-, 1,6-	
	difunctionalized compounds	
	c. Strategies for synthesis of three, four, five and six-	
	membered ring. (General review problems to be	
	discussed for above approaches)	12
	2. Disconnection strategies	12
	a. Disconnection of heteroatom and heterocyclic	
	compounds such as ethers, amines, heterocycles, amino acids	
	b. Convergent and divergent synthesis	
	c. Strategic devices for carbon-heteroatom bonds,	
	polycyclic compounds: the common atom approach	
	d. Considering all possible disconnections	
	e. Alternative FGI's before disconnection- the cost of	
	synthesis	
	f. Features which dominate strategy, functional group	
	addition and molecules with unrelated functional groups	
	3. Protecting groups	12
	a. Role of protection in organic synthesis	

	b. Protection for the hydroxyl group, including 1,2-and1,3-	
	diols: as ethers, esters, carbonates, cyclic acetals & ketals	
	c. Protection for the carbonyl group: as acetals and ketals	
	d. Protection for the carboxyl group: as amides and	
	hydrazides, esters	
	e. Protection for the amino group: as carbamates and amides.	
	Heterocyclic Chemistry: Introduction, classification and	12
	nomenclature of mono- and bicyclic heteroaromatic molecules.	
	Organic Name reactions with their respective mechanism and	
	application involved in synthesis of drugs containing five, six	
	membered and fused heterocyclics such as Debus-Radziszewski	
	imidazole synthesis, Knorr Pyrazole Synthesis Pinner Pyrimidine	
	Synthesis, Combes Quinoline Synthesis, Bernthsen Acridine	
	Synthesis, Smiles rearrangement and Traube purine synthesis.	
	5. Synthesis of representative drugs with retrosynthetic	
	approach	
	Retrosynthetic approach and synthesis of few representative	
	drugs containing these heterocyclic nucleus such as	12
	Metronidazole, Miconazole, Celecoxib, Alprazolam,	
	Triamterene, Sulfamerazine, Trimethoprim,	
	Hydroxychloroquine, Quinacrine, Prochlorpherazine,	
	Chlorpromazine, Theophylline, Mercaptopurine and	
	Thioguanine.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /ass	ignments /
	presentations / self-study or a combination of some of these	can also be
	used. ICT mode should be preferred. Sessions should be interactive	ve in nature
	to enable peer group learning.	
References /	1. S. Warren, Designing Organic Synthesis, John Wiley & Sons, 200	9.
Readings	2. G. S. Zweifel, M. H. Nantz, P. Somfai, Modern Organic Sy	
	Introduction, 3 rd Ed. W. H. Freeman and Company, New York, 2	2022.
	3. J. Clayden, N. Greeves & S. Warren, Organic Chemistry, Oxford,	
	4. J. A. Joule, K. Mills & G. F. Smith, Heterocyclic Chemistry, 3rd	Ed., Wiley-
	Blackwell, 1995.	
	5. J. A. Joule & K. Mills, <i>Heterocyclic Chemistry</i> , 5 th Ed., Wiley-Black	well, 2010.
	6. T. L. Gilchrist, <i>Heterocyclic Chemistry</i> , Pitman Publishing, 2005.	
	7. R. M. Acheson, An Introduction to Chemistry of Heterocyclic (Compounds,
	3 rd Ed., John Wiley and Sons, 1977.	
	8. D. W. Young, Heterocyclic Chemistry, Longman Group Ltd., Long	don, 1975.

	9. A. Weissberger & E. Taylor, Chemistry of Heterocyclic	
	Compounds, Vol. 47, Wiley Publishers, 1987.	
	10. A. R. Katritzky, Advances in Heterocyclic Chemistry, 1 st Ed., Academic	
	Press Inc., Vol.47,1990.	
	11. R. O. C. Norman and J. M. Coxon. <i>Principles of Organic Synthesis</i> , 3 rd Ed.,	
	CRC Press,2009.	
	12. Stephen R Wilson & Anthony W Czarnik, Combinational Chemistry –	
	Synthesis and applications, Wiley – Blackwell, 1997.	
	13.V.K Ahluwalia and R. Agarwal, Organic Synthesis - Special Techniques,	
	Narosa Publishers, 2001.	
	14. D. Shriram, P. Yogeshwari, Medicinal Chemistry, Pearson Education,	
	2007.	
	15. D. Lednicer& L.A. Mitcher <i>Organic Chemistry of Drug Synthesis</i> Vol.	
	l to III. John Wiley & Sons, 2005.	
	16. Drug Preparation	
	Database.http://www.drugfuture.com/synth/synth_query.asp	
Course	1.Students will be in a position to understand how a carbon-carbon bond	
Outcome:	can	
	be constructed and/or cleaved	
	2.Students will be in a position to understand how retrosynthesis can be	
	used in finding out easily available chemical precursors for making molecules	
	3.Students will be in a position to apply retrosynthetic strategies and propose routes for synthesis of containing heterocycles	
	4.Students will be able to understand and apply the concepts of the	
	reactivity of heterocycles towards electrophilic, nucleophilic, reducing and oxidizing reagents.	
	5.Students will be able to apply this knowledge for their dissertation work.	
L		

Title of the course: Research Methodology in Pharmaceutical Chemistry and instrumental

<u>techniques</u>

Course Code: CHH-605

Number of Credits:4

Prerequisites	Students should have studied chemistry courses at MSc-I.	
Course	1. To introduce various aspects of research methodology.	
Objective:	2. To provide understanding ethics & scientific conduct	
	3. To introduce academic writing	
	4. To introduce databases used in chemistry	
	5. To provide understanding and importance of lab safety.	
	6.To understand the usefulness of various instrumental techn	iques in
	characterization of chemical compounds.	
	7. To provide knowledge about tissue culture for pharmacological s methods.	creening
Content	Unit 01: Introduction to Research Methodology	No of
	a. Research- meaning, objectives, motivation, types and	hours
	methodology.	
	Process- formulating the research problem; literature survey;	5
	developing the hypothesis and the research design; sample	
	design and collection of the data; execution of the project;	
	analysis of data; testing of hypothesis; generalizations and	
	interpretation, and preparation of the report or presentation of	
	the results & conclusions.	
	Unit 02: Scientific conduct and ethics	5
	a. Ethics: definition, nature of moral judgements and	
	reactions, Ethics with respect to science and research	
	b. Intellectual honesty and research integrity	
	c. Scientific misconducts: Falsification, Fabrication, and	
	Plagiarism (FFP)	
	d. Redundant publications: duplicate and	
	overlappingpublications	
	e. Selective reporting and misrepresentation of data	
	Unit 03. Academic writing	5
	a. Publication ethics: definition, introduction and importance	
	b. Conflicts of interest	

- Dublication microaduate definition concert muchleme	
 Publication misconduct: definition, concept, problems that lead to unethical behaviour and vice versa 	
d. Violation of publication ethics, authorship and	
contributorship	
e. Identification of publication misconduct, complaints and	
appeals	
f. Predatory publishers and journals	
Unit 04. Data bases and research metrics	3
Databases: 1. Indexing databases 2. Citation databases: Web of	5
Science, Scopus, UGC-Care List etc.	
Research Metrics: 1. Impact Factor of journal as per Journal	
Citation Report, SNIP, SJR, IPP, Cite Score 2. Metrics: h-index, g	
index, i10 index etc	
Unit 06. Safety in Chemistry	5
a. Good laboratory practices.	-
b. Handling of various chemicals, solvents & glassware.	
c. Fires and fighting with fires.	
d. Hazardous substances, classification and handling	
e. Safety Data Sheet	
Unit 06. Softwares in Chemistry	7
a. Data plotting	
b. Structure Drawing	
c. Molecular docking softwares	
5. Instrumental methods of analysis:	20
Demonstration and/ or data analysis in following techniques.	
a. Elemental analysis: CHNS analysis and AES	
b. Infrared (IR), Raman, Ultraviolet-Visible (UV-Vis)	
c. Nuclear magnetic resonance (¹ H, ¹³ C)	
d. Chromatographic techniques: HPLC, GC,	
e. Hyphenated Techniques: LC-MS & GC-MS,	
f. Diffraction methods: XRD	
g. Thermal analysis: DSC	
6. Animal Tissue Culture for pharmacological screening	10
a. Basic concepts	
b. Laboratory safety and Biohazards	
c. Role of media components	
d. Handling and storage of cell lines	
e. Cell culture technique	

	f. Types of cell culture system
Pedagogy	Mainly lectures/recorded video lectures/ tutorials, discussions, seminars,
	internal exams/ assignments, / demonstration/ self-study or a combination
	of some of these. ICT mode should be preferred. Sessions should be
	interactive in nature to enable peer group learning.
References /	1. C.R. Kothari. Research Methodology: Methods & Techniques New Age
Readings	International Pvt. Ltd., 2004.
	2. Bird, A. Philosophy of Science. London:Routledge. 2006.
	3. Anne M. Coghill & Lorrin R. Garson, The ACS Style Guide: Effective
	Communication of Scientific Information, OXFORD University press 2006.
	4. Y K Singh Fundamentals of Research Methodology & Statistics, New Age
	International Pvt. Ltd., 2006.
	5. Prudent practices in the laboratory: handling and management of
	chemical hazards, The National Academies Press, USA, 2011.
	6. B.S. Furniss, A.J. Hannaford, V. Rogers, P.W.G. Smith & A. R. Tatchell.
	Vogel's Textbook of Practical Organic Chemistry, 5 th Ed., ELBS London, 2007.
	 E.A. V. Ebsworth, D. W. H. Rankin & S. Craddock, Structural Methods in Inorganic Chemistry, ELBS, 1987.
	8. R.S. Drago. Physical Methods in Chemistry, W. B. Saunders Company, 2016.
	9. R. M. Silverstein, G. C. Bassler& T.C. Morrill, Spectrometric Identification of organic Compounds, 5 th Ed., John Wiley 1991
	10.J. Mendham, R.C. Denny, J. D. Barnes & M. Thomas, Vogel's Textbook of Quantitative Chemical Analysis 6 th Ed., Pearson Education Asia, Delhi,
	11.H. V. Keer, Principles of the Solid State new Age International, 1994 12.G.D. Christian, Analytical Chemistry, 6 th Ed., Wiley, 2004.
	13.D. A. Skoog, D. M. West, F. J. Holler & S. R. Crouch. Fundamentals of
	Analytical Chemistry Cengage learning 9 th Ed., 2013.
	14.D. A. Skoog, F. J. Holler & S. R. Crouch. Principles of Instrumental
	Analysis,7 th Ed., Cengage learning 2017
	15.D. Pavia, G. Lampman, G. Kriz& J. Vyvyan, Introduction to Organic
	Spectroscopy 5 th Ed, Cengage Learning, 2015.
	16.V. Rajaraman, Computer Programming in Fortran 90 And 95, PHI
	Learning Pvt. Ltd., 2013.
	17.A. Szabo & N. S. Ostlund, Modern Quantum Chemistry Introduction to Advanced Electronic Structure Theory, Dover Publications, Inc. Mineola,

r	
	New York 1989.
	18.F.D. King, Medicinal Chemistry: Principles and Practice, Royal Society of
	Chemistry, 1994.
	19.K.V. Raman, Computers in Chemistry, Tata Mc.Graw Hill, 1993.
	20.S.K Pundir, A. Bansal, Computers for Chemists, Pragati Prakashan, 2010.
	21.A. Leach, Molecular Modelling, Principles and applications, Longman
	Publications, 1998.
	22.R. R. Spier, J. B. Griffiths, Animal Cell Biotechnology, Academic Press,
	London, 1990.
	23.E. J. Gareth, Human Cell Culture Protocols, Humana Press.1996.
	24.E. Julio, Celis, Cell Biology-A Laboratory Hand Book, Vol. I-IV, 2 nd Ed.,
	Academic Press, New York. 1998.
	25.M. Butler, Animal Cell Technology, 2 nd Ed., BIOS Scientific Publishers, U.K.
	2004.
	26.R. T. Freshney, Culture of Animal Cells, 5 th Ed., John Wiley and Sons,
	New York. 2006.
Course	1.Students will be able to apply the concepts of research methodology
Outcome:	during their research work.
	2.Students will be able to apply computer technology to solve their research
	problems in chemistry.
	3. Students will know in advance the safety precautions to be taken in the
	chemical lab.
	4. Students will gain fundamental knowledge on characterization
	techniques.
	5.Students will acquire adequate knowledge on animal tissue culture.

Title of the course: Polymers in Pharmaceuticals and novel drug delivery systems

Course Code: CHH-621

Number of Credits:4

Prerequisites	Students should have studied the courses in M.Sc. Part I.	
for the		
course		
Course	1. To learn classification synthesis and properties of polymers.	
Objective:	2.To learn the role of polymers in drug delivery systems.	
	3.To learn new innovations in drug delivery systems	
Content	1. Brief history of natural and synthetic polymers	No of
	Classification & nomenclature of polymers, functionality concept-	hours
	linear, -branched and -cross linked polymers. Introduction to	
	biodegradable polymers:General methods of synthesis,	8
	properties, mechanism of biodegradation in the body. Analytical	
	methods for monitoring biodegradation processes of	
	environmentally degradable polymers. Characterization and	
	evaluation of biodegradable polymers.	
	2. Introduction to Novel drug delivery systems	10
	Foundations of drug delivery in a conceptual and mathematical	
	context. Drug deliverycarriers, routes of administration.Recent	
	developments in responsive polymers, polymer therapeutics, and	
	advanced systems designed for molecular recognition or	
	engineered for intracellular delivery of novel	
	therapeutics.Polymeric devices for drug delivery systems:	
	Diffusion-controlled (monolithic devices), solvent-activated	
	(swelling- or osmotically-controlled devices), chemically	
	controlled (biodegradable), or externally-triggered systems (e.g.,	
	pH, temperature).	
	3. Types of polymers for novel drug delivery systems	8
	Poly lactic-co-glycolic acid (PLGA), PGA(poly glycolic acid),	
	Polyglutamic acid (PGA), Polylactic acid, PNIPAAm [Poly(N-	
	isopropylacrylamide)], pHEMA[Poly 2-hydroxyethyl methacrylate],	
	PPy [Polypyrrole], PAMAM [Poly (amidoamine)], DEXTRAN.	
	4. Types of drug delivery systems	8
	Theory of controlledrelease drug delivery systems.	
	Microencapsulation – Methods of encapsulation. Transdermal	

	drug delivery systems – Theory, formulation, production and	
	evaluation. Targeted drug deliverysystems – concept of drug	
	targeting, importance in therapeutics.	
	5.Advanced biopolymeric systems for drug delivery	14
	Critical Points in Biopolymeric-Controlled Release Matrix Systems,	
	Biopolymeric Gels in Drug Delivery, In Situ Polymeric Gels for	
	Topical Drug Delivery, Smart Polysaccharide Hydrogels in Drug	
	Delivery and Release, Polysaccharide-Based Nanoparticles:	
	Nanocarriers for Sustained Delivery of Drugs, Polysaccharide-	
	Based Nanocarriers for Oral Delivery of Insulin in	
	DiabetesLiposomes and Dendrimers for Advanced Drug Delivery,	
	Marine Polysaccharides Systems for Drug Delivery applications.	
	6.Recent Innovations in polymeric drug delivery systems and its	12
	applications	
	Recent innovations in conventional dosage form like tablets,	
	capsules, sterile dosage forms, pellets, Mucoadhesive system,	
	GRDDS, peptide drug delivery, supercritical fluid technique,	
	PEGylation, Nanoparticulate drug delivery. Sustained In Vitro and	
	In Vivo Delivery of Metformin from Plant Pollen-Derived	
	Composite MicrocapsulesPolymeric Hydrogels for Controlled Drug	
	Delivery to Treat ArthritisAdvancements in Rectal Drug Delivery	
	Systems: Clinical Trials, and Patents Perspective. Future	
	opportunities and challenges.	
Pedagogy	Lectures/ tutorials/ project work/ industry visits/viva/seminars,	
	papers/assignments/ presentations/ self-study/Case Studies etc	
	combination of some of these. Sessionshall be interactive in nat	ture to
	enable peer group learning.	
References /	1. V. R. Gowarikar, N.V. Vishwanathan, J. Sreedhar, Polymer Scienc	e, New
Readings	Age International, 2015.	
	2. J. R. Fried, Polymer Science and Technology, PHI Pvt. Ltd., 2000.	h una a ra
	3. R. Sinha, Outlines of Polymer Technology: Manufacture of Pol	lymers,
	PHI Pvt Ltd., 2000. 4. K. Y. Saunders, Organic Polymer Chemistry, Chapman and Ha	ير الد
	1976.	aii, UN,
	5. H. R. Kircheldorf, Handbook of Polymer Synthesis, PART A Marcel Dekkar Inc., 1992.	and B,
	6. R. P. Brown, Handbook of Plastic Test Methods, 2 nd Ed.,George C	Godwin
	Ltd., 1981.	

	Standard Dalaman Chamistry An Interduction 2 nd Ed. Outand
	Stevens, Polymer Chemistry- An Introduction, 2 nd Ed., Oxford
	ress, 1990. Alia Navy Matheoda in Dahman Cyntheoia Dalawy Draeg Itd. NY
	1ijs, New Methods in Polymer Synthesis, PelnumPress Ltd., NY,
1992.	
	a, Polymer Chemistry, Anmol Publications 2001.
	rraher, Polymer Chemistry, New York M. Dekker 2005.
	menz, Polymer Chemistry, CRC Press, 2007.
	lvaraj, Advanced Polymer Chemistry, New Delhi Campus books,
	ess, 2008.
	e, Principles of polymer Chemistry, Springer 2012.
14. J. David	, Polymers, Oxford University Press 2015.
15. U.S. B	eans, A.K. Beckett & J.E. Caralem, Advances in Pharm
Sci,Vol	1-4, Elsevier, 2009.
16. G.S.	Banker, Modern Pharmaceutics, Dekker Incorporated,
Marcel,	2002.
17. L. Lli	un& S. S. Davis, Polymer in Controlled Drugs
Delivery	y, Wright, Bristol, 1987.
18. J. R.	Crompton, Analysis of Polymer- An Introduction,
Pergam	on Press, Oxford, 1989.
19. M. P.	Steven, Polymer Chemistry An Introduction, New
York, O	xford, Oxford University Press, 1990.
20. M. Ch	arin, Biodegradable Polymers as Drug Delivery Systems,
Informa	a HealthCare, 1990.
21. A.H. Be	ckett & J. B. Stenlake, Practical Pharmaceutical Chemistry Vol I
&II, CBS	Publishers, 2005.
22. P. J. Sir	nko, Martin's Physical Pharmacy and Pharmaceutical Sciences,
6 th Ed.,	Lippincott William and Wilkins, 2006.
23. S.J. Ca	rter, Cooper and Gunn's Tutorial Pharmacy, 6 th Ed., CBS
Publish	er Ltd, 2008.
24. Indian F	Pharmacopoeia, British Pharmacopoeia.
25. J.R. Ro	binson & Vincent H.L. Lee, Controlled Drug Delivery,
Drugs	and Pharm. Sci. Series, Vol. 29, Marcel Dekker Inc. N.Y,
987.	
26. J.R. Ju	liano, Drug Delivery Systems, Oxford University Press,
Oxford,	1980.
27. M.I.	Gutcho, Microcapsules and Microencapsulation
Technic	ues, Noyes Data Corporation, 1976.
28. A. Lend	lein&A. Sisson, Handbook of Biodegradable Polymers: Isolation,

	at a
	Synthesis, Characterization and Applications, 1 st Ed., Wiley Publishers,
	2011.
	29. V. V. Ranade & J. B. Cannon, Drug Delivery Systems, 3 rd Ed., CRC Press,
	2011.
	30. A.K. Nayak & Md. S. Hasnain, Advanced Biopolymeric Systems for Drug
	Delivery, 1 st Ed., Springers, 2020.
	31. V.A. Guerrera, Innovative Polymers for controlled drug delivery,
	Pharmaceutics, 1 st Ed., Vol.14, Multidisciplinary Digital Publishing
	Institute, 2022.
Course	1. Students will be able to identify the type of polymers that can be used
Outcome:	for drug delivery systems.
	2. Students will be able to get the knowledge of innovative drug delivery
	systems and apply it for their lab project.
	3. Students will be able to understand the Advanced biopolymeric systems
	for drug delivery
	4. Students will be able to understand the new innovations in drug
	delivery systems

Title of the course: Pharmacotherapeutics

Course Code: CHH-622

Number of Credits:4

Prerequisite	Students should have studied the courses in M.Sc. Part I.	
s for the		
course		
Course	1. To enable the students to understand the different approaches	to treat
Objective:	and manage various disease conditions.	
	2. To impart knowledge and skills in optimizing drug therapy of a p	atient by
	personalizing the treatment.	
	3. To summarize the therapeutic approach for management of	^f various
	diseases.	
	4. To explain the rationale for drug therapy and plan through eviden	ce-based
	medicines.	
Content	1. Diseases of central nervous system: Epilepsy, Parkinson's	No of
	disease, Stroke, Headache, Alzheimer's disease, Neuralgias and	hours
	Pain pathways and Pain management. Psychiatric disorders:	
	Schizophrenia, Depression, Anxiety disorders, Sleep disorders, drug	10
	induced psychiatric disorders.	
	2. Infectious diseases: General guidelines for the rational use of	10
	antibiotics and surgical prophylaxis, urinary tract infections,	
	respiratory tract infections, Gastroenteritis, tuberculosis, malaria,	
	bacterial endocarditis, septicemia. meningitis, HIV and	
	opportunistic infections, rheumatic fever, dengue fever, H1N1,	
	helmenthiasis, fungal infections. Neglected tropical diseases:	
	leishmaniasis, schistosomiasis, chagas, sleeping sickness.	
	3. Diseases of cardiovascular and respiratory system:	10
	Hypertension, Congestive cardiac failure, Acute coronary	
	syndrome, Arrhythmias, Hyperlipidemias, Asthma, Chronic	
	obstructive airways disease, Drug induced pulmonary diseases.	
	4. Diseases of gastrointestinal system: Peptic ulcer diseases, Reflux	10
	esophagitis, Inflammatory bowel diseases, Jaundice & hepatitis,	10
	Cirrhosis, Diarrhoea and Constipation, Drug-induced liver disease.	
	5.Oncologicaldisorders: General principles of cancer	8
		0
	chemotherapy, pharmacotherapy of breast cancer, lung cancer,	

	head & neck cancer, hematological malignancies, management of nausea and vomiting, Palliative care.	
	6. Other Diseases	12
	Bone and joint disorders: Rheumatoid arthritis, osteoarthritis, gout,	
	osteoporosis. Dermatological Diseases: Psoriasis, eczema and	
	scabies, impetigo, drug induced skin disorders. Ophthalmology:	
	Conjunctivitis, glaucoma.	
	Diseases of renal system: Acute renal failure, chronic renal failure,	
	renal dialysis, drug induced renal disease. Gynaecological disorders:	
	Dysmenorrhea, hormone replacement therapy. Endocrine system:	
	Diabetes Mellitus, thyroid diseases. Hematological diseases:	
	Anaemia, deep vein thrombosis, drug induced hematological	
	disorders.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assign	
	presentations / self-study or a combination of some of these car	
	used. ICT mode should be preferred. Sessions should be interactive	in nature
	to enable peer group learning.	
References	1. R. Walker. Clinical Pharmacy and Therapeutics, 5 th Ed.,	Churchill
/ Readings	Livingstone publication, 2012.	
	2. J. DiPiro, Pharmacotherapy: A Pathophysiologic Approach, 7 th Ed.,	McGraw
	Hill Publishers 2008.	. hlipptic p
	 S.L.Robins, Pathologic basis of disease., 9th Ed., W.B. Saunders pt 2014. 	ublication
	4. E. T. Herfindal. Clinical Pharmacy and Therapeutics, 3 rd Ed., L Williams and Wilkins Publication, 1984.	.ippincott
	5. L.Young and M.A. Koda-Kimble, Applied Therapeutics: The clinic Drugs, 9 th Ed., Lippincott Williams and Wilkins, 2008.	al Use of
	6. C.B. Wells, S. Malone and J. P. Dipiro. Pharmacotherapy Princ practice, 4 th Ed., McGraw Hill Publication. 2016.	iples and
	7. C. M. Porth. Principles of Pathophysiology, 3 rd Ed., Lippincott Will Wilkins Publications, 2010.	liams and
	8. Harrison's Principles of Internal Medicine. (Vol1 and 2), 20 th Ed., Hill Publications, 2018.	McGraw
	 R. Mannhold& H. Buschmann, Neglected Tropical Diseases Drug I and Development, Vol 37, John Wiley and Sons, 2019. P. Hotez, Neglected Tropical Diseases, Vol 1-5(book series), Statement 	
	2022.	

Course	1. Students will be able to discuss the clinical controversies in drug therapy.
Outcome:	Students will be able to identify the patient specific parameters relevant in initiating drug.
	 Students will be able to prepare individualized therapeutic plans based on diagnosis, medicine therapy, and monitoring therapy. Students will be able understand various infectious and non-infectious diseases.

Title of the course: API Process, Manufacture and Green Chemistry

Course Code: CHH-623

Number of Credits:4

Prerequisites	Should have studied courses at M.Sc. Part-I.	
for the		
course:		
Course	1. To learn about the selected drugs.	
Objective:	2. To learn about the role of process chemistry.	
	3. To understand the process research and development of Penicill	inG
	CAS and Rabeprazole CAS	
	4. To understand the drug optimization and drug discovery.	
	5. To understand various concepts involved in green synthesis.	
	6. To understand green technologies used in chemistry.	
	7. To learn application of green chemistry approaches to pharmace	utical
	industry.	
Content	1.Process chemistry in pharmaceutical industry –	
	Background of process chemistry – role of process chemistry.	No of
	Strategy of process research & development in pharma industry.	hours
	Case studies: A practical synthesis of Ifetrobansodium. Synthesis	
	of 5-lipoxygenase inhibitors Chemistry of Vitamin D: A challenging	
	field for process researchDilevalol Hydrochloride: Development of	
	a commercial processThe process research and development of	12
	DuPont Merck's cyclic urea diols, anew class of HIV protease	
	inhibitors. Process research and development of PenicillinG CAS	
	Reg. No.[61-33-6] (antibacterial); Fosinopril CAS Reg. No.[98048-	
	97-6](antihypertensive) ; Combinatorial chemistry: Introduction –	
	Drug Optimization – Drug discovery – Solid Phase Technique –	
	parallel synthesis – Mixed Combinatorial Synthesis.	
	2.Biocatalysis, phase transfer catalysis, asymmetric synthesis and	10
	polymorphism: Biocatalysis and Engineering: An	12
	interdisciplinary approach to the manufacture of the	
	Benzodiazepine drug candidate LY 300164. Application of phase	
	transfer catalysis technology in pharmaceutical industry for drug synthesis. Asymmetric Synthesis and Enantioselectivity:	
	Enantioselective synthesis of chiral 2-hydroxycarboxylic acids and esters – asymmetric catalysis –eg.asymmetric	
	and esters – asymmetric catalysis –eg.asymmetric	

hydrogenation – L-Dopa process ;Sharpless asymmetric	
epoxidations eg.synthesis of Fluoxetine enantiomers. Chiral	
(Salen)Mn(III) Complexes in asymmetric epoxidations: Practical	
Synthesis of cis-Aminoindanol and its application to	
enantiopure drug synthesis. Practical Enantio- and Diastereo-	
selective Processes for Azetidinones.	
Polymorphism – solid state – crystallization – recrystallization of	
drug molecules eg.isolation techniques and characterization of	
polymorphs of Venlafaxine hydrochloride[99300-78-4]	
Clopidogrelbisulphate [135046-48-9] and Lorazepam[846- 49-1]	
(any two).	
3. Chemical Process safety norms: Concept of Green Chemistry,	8
its 12 principles and Green Chemistry Metrics.	
Introduction, industrial disasters of the world, definition of green	
chemistry, twelve green principles, Need for green chemistry in	
pharmaceuticals, green chemistry for better sustainability. Green	
Chemistry metrics for measuring greenness (E-factor, atom	
economy, mass intensity, process mass intensity, process mass	
efficiency, chemical yield). Waste prevention, management	
andhierarchy. Atom Economy: Calculation and predicting	
greenness of a reaction. Comparison of Diels Alder reaction and	
Wittig Reaction. Addition v/s Elimination v/s Substitution. Less	
hazardous chemical synthesis: Avoiding use of hazardous	
substances for any synthesis (Thiamine hydrochloride to be	
preferred over KCN for benzoin condensation). Role of chirality in	
the need for designing safer chemicals with illustration of	
Thalidomide.	
4. Safer solvents in chemistry. Knoevenagel condensation by	8
grinding method. Advantages and disadvantages of solvent-free	
reaction. Water as green solvent in organic synthesis (Diels Alder	
Reaction). In water and on water mechanisms. Ionic liquids as	
designer solvents with one application. Supercritical solvents and	
their application in extractions. Deep Eutectic solvent (DES) with	
example and one application. Fluorous solvents and biphasic	
extraction.	
5. Emerging greener technologies for energy efficiency and	10
catalysis	10

	Organic synthesis at ambient temperature and pressure,	
	photochemical reactions as green process (advantages).	
	Microwave assisted organic synthesis: Principle and applications.	
	Sonochemistry as a sustainable alternative for organic synthesis,	
	giving examples. Electrifying organic synthesis in designing new	
	target molecules.	
	Continuous flow synthesis as a sustainable technology for	
	pharmaceutical industry. Impact of continuous flow chemistry in	
	the synthesis of naturalproducts and active pharmaceutical	
	ingredients. Recent examples of green chemistry articles of	
	interest to the pharmaceutical industry: C-H activation, green	
	fluorination, continuous processing and process intensification.	
	6. Green Synthesis of representative drugs	10
	Multicomponent synthesis: Ugi, Biginelli, Passerni, Mannich,	
	Strecker. One-Pot Synthesis of (S)-Baclofen.Synthesis of	
	Ibuprofen, Boots (conventional) and green synthesis. Comparison	
	and atom economy. Green synthesis of Paracetamol, Aspirin,	
	Celecoxib, Sildenafil citrate, Sertraline, Artemisinin, Paroxetine,	
	Pregabalin, Imatinib, Simvastatin, Quinapril HCl.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignn	nents /
1 5005053	presentations / industry visits/field trips/self-study or a combina	
	some of these can also be used. ICT mode should be preferred. S	
	should be interactive in nature to enable peer group learning.	
References /	1. M. Lancaster, Green Chemistry, The Royal Society of Che	emistry,
Readings	Cambridge,UK, 2002.	
	2. V. K. Ahluwalia, Green Chemistry: Environmentally Benign Rea	actions,
	Ane Books India, New Delhi, 2006.	
	3. A. S. Matlack, Introduction to Green Chemistry, Marcel Dekke	er, Inc.,
	New York, 2001.	
	4. P. T. Anastas and T. C. Williamson, Green Chemistry: Frontiers in	benign
	chemical synthesis and processes, Oxford University Press, Oxfo	rd, Eds.
	1998.	
	1998. 5. R. Sanghi and M. M. Srivastava, Green Chemistry: Environment F	riendly
	 R. Sanghi and M. M. Srivastava, Green Chemistry: Environment F Alternatives, Narosa Publishing House, Eds. New Delhi, 2007. 	
	 R. Sanghi and M. M. Srivastava, Green Chemistry: Environment F Alternatives, Narosa Publishing House, Eds. New Delhi, 2007. Samuel Delvin, Green Chemistry, IVY Publishing House, Delhi, 20 	06.
	 R. Sanghi and M. M. Srivastava, Green Chemistry: Environment F Alternatives, Narosa Publishing House, Eds. New Delhi, 2007. 	06.

8.	P. G. Jessop and W. Leitner, Chemical Synthesis using Supercritical
	fluids, Wiley – VCH, Verlag, (Eds., Weinheim, 1999.
9.	K. Tanaka, Solvent Free Organic Synthesis, 2 nd Ed., Wiley – VCH GmbH
	and Co. KgaA, Weinheim, 2003.
10	. P. T. Anastas and J. C. Warner, Green Chemistry, Theory and Practice, Oxford University Press, N. York, 1998.
11	. C - Jun Li and T – Hang Chan, Organic Reactions in Aqueous Media, John Wiley and Sons INC., N. York, 2001.
12	. F. Z. Dorwald, Organic Synthesis on Solid Phase, Wiley – VCH Verlag, Weinheim, 2002.
13	. P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis, Wiley – VCH Verlag, Ed., Weinheim, 2003.
14	A. Loupy, Microwaves in Organic Synthesis, Wiley – VCH Verlag, Weinheim, 2002.
15	. R. V. Eldik and F. G. Klarner, High Pressure Chemistry, , Wiley – VCH Verlag, Weinheim, 2002.
16	. R. Hilfiker, Polymorphism in Pharmaceutical industry, Wiley-VCH, 2006.
	. H. G. Brittain, Polymorphism in Pharmaceutical solids, 2 nd Ed., CRC
18	Press, 1998. . C. Starks, C. Liotta, M. Halpern, "Phase-Transfer Catalysis: Fundamentals, Applications and Industrial Perspectives," Chapter 16, Chapman & Hall, New York, 1994.
19	. A. Kumar&A. Anjali, Adoption of green methodology in industry for the synthesis of sildenafil citrate and Celecoxib: case study. <u>Volume 60, Part</u> <u>2</u> , 2022, Pages 1021-1025.
20	. P. J. Harrington, Pharmaceutical Process Chemistry for Synthesis: Rethinking the Routes to Scale-Up, Wiley Publishers, 2011.
21	. J. M. DeSouza, R. Galaverna, A. A. N. De Souza, T. J. Brocksom, J. C. Pastre, R.M.A. De Souza & K. T. De Oliveira. Impact of continuous flow chemistry in the synthesis of natural products and active pharmaceutical ingredients, Anais da Academia Brasileira de Ciências ,2018, 90(1 Suppl. 2): 1131-1174.
22.	F. Fanelli, G. Parisi, L. Degennaro& R. Luisi, Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis, Beilstein J. Org. Chem. 2017, 13, 520–542.
23	Gilliland, S. Ahmad, R. N. Dominey& B. F. Gupton, Beilstein, High- yielding continuous-flow synthesis of antimalarial drug

hydroxychloroquine, J. Org. Chem. 2018, 14, 583– 592.
R. Porta, M. Benaglia, & A. Puglisi. Flow Chemistry: Recent
Developments in the Synthesis of Pharmaceutical Products. Org.
Process Res. Dev. 2016, 20, 2–25.
K. G. Gadamasetti, Process chemistry in the pharmaceutical industry,
1 st Ed., Taylor and Francis, 1999.
K. G. Gadamasetti, Process chemistry in the pharmaceutical industry:
Challenges in an everchanging climate, 2 nd Ed., Taylor and Francis,
2019.
Students will be able toacquire knowledge about the Top drugs.
Students will be to learn about the role of process chemistry and
understand the Process research and development of PenicillinG CAS
and Rabeprazole CAS
Students will be able to understand the drug optimization and drug
discovery.
Students will be in a position to understand how chemistry can be done
using greener alternatives.
Students will be able to apply green technologies as a sustainable
solution for making drug molecules.
Students will be able to understand and apply the concepts of green
chemistry to develop scalable processes in industry.

Title of the course: Pharmaceutical and Spectral Analysis

Course Code: CHH-624

Number of Credits:4

Prerequisites	Students should have studied the courses in M.Sc. Part I.	
for the course		
Course	1. To study the advanced pharmaceutical analytical techniques.	
Objective:	2. To acquire the knowledge of theory and practical skills of instrum	ents.
	3. To understand and interpret the spectral data.	
Content	1. Introduction to pharmaceutical analysis and techniques:	
	Scope and range of modern pharmaceutical analysis. Listing of	No of
	various pharmaceutical analytical techniques, with broad	hours
	discussion on their instrumentation, working and pharmaceutical	
	applications: HPLC, GC, HPTLC, DSC-DTA, XRD. Material and	10
	product specifications: Definition of specifications, study of ICH	
	Q6 guidelines and understanding of specifications through study	
	of pharmacopoeial monographs on drug substances and	
	products. Reference standards used: Types (primary, secondary,	
	working and test standards), preparation, containers, labelling,	
	storage and use. Documentation of analytical data-STPs,	
	certificate of analysis, laboratory books: Typical documents used	
	in a GLP laboratory including standard test protocols, COA and	
	laboratory notebooks. Electronic records & signatures (21CFR	
	Part-11 requirement)	
	2. Calibration and Validation: Method validation: Definition and	10
		10
	methodology, discussion on each parameter with examples,	
	special considerations in bioanalytical method validation.	
	Calibration and qualification of equipment: Difference of	
	definitions, calibration standards, calibration frequency, examples	
	of calibration of pH meter, potentiometer, Flame photometer,	
	FTIR, UV spectrophotometer and HPLC. Definition of qualification	
	process involving URS [user requirement specification], DQ, IQ,	
	OQ, CQ and PQ.	
	3. Quality and risk management in analytical laboratory:	8
		0
	Definition of quality risk management in ICH Q9 guideline. Its	

importance and application to analytical laboratory with	
examples. Quality of analysis by design. Impurity profiling: Types	
of impurities in drug substances and products. Method	
development for impurity analysis, techniques, identification and	
quantization. Management of analytical laboratory: Organization	
of laboratories based on their types, staffing, skill development	
and training, budgeting and financing, purchase of costly	
equipment, qualities of laboratory manager and management	
styles. Laboratory inspections and audit: Internal inspection,	
external audit, concepts, preparing for inspections and audits.	
4. Spectral Analysis-I	
i) Ultra Violet (UV)-visible spectroscopy and its pharmaceutical	
applications: a) Electronic excitations, Beer Lamberts Law,	
predicting UV absorption using Woodward-Fieser, Fieser-Kuhn	12
and Nelson rules; Calculation of λ max for β -Carotene, Lycopene,	
Piperine, Curcumin, Factors affecting UV spectra Non-	
conjugative effect, solvent effect, S-Cis band. Types of UV	
spectroscopic analytical techniques with illustrative examples:	
Simultaneous equation method: Paracetamol and Diclofenac	
sodium, Norfloxacin and Tinidazole,Quercetin, curcumin, and	
piperine. Difference spectrophotometric method:Leflunomide,	
Pioglitazone and metformin. Derivative spectrophotometric	
method: Quantitative assay of Diazepam. Variants of derivative	
spectroscopy: Ratio derivative: Successive ratio derivative	
spectra method, absorption ratio method with application.	
ii) Infrared (IR)spectroscopy: Principle of Infra Red spectroscopy,	
Hooke's Law, types of vibrations, Correlation of structure with IR	
spectra: Influence of substituents, ring size, hydrogen bonding,	
vibrational coupling and field effect on frequency. Applications:	
Identification of functional groups in the following	
drugs:Acyclovir, Chloroquine, Mebendazole, Ethambutol,	
Metronidazole, Dapsone, Cis-Platin, Ibuprofen, Chloramphenicol,	
Lidocaine, Aminohippuric acid, Theophylline, Determination of	
stereochemistry-Ethambutol and Methyl Dopa. Spectral	
interpretation with examples. Problem solving of UV and IR for	
structure elucidation.	
5.Spectral Analysis-II	14
Nuclear Magnetic Resonance (NMR) spectroscopy: Principle of	

		1
	proton NMR spectroscopy, chemical shift-shielding and	
	deshielding effect, magnetic anisotropic effect, TMS as	
	reference standard, spin-spin splitting-coupling constant, NMR	
	solvents and their residual peaks. Interpretation of NMR spectra	
	of some compounds and drugs (Ibuprofen, Metronidazole,	
	Morphine, Chloramphenicol, Isoniazid, Mebendazole, Lidocaine,	
	2-methylbenzothiazole, benzoxazole, pyrimidine,2-	
	phenylbenzminidazole). ¹³ C-NMR, correlation of structure with	
	spectra: Chemical environment, shielding and carbon-13	
	chemical shift, calculation, proton-coupled Carbon Spectra,	
	Protondecoupled Cspectra, Nuclear Overhauser Enhancement	
	(NOE), Distortion less Enhancement by Polarization Transfer	
	(DEPT), Heteronuclear coupling for carbon to deuterium, carbon	
	to ¹⁹ F, carbon to ³¹ P.Fluorine chemical shift Anisotropy and	
	exchange for Screening (FAXS). Three Fluorine Atoms for	
	Biochemical Screening (3-FABS). NMR for Lead optimization and	
	SAR studies. Explanation of spectra of some compounds and	
	drugs. (Fluconazole, Thiotepa, Chlorphenaramine, Dapsone,	
	Nitrogen mustard)	
	NMR problem solving for structure elucidation.	
	6.Mass spectrometry (MS): Molecular ion and metastable peak,	6
	fragmentation patterns, nitrogen and ring rules, McLafferty	
	rearrangement, electron and chemical ionization modes,	
	applications. Mass spectra of any 2 drugs.	
	(Combined UV, IR, NMR, Mass Problems for structure	
	elucidation)	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assign	nents /
	presentations / self-study or a combination of some of these can	also be
	used. ICT mode should be preferred. Sessions should be intera-	ctive in
	nature to enable peer group learning.	
References /	1. F. Rouessac& A. Rouessac, Chemical Analysis: Modern Instrume	entation
Readings	Methods and Techniques, 2 nd Ed., Wiley Publishers, 2013.	
	2. M. Valcarcer, Principles of Analytical Chemistry, 2000 th Ed., Sp	oringers,
	2012.	
	3. M. E. Swartz& I. S. Krull, Analytical Method Development and Val	idation,
	1 st ed., 1997, CRC Press.	
	4. J. P. Seiler, Good Laboratory Practices, Springer, 2001.	
	5. D. A. Skoog, F. J. Holler & T. A. Nineman, Principles of Instru	umental

	l +k)
	Analysis, 7 th Ed., 2018.
	6. S. Ahuja & S. Scypinski, Handbook of Modern Pharmaceutical Analysis, 2 nd
	Ed., Elseviers Publishers, 2010.
	7. R. F. Venn, Principles and Practice of Bioanalysis, CRC Press, 2008.
	8. D. L Pavia, Gary M Lampman, George S Kriz, James A Vyvyan.
	Spectroscopy, 3 rd Ed., Thomson learning, 2001.
	9. W. Kemp, Organic Spectroscopy, 3 rd Ed., New York Palgrave, 2019.
	10. D. H. Williams & I. Fleming, Spectroscopic Methods in Organic
	Chemistry, 5 th Ed., McGraw Hill, 1995.
	11. R. M. Silverstein, F. X. Webster & D. J. Kiemie, Spectrometric
	Identification of Organic Compounds, 7 th Ed., Wiley and Sons, 2005.
	12. J. R. Dyer, Applications of Absorption Spectroscopy of Organic
	Compounds, Prentice Hall of India Pvt.Ltd., 1978.
	13. D.M. Atole& H. H. Rajput, Ultraviolet spectroscopy and its
	pharmaceutical applications-A brief review, Asian J Pharm Clin Res, Vol
	11, Issue 2, 2018, 59-66.
	14. P. Agarwal, NMR Spectroscopy in Drug Discovery and Development,
	Materials and Methods, 2014, 4, 599.
	15. M. Pellecchia, D. Sem & K. Wuthrich, NMR in drug discovery. Nat. Rev.
	Drug Discov., 2002;1:211-9.
	16. Y. Zhong , K. Huang, Q. Luo, S. Yao, X. Liu ,N. Yang, C. Lin ,& X. Luo,
	The Application of a Desktop NMR Spectrometer in Drug Analysis,
	Hindawi International Journal of Analytical Chemistry, Volume 2018,
	Article ID 3104569.
	1. H.W. Dibbem, UV and IR Spectra of some important drugs, Annals of
	Pharmacotherapy, Vol.15 (2), Editio Cantor Aulendorf Publishers, 1978.
	2. D. T. Rossi & M. Sinz, Mass Spectrometry in Drug Discovery, 1 st Ed.,
	Taylor and Francis, 2001.
	3. I. Sunshine &M.Caplis, CRC handbook of mass spectra of drugs, Boca
	Raton Fla: CRC Press, 1981.
Course	1. Students will be able understand various pharmaceutical analytical
Outcome:	techniques.
	2. Students will be able to apply this knowledge to various pharmaceutical
	industries.
	3. Students will be able to explain all characterization techniques for
	pharmaceutical products.
	4. Students will be able to analyse spectral data.

Title of the course: Bioorganic and Medicinal Chemistry

Course Code: CHH-625

Number of Credits:4

Prerequisites	Students should have studied the courses in M.Sc. Part I.	
for the course		
Course Objective:	 To understand the concepts of bioorganic chemistry and medicinal ch To study in brief about carbohydrates, nucleic acids and enzyme cher To introduce the topic of biomimetics. To acquire knowledge on biosynthesis of natural products. To understand the concept of drugs as enzyme inhibitors. To synthesize selected drugs and understand its mechanism. 	-
Content	 Introduction to Bioorganic chemistry: Basic concepts, definition, Proximity effects in organic chemistry and overlapping subject biochemistry and organic chemistry, Molecular adaptation, Molecular recognition. Carbohydrates, Nucleic acids and Protein Chemistry. Chemical structure and properties of nucleosides, nucleotides, nucleic acids. The biological and biochemical mechanisms of DNA replication and transcription.The structure of amino acids and the primary, secondary and tertiary structure of peptides and proteins. Determination of configuration of Glucose (Fischer's proof). Cyclic structure of glucose. Mutarotation Haworth projections. Lobry de Bruyn-van Ekenstein rearrangement; stepping–up (Kiliani- Fischer method) and stepping– down (Ruff's &Wohl's methods) of aldoses; end-group interchange of aldoses. Linkage between monosachharides, structure of disacharrides (sucrose, maltose, lactose.) 	No of hours 4 6
	3. Enzyme Chemistry: Introduction, Nomenclature, classification and extraction of enzymes, Introduction to catalysis and enzymes; Multifunctional catalysis, Intramolecular catalysis, mechanism of enzyme action, factors responsible for enzyme specificity, enzyme activity and kinetics (Michaelis Menten and Lineweaver–Burk plots), enzyme inhibitions (Reversible and irreversible), structure, mechanism of action and applications of α -Chymotrypsin, Ribonuclease, lysozyme and Carbopeptidase-A. Enzymes in synthetic organic chemistry. [Reactions to be covered-Additions, eliminations, substitutions,	8

12
12
12
12
12
12
12
10
10

	Druger Contennil Atended Druge esting on CNC. (a) CNC Stimulant
	Drugs: Captopril, Atenolol. Drugs acting on CNS: (a) CNS Stimulant :
	Dextro-amphetamine (b) Respiratory Stimulant : Doxapram (c) CNS
	anti-depressant : (i) Chlorpromazine (Antipsychotic) (ii)
	Diazepam(Anxiolytic) (iii) Phenobarbital (Antiepileptic) (d) Anaesthetic
	Drugs: (a) General : Ketamine (b) Local : (i) Lidocaine. Antibiotics:
	Amoxycillin. Antimycobactrial: Ethambutol. Antiviral: Acyclovir.
	Antimicrobial: Sulfamethoxazole. Antidiabetics: Tolbutamide (k).
	Antineopastic Drugs: (a) Antagonist: Fluorouracil (b) Alkylating agents:
	i) Chlorambucil (ii) Cis-Platin. Antimalarial: Hydroxychloroquine
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /
	presentations / self-study or a combination of some of these can also be used.
	ICT mode should be preferred. Sessions should be interactive in nature to enable
	peer group learning.
References /	1. D. A. Williams & T. L. Lemke, Foye's principles of medicinal chemistry,
Readings	5th edition, Lippincott Williams and Wilkins, 2006.
	2. J. M. Beale & J. M. Block, Wilson & Gisvold's Text book of Organic
	Medicinal & Pharmaceutical Chemistry, Lippincott Williams and Wilkins;
	2004.
	3. D. J. Abraham & D. P. Rotella, Burger's Medicinal Chemistry Drug
	Discovery and Development, 7th edition, John Wiley & Sons N.Y, 2010.
	4. D. Shriram, P. Yogeshwari, <i>Medicinal Chemistry</i> , Pearson Education,
	2007.
	5. G. L. Patrick: Introduction to Medicinal Chemistry, Oxford University
	Press, UK. 6th edition, 2017.
	6. D. Lednicer& L. A. Mitscher, <i>The Organic Chemistry of Drug</i>
	Synthesis. (6 volume set) III. John Wiley & Sons, 2005.
	7. H. Singh & V. K. Kapoor, <i>Medicinal and Pharmaceutical Chemistry</i> ,
	Vallabh Prakashan, 2010.
	8. G. R Chatwal, <i>Medicinal Chemistry</i> (Organic Pharmaceutical
	<i>Chemistry</i>), Himalaya Publishing house, 2002.
	9. N. K. Tripathi & R. C. Verma, <i>Bioorganic and Medicinal Chemistry, Theory and</i>
	<i>Practicals</i> , Thakur Publications Pvt Limited, 2021.
	10.T. M. Kutchan, Alkaloid biosynthesis – the basis for metabolic engineering of
	medicinal plants. Plant Cell, 1995. 7, 1059-1070.
	11. Y. Bar-Cohen, <i>Biomimetics: Nature-Based Innovation</i> , CRC Press, 2012.
	12. I. L. Finar, Organic Chemistry: Stereochemistry and the Chemistry of Natural
	Products, Pearson Education India, 2002.
	13. K. Nakanishi, Natural Product Chemistry, Academic Press, 2013.

	14. D. R. Dalton, The Alkaloids. New York: M. Dekker, 1979.
	15. D. Barton & W. D.Olis, Comprehensive Organic Chemistry, Pergamon, 1979.
	16. D. Paul, Medicinal Natural Products: A Biosynthetic Approach, John Wiley and
	Sons, 2002.
	17. M. Paolo, Biosynthesis of Natural Products, Wiley Publishers, 2010.
	18. J. ApSimon, The Total Synthesis of Natural Products, John Wiley and Sons,
	1992.
	19. J. M. Beale Jr. & J. Block, Wilson and Gisvold's Textbook of organic and
	medicinal chemistry, 12 th Ed.,Wolters Kluwer India Pvt. Ltd, 2010.
Course	1.Students will be able to apply the knowledge of carbohydrates, proteins,
Outcome:	nucleic acids, enzymes, co-enzymes for designing enzyme inhibitors.
	2.Students will be able to put into practice the knowledge of biomimetics.
	3.Students will be able to biosynthesize natural products.
	4.Students will be able to synthesize drugs, present structure activity
	relationship studies and also write its mechanism.

Title of the course: Pilot Plant Scale-Up Techniques for Pharmaceuticals

Course Code: CHH-602

Number of Credits:4

Prerequisites	Students should have studied the courses in M.Sc. Part I.	
for the course		
Course	1. To understand the various Pilot Plant scale-up techniques as ado	nted for
Objective:	industrial processes.	
objective:	2. To examine Pilot Plant formula to determine its ability to with stan	d Batch-
	scale and process modification	a Baton
	3. To learn unit processes involving various chemical reactions.	
	4. To learn industrial synthesis of selected list of drugs.	
	5. To learn the need for pilot plant in industry and also the f	lowchart
	on various manufacturing methods of drugs.	
Content	1. Introduction to Pilot Plant:	No of
	Definition, objectives and significance of Pilot Plant. Need to	hours
	conduct Pilot Plant studies. Uses of Pilot Plant Scale-Up. Several	
	considerations in Pilot Plant scale up activities in R and D	10
	development Scale up process. The layout of the relationship	
	between different activities during technology transfers from the	
	pilot plant to the production facility. Future developments. The	
	layout of the relationship between different activities during	
	technology transfers from the pilot plant to the production facility.	
	Limitations of pilot plant.	
	2. Unit processes for various chemical reaction types for pilot	10
	plant:	
	Concept of unit processes in systematization of chemicalreactions,	
	explanation of one example each for unit processes:Alkylation,	
	amination, (by ammonolysis, reduction),	
	carbonylation,carboxylation, condensation, dehydration,	
	diazotization,	
	disproportionation, esterification, halogenation,	
	hydration, hydroformylation, hydrogenation, hydrolysis,	
	hydroxylation, nitration, oxidation and reduction.	
	2. Inductivial Sumthania	
	3. Industrial Synthesis:	

	Introduction to pharmaceutical manufacturing – raw materials,	12
	detailed manufacturing procedure, therapeutic function,	
	commonname, chemical name, structural formulae of the following	
	drugs:Acyclovir, alprazolam, propanolol, naproxen, ibuprofen,	
	aspirin, levodopa and cimetidine, lidocaine, ethambutol	
	hydrochloride, 5-fluorouracil, amoxycillin sodium.	
	4.General Considerationsfor Pilot Plant scale up process: Reporting	10
	Responsibility: Space requirements, Personnel requirements,	
	Training, Review of the Formula, Raw Materials, Relevant	
	processing equipment, process rate and evaluation, Preparation of	
	Master Manufacturing Procedure, GMP Consideration-advantages	
	and disadvantages, Transfer of Analytical Methods to Quality	
	Assurance, Pilot plant scale up considerations for solids.	
	5. Pilot Plant Scale Up considerations for solids, oral liquids and	12
	semi-solids.	
	Layout of pilot plant, Stages of Production of Tablets, Material	
	handling, Dry blending, Granulation, Drying, Reduction of particle	
	size, Blending, Direct compression, Slugging (dry granulation	
	techniques). Process evaluation. Master Manufacturing Procedures,	
	Product, stability, and uniformity. Good Manufacturing practices.	
	Flow chart on Pilot plant process scale-up.Steps of liquid	
	manufacturing process, Critical aspects of liquid manufacturing,	
	solution, suspension, emulsions. Pilot plant scale up considerations	
	for semi-solids.Contract manufacturing: Scope and limitations	
	6. SUPAC (Scale Up and Post-approval changes guidelines) and	6
	Platform Technology: The SUPAC Guidelines define, the	
	components or composition changes, The site changes of	
	manufacture, Changes in Batch Size (Scale-Up/Scale-Down),	
	Manufacturing Changes.	
	Introduction to platform technology:Pharmaceutical Platform	
	technologies, Importance platform technology, Types of platform	
	technology.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assign	ments /
	presentations /industry visits/ self-study or a combination of some	
	can also be used. ICT mode should be preferred. Sessions sh	ould be
	interactive in nature to enable peer group learning.	
References /	7. Levin M. Pharmaceutical Process Scale-Up. New York: Marcel	Dekker,
Readings	Inc2001.	

4.	Groggins, Unit processes in Chemical Engineering, 1 st Ed., McGraw- Hill, 1958.
5.	Drydens, Unit processes in chemical engineering, McGraw-Hill Higher Education, 2004.
6.	William Andrew, <i>Pharmaceutical Manufacturing Encyclopedia</i> <i>Vol.1& II.</i> , 3rd Ed William Andrew, 2007,
7.	W.W.M. Wenland, Thermal Analysis, 2 nd Ed., John Willey & Sons, New York, 1974,
8.	S.B. Chandalia, Hand Book of Process Development, Multitech Publishing Company, Mumbai, 1998.
9.	K. G. Gadamasetti, <i>Process Chemistry in PharmaceuticalIndustries</i> , 1 st Ed., Taylor & Francis Group, 1999.
10.	Shreve's, <i>Chemical Process Industries</i> , 5 th Ed., McGraw Hill Book Company, 2000.
11.	M.V. Krishnan, <i>Safety Management in Industries</i> , Jaico Publishers, Mumbai, 2002.
12.	R. K. Khar, S.P. Vyas, F. J. Ahmad, G.K. Jain, <i>Industrial Pharmacy</i> . 4 th Ed., New Delhi: CBS Publishers & Distributors Pvt Ltd, 2013. pp. 947-1002.
13.	V. P. Shah, J.P. Skelly, W.H. Barr, H. Malinowski, G.L. Amidon. <i>Scale-up of Controlled Release Products - Preliminary Considerations</i> . Pharm Technol 1992; 16(5):35-40.
14.	N.V.N. Mounica, R.V. Sharmila, S. Anusha, L. Evangeline, M. V. Nagabhushanam, D. Nagarjunareddy. <i>Scale up and Postapproval changes (SUPAC) Guidance for Industry: A Regulatory note</i> . Int J Drug Regul. Aff., 2017; 5(1): 13-19.
15.	L. Lachman, H. A. Lieberman, J. L.Kanig: <i>The Theory and Practice of Industrial Pharmacy: Section IV: Chapter 23:Pilot Plant Scale-Up Techniques:</i> 3 rd edition, Varghese Publishing house, 2009; 681-710.
16.	J. Swarbrick, J. C. Boylan: <i>Encyclopedia of Pharmaceutical Technology:</i> <i>Pilot Plant Design, Volume 12</i> New York, 2001; 171-186.
17.	Leon Lachman, Herbert A. Lieberman, Joseph B. Schwartz: <i>Pharmaceutical dosage forms: Tablets. Volume 3</i> , 2 nd edition. 2001, 303-365.
18.	J. P. Sitompul, H.W. Lee, Y. C. Kim &W. Mathew, A. Chang: <i>Scaling-up Synthesis from Laboratory Scale toPilot Scale and to near Commercial Scale for Paste-Glue Production,</i> J. of Eng. and Tech. Sci. 2013; 45(1): 9-24.

	 J. W. Zawistowski, A.I.A. and J.D. Rago, <i>Pilot Plant Scale-Up Facilities:</i> <i>Establishing the Basis for a Design</i>, J. of Pharm. eng.july/august. 1994, 24-32.
Course Outcome:	 Students will be able to explain unit processes for various organic chemical reactions. Students will be able to apply industrial synthesis knowledge for the synthesis of drug like molecules in laboratory. Students will be able to apply the knowledge of waste effluent treatment methods. Students will be able to apply the knowledge of pilot plant scale-up techniques in industry.

Title of the course: Pharmacological and Toxicological Screening Techniques

Course Code: CHH-603

Number of Credits:4

Prerequisites	Students should have studied Pharmaceutical Chemistry courses	at M.Sc.
for the	Part-I.	
course:		
	 Part-I. 1. To learn screening methods of biological assay. 2. To learn terms involved in toxicology. 3. To learn methods of analysis for toxicology 1. Laboratory Animals, Principles of Biological Standardisation, Screening methods a. Introduction to pharmacological research. Animal ethics, regulations for conducting animal experimentation. Common laboratory animals: Description, handling and applications of different species and strains of animals. Transgenic animals: Production, maintenance and applications Anaesthesia and euthanasia of experimental animals. Maintenance and breeding of laboratory animals. CPCSEA guidelines to conduct experiments on animals Good laboratory practice. b. Statistical treatment of model problems in evaluation of 	No of hours 20
	 drugs-methods of biological assay, principles of biological assays-methods used in bioassay of vitamins, hormones, vaccines, cardiac drugs and other pharmacopeial preparations. c. Zebrafish model to screen pharmaceutical molecules Organisation of Screening for the pharmacological activity ofnew substances. Anti-inflammatory agents-carrageenan inducedpaw oedema, cotton pellet method. Anticonvulsants: Convulsions induced by chemicals, induced by electroshock, combined procedures. Sympathomimetic agents: Mydriasis, theuterus and ascending colon of the rat. 	
	2. Introduction to Toxicology: Definition and types of toxicology, Basic principles of toxicology,	12

		1
	Carcinogenicity, mutagenicity, teratogenicity, acute, sub acute	
	and chronic toxicity. Detailed toxicity (mild/moderate/severe	
	toxicology wherever applicable) and treatment of drugs such as	
	salicylates/ paracetamol, opium, quinine, ethyl alcohol, etc.	
	Toxic chemicals in the environment, impact of toxic chemicals on	
	enzymes. Biochemical effects of arsenic, lead mercury,	
	cadmium, carbon monoxide, pesticides and carcinogens	
	3. Essentials of Analytical Toxicology	12
	Physicochemical, biochemical & genetic basis of toxicity;	
	Principles of toxicokinetics, mutagenesis and carcinogenesis –	
	Behavioural, inhalation toxicity, hypersensitivity and immune	
	response, range finding tests – Acute, subacute and chronic	
	toxicity studies. Classification of Toxins: Acute toxicity tests,	
	Determination of LD50 value, Subacute tests - Histopathological	
	and biochemical estimations on toxicity induced in animal	
	models – Modern methods of analysis for Toxins-Barbiturate	
	poisoning, Amphetamine poisoning.	
	4. Safety aspects in pharmacological studies	8
	Preclinical toxicological requirements for biological and	
	biotechnological products: Safety analysis; problems specific to	
	recombinant products secondary pharmacology. Safety	
	Pharmacology - ICH S7 and S7B guidelines. Safety pharmacological	
	studies for pharmaceuticals. Safety pharmacological studies for	
	biological products.	
	5. Applications of Toxicology	8
	Clinical Toxicology, Environmental Toxicology/ Ecotoxicology	
	Forensic Toxicology/ Post-mortem, Toxicology	
	Industrial/Occupational Toxicology. Food Toxicology	
	Behavioural toxicology Preventive toxicology Descriptive	
	Toxicology Mechanistic Toxicology Regulatory Toxicology	
	Genetic Toxicology Systemic Toxicology.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assign	ments /
	presentations / self-study or a combination of some of these car	n also be
	used. ICT mode should be preferred. Sessions should be interactive	in nature
	to enable peer group learning.	
References /	1. S.K. Gupta, Uma Singh and T. Velpandian, Analytical Toxicology	

Poodings	for Deiconing Management and Toyloguigilance Marges Publishing House				
Readings	for Poisoning Management and Toxicovigilance, Varosa Publishing House, 2002.				
	2. E.G.C.Clarke, Isolation and Identification of Drugs, Body Fluids and Post-				
	 mortem Material. The Pharmaceutical Press, 1986. 3. A. K. De, Environment Chemistry, Wiley Eastern Ltd., New Delhi, 2003 				
	4. R.K. Trivedi & P.K. Goel, Chemical and Biological Methods for Water,				
	Pollution Studies, Environment Publications, Karad (India), 1984.				
	5. B. K. Sharma, Industrial Chemistry, 1 st Ed., Narosa Publishing House, 1998.				
	6. W. Andrew, Pharmaceutical Manufacturing Encyclopaedia Vol I and II,				
	Ed., William Andrew Publishing, 2007.				
	 R. A. Turner, P. Hebborn, Screening Methods in Pharmacology, Vol1 & Elsevier Science & Technology Books, 1971. 				
	8. H. G. Vogel & W. H. Vogel, Drug Discovery and Evaluation, Springer, 2006.				
	9. S. K. Kulkarni, Handbook of Experimental Pharmacology, Vallabh				
	Prakashan, Delhi, 1993.				
	10. R.S. Satoskar& S.D. Bhandarkar, Pharmacology and				
	Pharmacotherapeutics, Popular Prakashan Ltd, 2006.				
	11. Louis S. Goodman & Alfred Gillman, The Pharmacology Basis of				
	Therapeutics, McGraw-Hill Professional Publishing, 2010.				
	12. H.P. Rang & M.A. Dale, Pharmacology, Elsevier – Health Sciences Divisio				
	2011.				
	13. CPCSEA guidelines (http://cpcsea.nic.in)				
	1.Students will be able to apply the role of various screening				
	methods in bioassay.				
Course	2.Students will be able to create various in vivo and in vitro assay				
Outcome:	methods for various targets.				
	3. Students will be able to evaluate various effects of toxins.				
	4. Students will be able to analyse the safety aspects in pharmaceuticals				
	5. Students will be able to apply this knowledge for their dissertation work.				

Title of the course: Discipline Specific Dissertation

Course Code: CHC-651

Number of Credits: 16

Prerequisites	Students should have studied chemistry courses at MSc-I level.		
for the course:			
Course	To develop the skills of preparing and conducting independent		
Objective:	research.		
Content	As per OA-35	As per OA-35 No of Hours	
		480	
Pedagogy:	Dissertation carried out individually by each student throughout the		
	academic year.		
References /	As required for the development of review and methodology.		
Readings:			
Course	Students will be able to understand and apply the tools and techniques		
Outcome:	of chemistry in conducting independent research.		