

**गोंय विद्यापीठ** ताळगांव पठार गोंय - ४०३ २०६ फोन: +९१-८६६९६०९०४८



# **Goa University**

Taleigao Plateau, Goa - 403 206 Tel : +91-8669609048 Email : registrar@unigoa.ac.in Website: www.unigoa.ac.in

(Accredited by NAAC)

GU/Acad -PG/BoS -NEP/2023/78/4

Date:24.05.2023

Ref: GU/Acad –PG/BoS -NEP/2022/339/11 dated 19.08.22

#### CIRCULAR

In supersession to the above referred Circular, the updated approved Syllabus with revised Course Codes of the **Master of Science in Chemistry Programme** is enclosed.

The approved Syllabus of the **Master of Science in Chemistry** Programme (Organic, Inorganic, Analytical and Physical, Pharmaceutical Chemistry) is attached.

The Dean/ Vice-Deans of the School of Chemical Sciences/ Principals of Affiliated Colleges offering the **Master of Science in Chemistry** Programme are requested to take note of the above and bring the contents of the Circular to the notice of all concerned.

ASHWIN Digitally signed by ASHWIN VYAS VYAS LAWANDE LAWANDE Date: 2023.05.24 17:31:44 +05'30'

(Ashwin Lawande) Assistant Registrar – Academic-PG

Τo,

- 1. The Dean, School of Chemical Sciences, Goa University.
- 2. The Vice-Deans, School of Chemical Sciences, Goa University.
- 3. The Principals of Affiliated Colleges offering the Master in Sciences in Chemistry Programme.

Copy to:

- 1. The Chairperson, Board of Studies in Chemistry PG.
- 2. The Programme Director, M. Sc. Chemistry, Goa University.
- 3. The Controller of Examinations, Goa University.
- 4. The Assistant Registrar, PG Examinations, Goa University.
- 5. Directorate of Internal Quality Assurance, Goa University for uploading the Syllabus on the University website.

#### **ANNEXURE-I**

## M.Sc. Chemistry (SEM I & II) Syllabus (80 Credit course) as per NEP 2020 for AY 2022-23

| SEM I                        |                |                                                      |         |
|------------------------------|----------------|------------------------------------------------------|---------|
| Sr. No.                      | Subject code   | Paper title                                          | Credits |
| 1.                           | <u>CHO-500</u> | Fundamentals of Organic Chemistry                    | 4       |
| 2.                           | <u>CHI-500</u> | Fundamentals of Inorganic Chemistry                  | 4       |
| 3.                           | <u>CHP-500</u> | General Physical Chemistry                           | 4       |
| 4.                           | <u>CHA-500</u> | Techniques in Analytical Chemistry-I                 | 4       |
| 5.                           | <u>CHO-521</u> | Practical Course in Organic Chemistry-I              | 2       |
| 6.                           | <u>CHO-522</u> | Practical Course in Organic Chemistry-II             | 2       |
| 7.                           | <u>CHI-521</u> | Practical Course in Inorganic Chemistry-I            | 2       |
| 8.                           | <u>CHI-522</u> | Practical Course in Inorganic Chemistry-II           | 2       |
| 9.                           | <u>CHP-521</u> | Practical Course in Physical Chemistry-I             | 2       |
| 10.                          | <u>CHP-522</u> | Practical Course in Physical Chemistry-II            | 2       |
| 11.                          | <u>CHA-521</u> | Practical Course in Analytical Chemistry-I           | 2       |
| 12.                          | <u>CHA-522</u> | Practical Course in Analytical Chemistry-II          | 2       |
| SEM II (Inorganic Chemistry) |                |                                                      |         |
| 1.                           | <u>CHI-501</u> | Chemistry of Coordination & Organometallic Compounds | 4       |
| 2.                           | <u>CHI-502</u> | Chemistry of Materials                               | 4       |
| 3.                           | <u>CHI-503</u> | Concepts in Molecular Symmetry and Spectroscopy      | 4       |
| 4.                           | <u>CHI-504</u> | Concepts in Inorganic Chemistry                      | 4       |

|    |                | SEM II (Analytical Chemistry)                    |   |
|----|----------------|--------------------------------------------------|---|
| 1. | <u>CHA-501</u> | Chemical Methods of Analysis                     | 4 |
| 2. | <u>CHA-502</u> | Techniques in Analytical Chemistry-II            | 4 |
| 3. | <u>CHA-503</u> | Separation Techniques                            | 4 |
| 4. | <u>CHA-504</u> | Instrumental Methods of Analysis                 | 4 |
|    | 1              | SEM II (Organic Chemistry)                       | 1 |
| 1. | <u>CHO-501</u> | Organic Spectroscopy                             | 4 |
| 2. | <u>CHO-502</u> | Pericyclic and Organic Photochemical Reactions   | 4 |
| 3. | <u>CHO-503</u> | Synthetic Methodologies in Organic Chemistry     | 4 |
| 4. | <u>CHO-504</u> | Stereochemistry and Organic Transformations      | 4 |
|    | 1              | SEM II (Physical Chemistry)                      |   |
| 1. | <u>CHP-501</u> | Quantum Chemistry and Statistical Thermodynamics | 4 |
| 2. | <u>CHP-502</u> | Group Theory and Molecular Spectroscopy          | 4 |
| 3. | <u>CHP-503</u> | Chemical Kinetics and Thermodynamics             | 4 |
| 4. | <u>CHP-504</u> | Electrochemistry and Surface Studies             | 4 |

Course Code: CHA-500 Title of the course: Techniques in Analytical Chemistry - I

Number of Credits: 04

| Prerequisites   | Students should have studied chemistry courses at graduate level of       | or must |
|-----------------|---------------------------------------------------------------------------|---------|
| for the course: | have cleared change of discipline entrance test conducted k               | oy Goa  |
|                 | University.                                                               |         |
| Course          | 1. Learning various methods of data handling in analysis.                 |         |
| Objective:      | 2. Understanding the significance of sampling and calibration techniques. |         |
|                 | 3. Understanding principles and applications of various types of          |         |
|                 | techniques                                                                |         |
|                 | 4. Training the students to deduce structures based on IR, NN             | /IR, MS |
|                 | combined data.                                                            |         |
| Content:        | 1. Analytical Objectives and Data Handling                                | No. of  |
|                 | Importance of analytical chemistry in research and industry;              | Hours   |
|                 | statistics and data handling in analytical chemistry, standard            | 5       |
|                 | operating procedures, good laboratory practices: quality                  |         |
|                 | assurance, method validation and quality control.                         |         |
|                 | 2. Sampling and Calibration Techniques                                    | 5       |
|                 | Sampling and sample preparation, general steps in chemical                |         |
|                 | analysis, calibration of glass wares. Finding the best straight line-     |         |
|                 | least square regression, correlation coefficient; Calibration curves,     |         |
|                 | standard addition technique and internal standards. Chemical              |         |
|                 | concentrations.                                                           |         |
|                 | 3. Classical methods of Analysis                                          | 6       |
|                 | Gravimetry and Titrimetric methods, Principle, methodology,               |         |
|                 | Advantages & Disadvantages over instrumental methods.                     |         |
|                 | Conditions for identifying a given reaction as method of Analysis,        |         |
|                 | Classification of reactions in titrimetric analysis (Acid-Base, redox,    |         |
|                 | complexometric and precipitation), Standard solutions and their           |         |
|                 | preparation. Selection of Visual Indicators in titrimetric Analysis       |         |
|                 | 4. Introduction to Electroanalytical techniques                           | 4       |
|                 | Introduction to electrochemical cell, electrode potential,                |         |
|                 | Classification of electroanalytical techniques, working principles,       |         |
|                 | and their applications                                                    |         |
|                 | 5. Introduction to Inermoanalytical techniques                            | 5       |
|                 | Analysis Differential Thermal Analysis and Differential Constitution      |         |
|                 | Analysis, Differential Inermal Analysis, and Differential Scanning        |         |
|                 | Calorimetry. Numericals based on TGA.                                     | 1 Г     |
|                 | b. Introduction to Unromatographic Techniques                             | 15      |
|                 | a. Principles of chromatography, classification of                        |         |

| chromotographic tachniques based on mechanism of                |    |
|-----------------------------------------------------------------|----|
| chromatographic techniques based on mechanism of                |    |
| retention, configuration, mobile and stationary phase.          |    |
| Efficiency of separation- plate theory (theoretical plate       |    |
| concept) and rate theory (van Deemter equation).                |    |
| b. Principles and applications of Paper chromatography, thin    |    |
| laver chromatography, HPTLC, Size exclusion and Ion             |    |
| exchange chromatography. Counter-current chromatography         |    |
| for isolation of natural products                               |    |
| c. Cas and Liquid Chromatography: Introduction: Instrumontal    |    |
| C. Gas and Elquid Chromatography. Introduction, instrumental    |    |
| wodules; The Separation System; Choice of Conditions of         |    |
| Analysis; Sample Inlet Systems; Detectors; Practical            |    |
| Considerations in Qualitative and Quantitative Analysis;        |    |
| Coupled Systems-introduction to GCMS, LCMS; Applicability-      |    |
| interpretation and numericals.                                  |    |
| 7. Introduction to Spectroscopic Techniques                     | 20 |
| a. Interaction of Electromagnetic Radiation with Matter:        |    |
| Electromagnetic spectra, regions of spectrum, numericals.       |    |
| b. Ultraviolet and visible Spectroscopy: Electronic spectra and |    |
| Molecular structure: types of electronic transition,            |    |
| Chromophore and auxochrome, absorption by isolated              |    |
| chromophore conjugated chromophores aromatic                    |    |
| compounds inorganic cholatos Calculating ) may for              |    |
| Conjugated Dianas Trianas relyance of Quantumeted               |    |
| Conjugated Dienes, Trienes, polyenes, $\alpha$ ,p-unsaturated   |    |
| carbonyl compounds, Numericals. Choices and effect of           |    |
| solvents on UV-Vis. Quantitative Calculations: Beer-Lambert     |    |
| Law; Mixtures of absorbing species-laws of additivity of        |    |
| absorbance; calibration curve for calculation of unknown;       |    |
| Spectrometric errors in measurement; Deviation from Beer-       |    |
| Lambert Law - chemical deviation, instrumental deviation;       |    |
| Numericals for quantitative analysis using UV-VIS               |    |
| spectroscony                                                    |    |
| c Infrared Spectroscopy: Infrared absorption and molecular      |    |
| ctructures molecular vibrations turnes of vibrations ID         |    |
| structures, molecular vibrations, types of vibrations, IK       |    |
| spectra, overtones and bands-basis of NIR absorption.           |    |
| Spectra interpretation, Frequencies of functional group,        |    |
| Spectral Databases, Identification of unknown compounds.        |    |
| d. Spectrometric Instrumentation of UV-Vis and IR: Sources,     |    |
| monochromators, sample cells, detectors, instrumental           |    |
| wavelength and absorption calibration.                          |    |
| e. Proton and Carbon NMR Spectroscopy: Theory of NMR.           |    |
| Instrumentation. Chemical shift. factors influencing chemical   |    |
| shift solvents used in NMR spin-spin splitting coupling         |    |
| constant calculation factors influencing coupling constant      |    |
| f Mass Sportromotry, Dringing, Instrumentation and various      |    |
| i. wass spectrometry: Principle, instrumentation and various    |    |

|              | fragmentation patterns.                                                              |
|--------------|--------------------------------------------------------------------------------------|
|              | g. Conjoint spectrometry problems: Structural elucidation of                         |
|              | organic molecules using IR, UV, NMR and MS.                                          |
|              | h. Raman Spectroscopy: Theory, Basic instrumentation and                             |
|              | Structural analysis using Raman Spectra.                                             |
|              | (Note: Assignment based on all above spectrometric methods                           |
|              | should be given to student. More weightage of lectures shall be                      |
|              | given for solving IR and NMR data problems for structure                             |
|              | elucidation)                                                                         |
| Pedagogy:    | Mainly lectures and tutorials Seminars / term papers /assignments /                  |
|              | presentations / self-study or a combination of some of these can also be             |
|              | used ICT mode should be preferred. Sessions should be interactive in                 |
|              | nature to enable neer group learning                                                 |
| References / | 1 G D Christian Analytical Chemistry 6 <sup>th</sup> Ed · Wiley 2004                 |
| Readings:    | 2 I H Kennedy Analytical Chemistry: Principles 2 <sup>nd</sup> Ed.: Saunders         |
| neuungs.     | College Publishing 1990                                                              |
|              | 3 G W Ewing Instrumental Methods of Chemical Analysis 5 <sup>th</sup> Ed             |
|              | McGraw- Hill Int 1985                                                                |
|              | 4 W Kemp Organic Spectroscopy 3 <sup>rd</sup> Ed : Palgrave 1991                     |
|              | 5 D A Skoog D M West E I Hollar S B Crouch Fundamentals of                           |
|              | Analytical Chemistry 9 <sup>th</sup> Ed : Cengage learning 2014                      |
|              | 6 E I Holler D A Skoog S B Crouch Principles of Instrumental                         |
|              | Analysis 6 <sup>th</sup> Ed : Thomson Books 2007                                     |
|              | 7 H Willard I. I. Merritt I. A. Dean E. A. Settle Instrumental methods               |
|              | of Analysis 7 <sup>th</sup> Ed · HCBS Publishing 2004                                |
|              | 8 C N Banwell F M McCash Fundamentals of Molecular                                   |
|              | Spectroscopy 4 <sup>th</sup> Ed : Tata McGraw- Hill 2006                             |
|              | 9 B M Silverstein F X Webster Spectrometric identification of                        |
|              | Organic Compounds 6 <sup>th</sup> Ed : Wiley 1998                                    |
|              | 10 H Gunzler & Williams Handbook of Analytical Techniques 1 <sup>st</sup> Ed         |
|              | Wiley 2001                                                                           |
|              | 11 P. S. Kalsi Spectroscopy of Organic Compounds 2 <sup>nd</sup> Ed : New Age        |
|              | International 2000                                                                   |
|              | 12 F Pretsch P Buhlmann C Affolter Structural Determination of                       |
|              | Organic Compounds 2 <sup>nd</sup> Ed : Springer 2005                                 |
|              | 13. L. D. Field, S. Sternhell, L. R. Kalman: Organic Structures from                 |
|              | Spectra, 4 <sup>th</sup> Ed.: Wiley, 2007.                                           |
|              | 14. R. A. Day, A. L. Underwood, Quantitative Analysis, 6 <sup>th</sup> Ed.: Prentice |
|              | Hall, 2001.                                                                          |
|              | 15. B. K Sharma, Instrumental methods of chemical analysis, Goel                     |
|              | Publishing House, Meerut, 2004.                                                      |
|              | 16. K. Nakamoto, Infrared and Raman Spectra of Inorganic and                         |
|              | Coordination Compounds, 6 <sup>th</sup> Ed.; Wiley, 2009.                            |
|              | 17. P. J. Larkin, Infrared and Raman Spectroscopy: principles and                    |

|           | spectral interpretation, 2 <sup>th</sup> Ed.; Elsevier, 2018.                      |
|-----------|------------------------------------------------------------------------------------|
|           | 18. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, B. Sivasankar,              |
|           | Vogel's Text Book of Quantitative Chemical Analysis, 6 <sup>th</sup> Ed.; Pearson, |
|           | 2009.                                                                              |
| Course    | 1. Students will be able to analyse the role of statistical tools for              |
| outcomes: | determination of error and organised data management for systematic                |
|           | interpretation.                                                                    |
|           | 2. Student will be able to apply the sampling and calibration methods for          |
|           | obtaining reliable results.                                                        |
|           | 3. Students will be able to understand basic principles and scope of               |
|           | different methods of Analysis                                                      |
|           | 4. Students will be able to solve problems based on IR, NMR, MS combined           |
|           | spectral data.                                                                     |

Course Code: CHA-521 Title of the course: Practical Course in Analytical Chemistry - I

Number of Credits: 02

| Prerequisites<br>for the course: | Students should have studied chemistry practical courses at graduate le must have cleared change of discipline entrance test conducted by Goa University. | evel or |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Course                           | 1. Introduction of various experimental techniques for analysis.                                                                                          |         |
| Objectives:                      | 2. Learning data analysis, handling and interpretation of spectra.                                                                                        |         |
| Content:                         | This course consists of 7 units of experiments in various areas of                                                                                        | No of   |
|                                  | Analytical chemistry. Minimum 13 experiments which include at least                                                                                       | hours   |
|                                  | 02 experiments from unit 1-6 and 01 experiment from unit 7 shall be                                                                                       |         |
|                                  | conducted.                                                                                                                                                |         |
|                                  |                                                                                                                                                           |         |
|                                  | Unit 1: Statistics                                                                                                                                        |         |
|                                  | i. Calibration of selected Volumetric apparatus                                                                                                           | 9       |
|                                  | ii. Calibration of selected Laboratory instruments                                                                                                        |         |
|                                  | Preparation of standard solutions and standardisation.                                                                                                    |         |
|                                  | Unit 2: Colorimetry/ UV-Visible Spectrophotometry                                                                                                         | 8       |
|                                  | i. Estimation of Iron from Pharmaceutical sample (capsule) by                                                                                             |         |
|                                  | thiocyanate method                                                                                                                                        |         |
|                                  | <li>ii. Estimation of phosphoric acid in cola drinks by molybdenum<br/>blue method.</li>                                                                  |         |
|                                  | iii. Estimation of KNO <sub>3</sub> by UV spectroscopy and K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> by Visible spectroscopy                          |         |
|                                  | iv. Simultaneous determination and Verification of law of                                                                                                 |         |
|                                  | additivity of absorbances ( $K_2Cr_2O_7$ and $KMnO_4$ ).                                                                                                  |         |
|                                  | Unit 3: Flame Spectrophotometry and AFS/AAS/ICP Spectroscopy                                                                                              | 9       |
|                                  | i. Estimation of Na and K in food supplements or cosmetic                                                                                                 | 5       |
|                                  | products.                                                                                                                                                 |         |
|                                  | ii. Estimation of Pb in water sample by AES/AAS/ICP.                                                                                                      |         |
|                                  | iii. Estimation of Fe and Al in Iron ore sample by AES/AAS/ICP.                                                                                           |         |
|                                  |                                                                                                                                                           |         |
|                                  | Unit 4: Ion Exchange Chromatography and High Pressure Liquid                                                                                              | 10      |
|                                  | Chromatography                                                                                                                                            |         |
|                                  | i. Separation and Estimation of chloride and bromide.                                                                                                     |         |
|                                  | ii. Separation of Anthracene and Naphthalene using reverse                                                                                                |         |
|                                  | phase chromatography                                                                                                                                      |         |
|                                  | iii. Separation of Benzaldehyde and Benzyl alcohol using normal                                                                                           |         |
|                                  | phase chromatography                                                                                                                                      |         |

|              | Unit 5: Volumetric Titrations                                                                                                          | 10       |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|----------|
|              | i. Estimation of Ca in pharmaceutical tablet.                                                                                          |          |
|              | ii. Estimation of Al and Mg in antacid tablet.                                                                                         |          |
|              | iii. Estimation of CaO in cement.                                                                                                      |          |
|              | Unit 6: Solvent Extraction and spectrophotometry                                                                                       | 10       |
|              | i. Extraction of Cu as copper dithiocarbamate (DTC) using                                                                              |          |
|              | solvent extraction and estimation by spectrophotometry.                                                                                |          |
|              | ii. Determination of Ni as Dimethylglyoxime complex by                                                                                 |          |
|              | spectrophotometry.                                                                                                                     |          |
|              | iii. Determination of Silver as ion association complex with 1,10-                                                                     |          |
|              | Phenanthroline and Bromopyrogallol red.                                                                                                |          |
|              | Unit 7: Interpretation Exercises                                                                                                       | 4        |
|              | i. Thermal studies: TG/DTA and Isothermal weight loss studies                                                                          |          |
|              | of various hydrated solids like CuSO <sub>4</sub> ·5H <sub>2</sub> O, Ca <sub>2</sub> C <sub>2</sub> O <sub>4</sub> ·H <sub>2</sub> O, |          |
|              | $Fe_2C_2O_4$ ·2H <sub>2</sub> O.                                                                                                       |          |
|              | ii. X-ray powder diffractometry: Calculation of lattice parameters                                                                     |          |
|              | from X-ray powder pattern of cubic system such as NiMn <sub>2</sub> O <sub>4</sub> ,                                                   |          |
|              | $CoFe_2O_4$ etc.                                                                                                                       |          |
|              | iii. IR spectra of Urea, benzoic acid, Copper sulphate                                                                                 |          |
|              | pentahydrate etc.                                                                                                                      |          |
| Pedagogy:    | Prelab exercises / assignments / presentations / lab hand-out or a com                                                                 | oination |
|              | of some of these. Sessions shall be interactive in nature to enable peer                                                               | group    |
|              | learning.                                                                                                                              |          |
| References / | 1. J. H. Kennedy, Analytical Chemistry Principles, Saunders College Pub                                                                | lishing, |
| Reaulings.   | 2 G. D. Christian Analytical chemistry 5 <sup>th</sup> Ed John Willey and Sons 19                                                      | QЛ       |
|              | 3   Mendham R C Denney   D Barnes M Thomas B Siyasankar Vo                                                                             | ad's     |
|              | Textbook of Quantitative Chemical Analysis 6 <sup>th</sup> Ed. Pearson Education                                                       | Δsia     |
|              | 2009                                                                                                                                   | / (510   |
|              | 4. A. J. Elias, Collection of interesting chemistry experiments, University                                                            | v press. |
|              | 2002.                                                                                                                                  | , 1,     |
|              | 5. R.A. Day & A.L. Underwood, Quantitative Analysis, 6 <sup>th</sup> Ed., Prentice H                                                   | all,     |
|              | 2001.                                                                                                                                  | ,        |
|              | 6. J. Kenkel, Analytical Chemistry for Technicians, 3 <sup>rd</sup> Ed., Lewis publishe                                                | ers,     |
|              | 2002.                                                                                                                                  |          |
| Course       | 1. Students will be able to explain how to determine an unknown                                                                        |          |
| outcomes:    | concentration of solution.                                                                                                             |          |
|              | 2. Students will use statistical methods to analyse data in laboratory.                                                                |          |
|              | 3. Students will be able to use different techniques for qualitative and                                                               |          |
|              | quantitative estimation.                                                                                                               |          |
|              | 4. Students will be able to interpret TG/X-Ray/IR spectra.                                                                             |          |

Course Code: CHA-522 Title of the course: Practical Course in Analytical Chemistry - II

Number of Credits: 02

| Prerequisites   | Students should have studied chemistry practical courses at graduate level or                           |       |
|-----------------|---------------------------------------------------------------------------------------------------------|-------|
| for the course: | must have cleared change of discipline entrance test conducted by Goa                                   |       |
| Course          | University.                                                                                             |       |
| Objectives:     | 2 Learning data analysis, handling and interpretation of spectra                                        |       |
| Content:        | Z. Learning data analysis, nandning and interpretation of spectra.                                      | Neef  |
| Content:        | This course consists of 7 units of experiments in various areas of                                      | NO OF |
|                 | Analytical chemistry. Minimum 13 experiments which include at                                           | nours |
|                 | Teast 02 experiments from unit 1-6 and 01 experiment from unit                                          |       |
|                 | 7 shall be conducted.                                                                                   |       |
|                 | Unit 1: Statistics                                                                                      |       |
|                 | i. Calibration of selected Volumetric apparatus                                                         | 9     |
|                 | ii. Calibration of selected Laboratory instruments                                                      |       |
|                 | iii. Preparation of standard solutions and standardisation.                                             |       |
|                 | Unit 2: Titrimetric Analysis                                                                            | 8     |
|                 | i. Standardisation and estimation of Chloride using                                                     |       |
|                 | precipitation titration (Mohr's method)                                                                 |       |
|                 | ii. Analysis of commercial caustic soda by neutralisation                                               |       |
|                 | titrimetric method                                                                                      |       |
|                 | iii. Determination of sulphates by complexometric titrations                                            |       |
|                 | using EDTA.                                                                                             |       |
|                 | Unit 3: Flame Spectrophotometry and AES/AAS/ICP                                                         | 10    |
|                 | Spectroscopy                                                                                            |       |
|                 | i. Estimation of Na and K in food supplements or cosmetic                                               |       |
|                 | products using flame photometer.                                                                        |       |
|                 | ii. Estimation of chromium in water sample by AES/AAS/ICP.                                              |       |
|                 | iii. Estimation of nickel, molybdenum in Hastelloy C-22 using                                           |       |
|                 | AES/AAS/ICP.                                                                                            |       |
|                 | Unit 4: Natural product isolation and Ion Exchange                                                      | 9     |
|                 | Chromatography                                                                                          |       |
|                 | i. Isolation of cinnamaldehyde from cinnamon                                                            |       |
|                 | II. Isolation of Catterne from tea powder                                                               |       |
|                 | III. Separation and estimation of Cadmium and Zinc                                                      |       |
|                 | Unit 5: UV-Visible Spectrophotometry and High-Pressure Liquid 10                                        |       |
|                 | Chromatography                                                                                          |       |
|                 | 1 I. Estimation of KNO <sub>3</sub> and K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> using UV- Visible |       |

|              | spectroscopy                                                                                      |           |
|--------------|---------------------------------------------------------------------------------------------------|-----------|
|              | ii. Separation of Benzaldehyde and benzoic acid using reverse                                     |           |
|              | phase HPLC.                                                                                       |           |
|              | iii. Quantification of naphthalene in a sample using reverse                                      |           |
|              | phase HPLC.                                                                                       |           |
|              | Unit 6: Solvent Extraction and spectrophotometry                                                  | 10        |
|              | i. Spectrophotometric determination of aspirin/phenacetin/                                        |           |
|              | caffeine in APC tablet using solvent extraction                                                   |           |
|              | ii. Colorimetric determination of iron with salicylic acid.                                       |           |
|              | iii. Determination of copper in brass sample by colorimetry.                                      |           |
|              | Unit 7: Data Interpretation Exercises                                                             | 4         |
|              | i. NMR/Mass spectra                                                                               |           |
|              | ii. HPLC and GC chromatograph                                                                     |           |
|              | iii. XRD powder pattern of cubic systems                                                          |           |
|              | iv. Thermogram of coordination compounds                                                          |           |
| Pedagogy:    | Prelab exercises / assignments / presentations / lab hand-out or a                                |           |
|              | combination of some of these. Sessions shall be interactive in nature                             | to        |
|              | enable peer group learning.                                                                       |           |
| References / | 1. J. H. Kennedy, Analytical Chemistry Principles, Saunders College                               |           |
| Readings:    | Publishing, 2 <sup>114</sup> Ed., 1990.                                                           |           |
|              | 2. G. D. Christian, Analytical chemistry, 5 <sup>th</sup> Ed., John Willey and Son                | s, 1994   |
|              | 3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B. Sivasankar                                 | , Vogel's |
|              | Textbook of Quantitative Chemical Analysis, 6 <sup>11</sup> Ed., Pearson Edu                      | cation    |
|              | Asia 2009.                                                                                        |           |
|              | <ol> <li>J. Elias, Collection of interesting chemistry experiments, Universi<br/>2002.</li> </ol> | ty press, |
|              | 5. R.A. Day & A.L. Underwood, Quantitative Analysis, 6 <sup>th</sup> Ed., Prenti                  | ce Hall,  |
|              | 2001.                                                                                             | ,         |
|              | 6. J. Kenkel, Analytical Chemistry for Technicians, 3 <sup>rd</sup> Ed., Lewis pub                | lishers,  |
|              | 2002.                                                                                             |           |
| Course       | 1. Students will be able to standardize a material to determine an unl                            | known     |
| outcomes:    | concentration.                                                                                    |           |
|              | 2. Students will use statistical methods to analyse data in laboratory.                           |           |
|              | 3. Students will be able to use different techniques for qualitative and                          | d         |
|              | quantitative estimation.                                                                          |           |
|              | 4. Students will be able to interpret TG/X-Ray/IR spectra.                                        |           |

Course Code: CHI-500Title of the course: Fundamentals of Inorganic Chemistry

#### Number of Credits: 04

| Prerequisit          | Students should have studied chemistry courses at graduate level of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or must  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| es for the           | have cleared change of discipline entrance test conducted by Goa Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iversity |
| course:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Course<br>Objective: | <ol> <li>To introduce atomic structure, molecular structure, bonding, and symmetry.</li> <li>To provide fundamental knowledge of solid state chemistry, coordination chemistry, organometallic chemistry, and bioinorganic chemistry.</li> <li>To provide fundamental aspects of transition &amp; inner transition elements &amp; their compounds.</li> <li>To introduce air and water pollution, and its treatments, to follow directive of the Supreme Court in 1993 to introduce environmental education at all levels.</li> </ol>                                                                                                                                                                                                                     |          |
|                      | 1. Atomic structure, molecular structure and bonding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No of    |
|                      | a. Atomic Structure: Structures of hydrogenic atoms: some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | hours    |
| Content              | <ul> <li>principles of quantum mechanics, atomic orbitals. Many electron atoms: penetration &amp; shielding, building up principle, classification of elements. Spectroscopic terms. Atomic properties: atomic radii, ionic radii, ionization energy, electron affinity, electronegativity, polarizability.</li> <li>b. Molecular Structure &amp; bonding: Lewis structures: octet rule, resonance. VSEPR model: basic shapes, modification of the basic shapes. Valence bond theory: hydrogen molecule, homonuclear diatomic molecules, polyatomic molecules, promotion, hypervalence, hybridization. Molecular orbital theory: approximation, boding &amp; antibonding orbitals. Homonuclear diatomic molecules &amp; Heteronuclear diatomic</li> </ul> | 10       |
|                      | 2. Molecular Symmetry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4        |
|                      | <ul> <li>a. Symmetry elements and symmetry operations.</li> <li>b. Equivalent symmetry elements and equivalent atoms, symmetry point groups with examples, point groups of higher symmetry.</li> <li>c. Systematic procedure for symmetry classification of molecules and illustrative examples, dipole moment, optical activity and point groups</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                      | 3. Solid state chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10       |
|                      | a. Structures of solids: crystal structures, lattices and unit cells,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |

| fractional atomic coordinates and projections, close packing of                          |    |
|------------------------------------------------------------------------------------------|----|
| spheres, holes in closed-packed structures.                                              |    |
| b. Structures of metals & alloys: polytypism, nonclosed-packed                           |    |
| structures, polymorphism of metals, atomic radii of metals,                              |    |
| allovs. substitutional and interstitial solid solutions.                                 |    |
| intermetallic compounds.                                                                 |    |
| c. Ionic solids: characteristic structures of ionic solids, binary                       |    |
| nhases ternary nhases rationalization of structures ionic radii                          |    |
| radius ratio structure mans energetics of ionic bonding lattice                          |    |
| energy and the Born-Haber cycle. The calculation of lattice                              |    |
| enthalpies (numerical expected)                                                          |    |
| A Chamistry of transition 8 inner transition elements                                    | 10 |
| 4. Chemistry of transition & inner transition elements                                   | 10 |
| a. Transition elements: IUPAC definition of transition elements,                         |    |
| occurrence, physical and chemical properties, hobie character,                           |    |
| metal halides, oxides & oxido complexes, examples of metal-                              |    |
| metal bonded clusters, difference between 1° row and other                               |    |
| two rows.                                                                                |    |
| b. Inner transition elements: Lanthanides, occurrence,                                   |    |
| properties, oxidation states, electronic structure, colour and                           |    |
| spectra, magnetic properties, lanthanide contraction,                                    |    |
| compounds of lanthanides. Actinoid chemistry: general trends                             |    |
| and properties, electronic spectra, thorium and uranium.                                 |    |
| 5. Coordination and Organometallic Chemistry                                             | 12 |
| a. Coordination chemistry: Introduction, representative ligands,                         |    |
| nomenclature. Constitution and geometry: low coordination                                |    |
| numbers, intermediate coordination numbers, higher                                       |    |
| coordination numbers, polymetallic compounds. Isomerism &                                |    |
| chirality in square planar and octahedral complexes, ligand                              |    |
| chirality. Thermodynamics of complex formation: formation                                |    |
| constants, chelate and macrocyclic effects, steric effects and                           |    |
| electron delocalization. Electronic properties of metal                                  |    |
| complexes: CFT applied to octahedral and tetrahedral                                     |    |
| complexes, magnetic moments, CFSE. Electronic spectroscopy:                              |    |
| basic concepts, interpretation of spectra of d <sup>1</sup> & d <sup>9</sup> ions (Orgel |    |
| diagram for octahedral and tetrahedral complexes).                                       |    |
| b. Organometallic Chemistry: Introduction to organometallic                              |    |
| chemistry, nomenclature, stability and inert gas rules (neutral                          |    |
| atom and donor pair electron count methods). Ligands: CO &                               |    |
| phosphines, homoleptic carbonyls its synthesis and properties,                           |    |
| oxidation-reduction of carbonyls, metal carbonyl basicity,                               |    |
| reactions of CO ligand, spectroscopic properties of metal                                |    |
| carbonyls. Oxidative addition and reductive elimination.                                 |    |
| 6. Basic Bioinorganic Chemistry                                                          | 4  |
| a Macronutrients/micronutrients Role of elements in hiology                              |    |
|                                                                                          |    |

|             | Metal ion transport role.                                                          |                       |
|-------------|------------------------------------------------------------------------------------|-----------------------|
|             | b. Definition of metallobiomolecules, metalloporphyrins,                           |                       |
|             | structure of porphine and heme group, examples of                                  |                       |
|             | metalloenzymes of Cu and Zn.                                                       |                       |
|             | 7. Environmental Chemistry                                                         | 10                    |
|             | a. Air Pollution: Classification of air pollutants and                             |                       |
|             | photochemical reactions in the atmosphere. Common air                              |                       |
|             | pollutants (e.g. CO, NOx, SO <sub>2</sub> , hydrocarbons and particulates)         |                       |
|             | (a) sources (b) physiological and environmental effect (c)                         |                       |
|             | monitoring, (d) various remedial & technological measures to                       |                       |
|             | curb pollution. Air quality standards.                                             |                       |
|             | b. Water pollution: Importance of buffer & buffer index in                         |                       |
|             | waste water treatments. Chemical, physical & biological                            |                       |
|             | characteristics of water pollution, specific & non-specific                        |                       |
|             | characterization of water. DO, BOD, COD, and chlorine demand,                      |                       |
|             | typical water treatment & waste water treatment (Municipal).                       |                       |
|             | Impact of plastic pollution and its effect.                                        |                       |
| Pedagogy    | Mainly lectures and tutorials. Seminars / term papers /assignn                     | nents /               |
|             | presentations / self-study or a combination of some of these can                   | also be               |
|             | used. ICT mode should be preferred. Sessions should be interact                    | ctive in              |
|             | nature to enable peer group learning.                                              |                       |
| References  | 1. P. W. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Sh                | nriver &              |
| / Readings: | Atkins Inorganic Chemistry, 5 <sup>m</sup> Ed.; Oxford Publications, 2009.         |                       |
|             | 2. J. E. Huheey, E. A. Kieter, R. L. Kieter, O. K. Medhi, Inorganic Che            | emistry:              |
|             | Principles of Structure & Reactivity, 4 <sup>th</sup> Ed.; Pearson, 2011.          | rd                    |
|             | 3. F. A. Cotton, G. Wilkinson, P. L. Gauss, Basic Inorganic Chemis                 | stry, 3 <sup>rd</sup> |
|             | Ed.; Wiley, 2008 (reprint).                                                        |                       |
|             | 4. J. D. Lee, Concise Inorganic Chemistry, 5 <sup>th</sup> Ed.; Wiley, 2008.       |                       |
|             | 5. F. A. Cotton, Chemical applications of group theory, 3 <sup>rd</sup> Ed.        | ; Wiley               |
|             | Eastern, 2012 (reprint).                                                           |                       |
|             | 6. L. Pauling, The Nature of The Chemical Bond, 3° Ed.; Cornell Ur                 | liversity             |
|             | 7 M C Day I Selbin Theoretical Inorganic Chemistry 2 <sup>ed</sup> F               | d•Van                 |
|             | Nostrand-Reinhold 1969                                                             | a., van               |
|             | 8. H. V. Keer, Principles of Solid state Chemistry, 1 <sup>st</sup> Ed.: New Age I | ntl. Ltd.             |
|             | 1993. (reprint 2008).                                                              | ,                     |
|             | 9. A. R. West, Solid State Chemistry and Its Applications, 1 <sup>st</sup> Ec      | d.; John              |
|             | Wiley & Sons, Singapore, 1984 (reprint 2007).                                      | ,                     |
|             | 10. D. K. Chakrabarty, Solid State Chemistry, 2 <sup>ed</sup> Ed.; New A           | ge Intl.              |
|             | Publishers, 2010.                                                                  | -                     |
|             | 11. F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 3 <sup>rd</sup> Ed   | .; Wiley              |
|             | Eastern, 2001.                                                                     | 2                     |
|             | 12. A. V. Salker, Environmental Chemistry: Pollution and Re                        | emedial               |
|             | Perspective, 1 <sup>st</sup> Ed.; Narosa Publication, 2017.                        |                       |

|           | 13. A.K. De, Environmental Chemistry, 3 <sup>rd</sup> Ed.; New Age Intl. Publishers,    |
|-----------|-----------------------------------------------------------------------------------------|
|           | 2005.                                                                                   |
|           | 14. A. C. Stern, R. W. Boubel, D. Bruce turner, D. L. Fox, Fundamentals of              |
|           | Air Pollution, 1 <sup>st</sup> Ed.; Academic Press, 1984.                               |
|           | 15. R. A. Horne, Chemistry of Our Environment, 1 <sup>st</sup> Ed.; John Wiley, 1978.   |
|           | 16. R. S. Drago, Physical Methods in Inorganic Chemistry, Affiliated East               |
|           | West Press Pvt. Ltd., 2017                                                              |
|           | 17. G. C. Miessler, D. A. Tarr, Inorganic Chemistry, 3 <sup>rd</sup> Ed.; Pearson, 2004 |
| Course    | 1. Students will be able to predict geometry and shape of different                     |
| outcomes: | molecules, and the point group symbols.                                                 |
|           | 2. Students will be able to explain the fundamentals of atomic and                      |
|           | molecular structure, solid state chemistry, coordination chemistry,                     |
|           | organometallic chemistry, and bioinorganic chemistry.                                   |
|           | 3. Students should be able to describe and explain the properties and                   |
|           | usefulness of transition & inner transition metals.                                     |
|           | 4. Students will able to explain different air and water pollutants and will            |
|           | be in a position to apply knowledge to treat these pollutants.                          |

Course Code: CHI-521Title of the course: Practical course in Inorganic Chemistry-I

#### Number of Credits: 02

| Prerequisites for the course: | Students should have studied chemistry practical courses at graduor must have cleared change of discipline entrance test conducte University.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uate level<br>d by Goa                                          |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Course<br>Objective:          | <ol> <li>Students shall acquire skills in synthetic inorganic chemistry.</li> <li>Students will learn to prepare coordination compounds.</li> <li>Students will learn to prepare useful potash alum from scrap alu</li> <li>Students will learn how to grow single crystals.</li> <li>Students will acquire skills in determination of chromium, oxa aluminum by redox titrations.</li> <li>Students will be trained to fix the formula of compounds and fit water molecules by complexometric, redox &amp; iodometric titration.</li> <li>Students shall acquire skills in determination of metal content low concentrations (ppm) using colorimetry / spectrophotometric</li> </ol>                                                                                                                                                                                                                                          | uminum.<br>late, and<br>nd lattice<br>ons.<br>t at very<br>trv. |
| Content                       | Minimum 13 experiments from the list shall be conducted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No of                                                           |
|                               | 1 Prenarations / Synthesis of Inorganic Compounds: (Any Five)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hours                                                           |
|                               | <ol> <li>Preparations / Synthesis of Inorganic Compounds: (Any Five)         <ol> <li>Preparation of hexaamminenickel(II) chloride.</li> <li>Preparation of Trisethylenediaminecobalt(III) chloride.</li> <li>Preparation of potassium trioxalatoaluminate trihydrate.</li> <li>Preparation of potassium hexathiocyanato-κN-chromate tetrahydrate.</li> <li>Preparation of potassium trioxalatochromate trihydrate.</li> <li>Preparation of potassium trioxalatochromate trihydrate.</li> </ol> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                                              |
|                               | <ul> <li>2. Estimations / Determinations: (Any Eight)</li> <li>i. Estimation of nickel in [Ni(NH<sub>3</sub>)<sub>6</sub>]Cl<sub>2</sub>by complexometry or Gravimetry.</li> <li>ii. Estimation of cobalt in [Co(en)<sub>3</sub>]Cl<sub>3</sub> by complexometry.</li> <li>iii. Estimation of oxalate in K<sub>3</sub>[Al(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]·xH<sub>2</sub>O or K<sub>3</sub>[Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]·xH<sub>2</sub>O</li> <li>iv. Estimation of nitrite by redox titration.</li> <li>v. Estimation of calcium from calcite ore.</li> <li>vi. lodometric determination of Copper in gun metal alloy/Devarda's alloy.</li> <li>vii. Determination of chromium in chrome alum and K<sub>3</sub>[Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]·xH<sub>2</sub>O and to determine degree of hydration.</li> <li>viii. Colorimetric/Spectrophotometric determination of nickel or</li> </ul> | 35                                                              |

|              | chromium.                                                                                          |
|--------------|----------------------------------------------------------------------------------------------------|
|              | ix. Estimation of manganese by colorimetric /                                                      |
|              | spectrophotometry method.                                                                          |
| Pedagogy     | Students will be given pre-lab and post-lab assignments on theoretical                             |
|              | aspects of laboratory experiments prior to the conduct of each                                     |
|              | experiment. Exams will be in the form of ISA, SEA which will involve                               |
|              | performing given experiments and conduct of viva, systematic reporting of                          |
|              | experiments, results and observations in laboratory report. Sessions                               |
|              | should be interactive in nature to enable peer group learning.                                     |
| References / | 1. G. Brauer, Handbook of Preparative Inorganic Chemistry, Vol. 1                                  |
| Readings     | & 2, 1963.                                                                                         |
|              | 2. G. Pass & H. Sutcliffe, Practical Inorganic Chemistry, Preparations,                            |
|              | Reactions and Instrumental Methods, 2 <sup>nd</sup> Ed.; Chapman & Hall,                           |
|              | 1974.                                                                                              |
|              | 3. S. De Meo, J. Chem. Ed., Vol 80, Pg.No.796-798, 2003.                                           |
|              | 4. W. L. JOIIY, The Synthesis & Characterization of Inorganic Compounds,<br>Prontice-Hall INC 1970 |
|              | 5. A. J. Elias. General Chemistry Experiments. Revised Ed.: University                             |
|              | Press, 2008.                                                                                       |
|              | 6. J. Mendham, R.C. Denney, J.D. Barnes, M.J. K. Thomas, Vogel's Text                              |
|              | Book of Quantitative Chemical Analysis,6 <sup>th</sup> Ed.; Pearson, 2002.                         |
|              | 7. G. Svehla, Vogel's Text Book of Qualitative Inorganic Analysis, 7 <sup>th</sup> Ed,             |
|              | Pearson, 2011.                                                                                     |
|              | 8. G. Marr, B. W. Rockett, Practical Inorganic Chemistry, Van Nostrnad                             |
|              | Reinhold London, 1972.                                                                             |
| Course       | 1. Students will be in a position to synthesis coordination compounds with                         |
| outcomes:    | different metals and ligands.                                                                      |
|              | 2. Students will be able to grow single crystal.                                                   |
|              | 3. Students will be able to prepare potash alum compound from waste                                |
|              | scrap Al source.                                                                                   |
|              | 4. Students will be able to determine metal content in the synthesised                             |
|              | inorganic compounds.                                                                               |
|              | 5. Students will be able to fix the formula of compounds.                                          |
|              | 6. Students will be able to use and explain the diverse methods available                          |
|              | for estimation of the metals including colorimeters and spectrometers.                             |

Course Code: CHI-522Title of the course: Practical course in Inorganic Chemistry-II

#### Number of Credits: 02

| Prerequisit | Students should have studied chemistry practical courses at gradua                                                                                      | te level |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| es for the  | or must have cleared change of discipline entrance test conducted                                                                                       | by Goa   |
| course:     | University.                                                                                                                                             |          |
| Course      | 1. Students shall acquire skills in synthetic inorganic chemistry.                                                                                      |          |
| Objective:  | 2. Students will learn to prepare coordination compounds.                                                                                               |          |
|             | 3. Students will learn how to grow single crystals.                                                                                                     |          |
|             | 4. Students will acquire skills in determination of metal pre-                                                                                          | sent by  |
|             | gravimetric and titrimetric method.                                                                                                                     |          |
|             | 5. Students shall acquire skills in determining the metal content                                                                                       | at very  |
|             | low concentrations (ppm) using colorimetry / spectrophotometry                                                                                          | •        |
| Content     | Minimum 13 experiments from the list shall be conducted.                                                                                                | No of    |
|             |                                                                                                                                                         | hours    |
|             | 1. Preparations / Estimation of Inorganic Compounds: (Any Nine)                                                                                         |          |
|             | i. Preparation of hexaamminecobalt(III) nitrate.                                                                                                        | 40       |
|             | <li>ii. Estimation of cobalt in hexaamminecobalt(III) nitrate by</li>                                                                                   |          |
|             | volumetric titration.                                                                                                                                   |          |
|             | iii. Preparation of Potassium Trioxalatoferrate(III) Trihydrate                                                                                         |          |
|             | iv. Estimation of iron and oxalate by redox titration                                                                                                   |          |
|             | v. Synthesis of metal nanoparticles (Cu, Ag, Au, Ni) and                                                                                                |          |
|             | determining the absorption maxima by UV-visible                                                                                                         |          |
|             | spectrophotometer.                                                                                                                                      |          |
|             | vi. Estimation of amount of calcium in given sample by                                                                                                  |          |
|             | gravimetric method.                                                                                                                                     |          |
|             | vii. Estimation of amount of nickel in given sample by gravimetric method.                                                                              |          |
|             | viii. Estimation amount of zinc present in given sample by                                                                                              |          |
|             | gravimetric method.                                                                                                                                     |          |
|             | ix. Estimation of iron by colorimetric / spectrophotometry                                                                                              |          |
|             | method.                                                                                                                                                 |          |
|             | x. Estimation of barium by complexometric titration method.                                                                                             |          |
|             | xi. Estimation of manganese in presence of iron by                                                                                                      |          |
|             | complexometric titration method.                                                                                                                        |          |
|             |                                                                                                                                                         |          |
|             | 2. Semi-micro qualitative analysis of cation and anion in a given                                                                                       |          |
|             | inorganic mixture: (Any four mixture)                                                                                                                   |          |
|             | Mixture containing total six cations and/or anions.                                                                                                     | 20       |
|             | <b>Cations</b> : $Pb^{2^{+}}$ , $Cu^{2^{+}}$ , $Cd^{2^{+}}$ , $Sn^{2^{+}}$ , $Fe^{2^{+}}$ , $Fe^{3^{+}}$ , $Al^{3^{+}}$ , $Cr^{3^{+}}$ , $Zn^{2^{+}}$ , |          |

|            | <u> </u>                                                                                                                                                                                                                                                                       |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|            | $Mn^{-1}$ , $Ni^{-1}$ , $Co^{-1}$ , $Ba^{-1}$ , $Sr^{-1}$ , $Ca^{-1}$ , $Mg^{-1}$ , $(NH_4)^{-1}$ , $K^{-1}$                                                                                                                                                                   |  |
|            | Anions: Cl <sup>-</sup> , Br <sup>-</sup> , l <sup>-</sup> , NO <sub>2</sub> <sup>-</sup> , NO <sub>3</sub> <sup>-</sup> , SO <sub>3</sub> <sup>-2-</sup> , CO <sub>3</sub> <sup>-2-</sup> , SO <sub>4</sub> <sup>-2-</sup> , PO <sub>4</sub> <sup>-3-</sup> , S <sup>2-</sup> |  |
| Pedagogy   | Students will be given pre-lab and post-lab assignments on theoretical                                                                                                                                                                                                         |  |
|            | aspects of laboratory experiments prior to the conduct of each experiment.                                                                                                                                                                                                     |  |
|            | Exams will be in the form of ISA, SEA which will involve performing given                                                                                                                                                                                                      |  |
|            | experiments and conduct of viva, systematic reporting of experiments,                                                                                                                                                                                                          |  |
|            | results and observations in laboratory report. Sessions should be interactive                                                                                                                                                                                                  |  |
|            | in nature to enable peer group learning.                                                                                                                                                                                                                                       |  |
| References | 1. G. Brauer, Handbook of Preparative Inorganic Chemistry,                                                                                                                                                                                                                     |  |
| / Readings | Vol. 1 & 2, 1963.                                                                                                                                                                                                                                                              |  |
|            | 2. G. Pass & H. Sutcliffe, Practical Inorganic Chemistry, Preparations,                                                                                                                                                                                                        |  |
|            | Reactions and Instrumental Methods, 2 <sup>nd</sup> Ed.; Chapman & Hall,                                                                                                                                                                                                       |  |
|            | 1974.                                                                                                                                                                                                                                                                          |  |
|            | 3. S. De Meo, J. Chem. Ed., Vol 80, Pg.No.796-798, 2003.                                                                                                                                                                                                                       |  |
|            | 4. W. L. Jolly, The Synthesis & Characterization of Inorganic                                                                                                                                                                                                                  |  |
|            | Compounds, Prentice-Hall, INC, 1970.                                                                                                                                                                                                                                           |  |
|            | 5. A. J. Elias, General Chemistry Experiments, Revised Ed.; University<br>Press 2008                                                                                                                                                                                           |  |
|            | 6. I. Mendham, R.C. Denney, J.D. Barnes, M.J. K. Thomas, Vogel's                                                                                                                                                                                                               |  |
|            | Text Book of Quantitative Chemical Analysis 6 <sup>th</sup> Ed.: Pearson                                                                                                                                                                                                       |  |
|            | 2002.                                                                                                                                                                                                                                                                          |  |
|            | 7. G. Svehla, Vogel's Text Book of Qualitative Inorganic Analysis, 7 <sup>th</sup>                                                                                                                                                                                             |  |
|            | Ed. Pearson. 2011.                                                                                                                                                                                                                                                             |  |
|            | 8. G. Marr & B. W. Rockett, Practical Inorganic Chemistry, Van Nostrand                                                                                                                                                                                                        |  |
|            | Reinhold Company, London, 1972.                                                                                                                                                                                                                                                |  |
| Course     | 1. Students will be in a position to synthesize coordination compounds                                                                                                                                                                                                         |  |
| outcomes:  | with different metals and ligands.                                                                                                                                                                                                                                             |  |
|            | 2. Students will be able to grow single crystal.                                                                                                                                                                                                                               |  |
|            | 3. Students will be able to determine metal content in the given sample.                                                                                                                                                                                                       |  |
|            | 4. Students will be in position to apply diverse methods available for                                                                                                                                                                                                         |  |
|            | estimation of the metals and can use colorimeters and                                                                                                                                                                                                                          |  |
|            | spectrometers.                                                                                                                                                                                                                                                                 |  |
|            | 5. Students will able to detect cations and anions in the given salt.                                                                                                                                                                                                          |  |

Course Code: CHO-500 Title of the course: Fundamentals of Organic Chemistry

#### Number of Credits: 04

| Prerequisites   | Students should have studied chemistry courses at graduate level have cleared change of discipline entrance test conducted l | or must<br>by Goa |
|-----------------|------------------------------------------------------------------------------------------------------------------------------|-------------------|
| for the course. | University.                                                                                                                  |                   |
| Course          | 1. To study the various concepts based on molecular orbital theory.                                                          |                   |
| Objective:      | 2. To understand the concepts of topicity, prostereoisomerism and                                                            |                   |
|                 | chemo-, regio- and stereoselectivity in organic reactions.                                                                   |                   |
|                 | 3. To understand the mechanistic aspects of various type of reactio                                                          | ns in             |
|                 | organic synthesis.                                                                                                           |                   |
| Content         | 1.Molecular orbitals and delocalized chemical bonding                                                                        | No of             |
|                 | a. Qualitative description of molecular orbitals of simple acyclic                                                           | hours             |
|                 | and monocyclic systems, frontier molecular orbitals.                                                                         |                   |
|                 | b.Conjugation, cross conjugation, resonance, hyperconjugation                                                                | 08                |
|                 | and tautomerism (types and examples).                                                                                        |                   |
|                 | c. Aromaticity: Origin of Huckel's rule, examples of aromatic,                                                               |                   |
|                 | non-aromatic and antiaromatic compounds; concept of wobius                                                                   |                   |
|                 |                                                                                                                              |                   |
|                 | 2 Structure & Reactivity                                                                                                     | 08                |
|                 | a Acidity basicity and pKa of organic compounds. Acid and                                                                    | 00                |
|                 | hase strengths.                                                                                                              |                   |
|                 | HSAB concept & Factors affecting it, effect of structure &                                                                   |                   |
|                 | medium on acid and base strength.                                                                                            |                   |
|                 | b. Concept of superacids and superbases.                                                                                     |                   |
|                 | c. Electrophilicity&nucleophilicity, examples of ambident                                                                    |                   |
|                 | nucleophiles & electrophiles. (Including revision of aromatic                                                                |                   |
|                 | electrophilic and nucleophilic substitution)                                                                                 |                   |
|                 | 3. Stereochemistry                                                                                                           | 14                |
|                 | a. Brief revision of configurational nomenclature: R & S; D & L; E                                                           |                   |
|                 | & Z; cis & trans and syn & anti nomenclature. Chirality in                                                                   |                   |
|                 | molecules with two and more chiral centres.                                                                                  |                   |
|                 | b. Conformational analysis of open chain compounds (Butane,                                                                  |                   |
|                 | 2, 3-butane diol, 2,3-dibromobutane etc.). <i>Erythro</i> and                                                                |                   |
|                 | threonomenclature.                                                                                                           |                   |
|                 | c. Topicity and Prostereoisomerism: Topicity of ligands and                                                                  |                   |
|                 | taces-homotopic, enantiotopic and Cram's rule /diastereotopic                                                                |                   |
|                 | ligands and faces.                                                                                                           |                   |
|                 | d. Introduction to chemoselective, regioselective and                                                                        |                   |

| stereoselective reactions.<br>e. Stereochemistry of <i>cis</i> - and <i>trans</i> -decalins, conformation and<br>reactivity of cyclohexane and substituted cyclohexanes,<br>cyclohexene / cyclohexanone. conformational isomerism and<br>analysis in acyclic and simple cyclic systems –substituted<br>ethanes, cyclopentane, cyclohexane cycloheptane, cyclooctane<br>and decalins,<br>f. optical isomerism - optical activity - molecular dissymmetry<br>and chirality - elements of symmetry. optical isomerism in<br>biphenyls, allenes and spirans - optical isomerism of<br>nitrogenous compounds racemisation and resolution.                                                                                                                                                                                   |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul> <li>4.Reaction Mechanism</li> <li>a. Brief revision of carbocations, carbanions, free radicals, carbenes, Arynes and nitrenes with reference to generation, structure, stability and reactivity;</li> <li>b. Types of mechanisms, types of reactions, thermodynamic and kinetic control.</li> <li>c. The Hammond postulate and principle of microscopic reversibility,</li> <li>d. Methods of determining reaction mechanisms like-</li> <li>i. Identification of products,</li> <li>ii. Determination of the presence of intermediates (isolation, detection, trappingandaddition of suspected intermediate, iii. Isotopic labelling,</li> <li>iv. Stereochemical evidence,</li> <li>v. Kinetic evidence and</li> <li>vi. Isotope effect (at least two reactions to exemplify each method be studied)</li> </ul> | 08 |
| <ul> <li>5.Aliphatic Nucleophilic substitution</li> <li>a. Brief revision of nucleophilic substitutions with respect to Mechanism, various factors affecting such reactions;</li> <li>b. The Neighbouring Group Participation (NGP)/ Anchimeric assistance: General approach to various NGP processes; NGP by unshared/lone pair of electrons; NGP by π-electrons; NGP by aromatic rings (formation of phenonium ion intermediate); NGP by sigma bonds with special reference to bornyl and norbornyl system (formation of nonclassical carbocation)</li> </ul>                                                                                                                                                                                                                                                        | 08 |
| <ul> <li>6.Elimination reactions</li> <li>a. The E2, E1 and E1cB mechanisms. Orientation of the double bond, Saytzeff and Hofmann rule.</li> <li>b. Effects of changes in the substrate, base, leaving group and medium on</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 08 |

|              | i. Overall reactivity,                                                  |          |
|--------------|-------------------------------------------------------------------------|----------|
|              | ii. E1 vs. E2 vs. E1cB                                                  |          |
|              | iii. Elimination vs substitution, Mechanism and orientation in          |          |
|              | pyrolytic syn elimination (various examples involving cyclic and        |          |
|              | acyclic substrates to be studied).                                      |          |
|              |                                                                         |          |
|              | 7. Selective reagents for Organic transformation                        | 06       |
|              | a. Oxidation of organic compounds, PCC, PDC and MnO <sub>2</sub> ,      |          |
|              | ozonolysis, peracids.                                                   |          |
|              | b. Reduction of organic compounds: NaBH <sub>4</sub> , LAH, DIBAL       |          |
|              | reduction and reduction with borane and dialkylboranes.                 |          |
|              | Clemmensen reduction, Birch reduction and Wolff-Kishner                 |          |
|              | reduction                                                               |          |
| Pedagogy     | Mainly lectures and tutorials. Semina                                   | rs/term  |
|              | papers/assignments/presentations/ self-study or a combination of        | of some  |
|              | of these can also be used. ICT mode should be preferred. Sessions       | should   |
|              | be interactive in nature to enable peer group learning.                 |          |
| References / | 1. W. Caruthers, I. Coldham, Modern Methods of Organic Sy               | nthesis, |
| Readings     | Cambridge University Press, 4 <sup>th</sup> Ed., 2016.                  |          |
|              | 2. M. B. Smith, Organic Synthesis, McGraw–HILL, New York, Interr        | national |
|              | Edition, 1994.                                                          |          |
|              | 3. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Che           | emistry, |
|              | Oxford University Press, 2 <sup>nd</sup> Ed., 2012.                     |          |
|              | 4. R. Bruckner, Advanced Organic Chemistry – Reaction Mechanis          | ms, San  |
|              | Diego, CA: Harcourt /Academic Press, San Diego, 2002.                   |          |
|              | 5. J. Fuhrhop, G. Penxlin, Organic Synthesis – Concepts, M              | ethods,  |
|              | Starting Materials, VCH Publishers Inc., New York, 1994.                |          |
|              | 6. H. O. House, Modern Synthetic Reactions, W. A. Be                    | njamin,  |
|              | 2 <sup>nd</sup> Ed.,1965                                                |          |
|              | 7. M. Nogradi, Stereoselective Synthesis, VCH Publishers, Inc.,         | Revised  |
|              | and Enlarged Edition, 1994.                                             |          |
|              | 8. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Spring      | er India |
|              | Private Limited, 5 <sup>th</sup> Ed, 2007.                              |          |
|              | 9. T. Laue, A. Plagens, Named Organic Reactions, John Wiley an          | d Sons,  |
|              | Inc., 2005.                                                             |          |
| Course       | 1. Students will be in a position to evaluate the effect of delocalizat | ion of   |
| outcomes:    | electrons & presence or absence of aromaticity in organic compour       | ıds.     |
|              | 2. Students will be able to apply various concepts in stereochemistr    | y to     |
|              | understand stereochemical outcome in a reaction.                        |          |
|              | 3. Students shall be in a position to understand/propose plausible      |          |
|              | mechanism of organic reactions.                                         |          |
|              | 4. Students will understand and apply various reagents for desired      | organic  |
|              | transformations.                                                        |          |

Course Code: CHO-521 Title of the course: Practical Course in Organic Chemistry-I

#### Number of Credits: 02

| Prerequisites | Students should have studied chemistry practical courses at gradua     | ate level |
|---------------|------------------------------------------------------------------------|-----------|
| for the       | or must have cleared change of discipline entrance test conducted      | by Goa    |
| course        | University.                                                            |           |
| Course        | To translate certain theoretical concepts learnt earlier into expen    | rimental  |
| Objective:    | knowledge by providing hands on experience of basic lab                | poratory  |
|               | techniques required for organic syntheses.                             |           |
| Content       | Minimum 13 experiments from the list shall be conducted.               | No of     |
|               |                                                                        | hours     |
|               | 1. Introduction to laboratory equipments, apparatus and safety         |           |
|               | a. Use of common laboratory equipments like fume hoods,                | 04        |
|               | vacuum pumps, weighing balance etc. to be explained to the             |           |
|               | students.                                                              |           |
|               | b. Introduction to various types of quick fit joints and apparatus     |           |
|               | to the students.                                                       |           |
|               | c. Discussion of Safety Techniques:                                    |           |
|               | i Disposal of chemicals                                                |           |
|               | ii Usage of protective equipment's                                     |           |
|               | iii First aid                                                          |           |
|               | iv Fire extinguishers, types of fire                                   |           |
|               | v Hazards of chemicals and risk assessment                             |           |
|               | 2. Laboratory Techniques                                               | 24        |
|               | a. Simple distillation (any one):                                      |           |
|               | i. Toluene-dichloromethane mixture using water condenser.              |           |
|               | ii. Nitrobenzene and aniline using air condenser.                      |           |
|               | b. Steam distillation (anyone):                                        |           |
|               | i. Separation of <i>o</i> - and <i>p</i> - nitrophenols.               |           |
|               | ii. Naphthalene from its suspension in water,                          |           |
|               | iii. Clove oil from cloves.                                            |           |
|               | c. Crystallisation: Concept of induction of crystallization (any one)  |           |
|               | i. Crystallisation of phthalic acid from hot water using fluted filter |           |
|               | paper and stemless funnel.                                             |           |
|               | ii. Acetanilide from boiling water                                     |           |
|               | iii. Naphthalene from ethanol.                                         |           |
|               | iv. Decolorisation and crystallization of brown sugar (sucrose)        |           |
|               | with animal charcoal using gravity filtration.                         |           |
|               | d. Sublimation: Simple or vacuum sublimation of camphor,               |           |
|               | naphthalene, anthracene or succinic acid (any one).                    |           |
|               | e. Vacuum distillation (any one): o-dichlorobenzene, diphenyl          |           |

|           | ether. Also use of nomograph should be explained.                              |    |
|-----------|--------------------------------------------------------------------------------|----|
|           | f. Thin layer Chromatography (any one):                                        |    |
|           | i. Separation of <i>o</i> and <i>p</i> -nitroanilines.                         |    |
|           | ii. Separation of analgesic drugs                                              |    |
|           | iii. Separation of <i>o</i> and <i>p</i> -nitrophenols,                        |    |
|           | 3. Organic synthesis (Any Seven experiments)                                   | 24 |
|           | a. Aliphatic electrophilic substitution: Preparation of iodoform               |    |
|           | from ethanol & acetone.                                                        |    |
|           | b. Aromatic electrophilic substitution (anyone):                               |    |
|           | i. Preparation of <i>p</i> -bromoacetanilide.                                  |    |
|           | ii. Bromination of acetophenone to phenacyl bromide                            |    |
|           | iii. Nitration of napththalene to 1-nitronaphthalene                           |    |
|           | iv. Nitration of benzaldehyde to 3-nitrobenzaldehdye.                          |    |
|           | c. Oxidation (any one)                                                         |    |
|           | i. Benzoic acid from toluene.                                                  |    |
|           | ii. Cyclohexanone from cyclohexanol.                                           |    |
|           | iii Isoborneol to camphor using Jones reagent.                                 |    |
|           | d. Reduction (any one)                                                         |    |
|           | i. Reduction of o-nitroaniline to o-phenylenediamine using Sn/HCl              |    |
|           | ii. Reduction of <i>p</i> -nitro benzaldehyde to <i>p</i> -nitrobenzyl alcohol |    |
|           | using NaBH <sub>4</sub> .                                                      |    |
|           | e. Bromination of an alcohol using CBr <sub>4</sub> / triphenylphosphine.      |    |
|           | f. Grignard reaction: Triphenylmethanol from benzoic acid ester                |    |
|           | or benzophenone.                                                               |    |
|           | g. Aldol condensation: Dibenzal acetone from benzaldehyde                      |    |
|           | h. Acetoacetic ester condensation: Preparation of ethyl n-                     |    |
|           | butylacetoacetate or ethyl acetoacetate.                                       |    |
|           | i. Cannizzaro reaction using 4-chlorobenzaldehyde as substrate.                |    |
|           | j. Friedel Craft's reaction (any one):                                         |    |
|           | i. using toluene and succinic anhydride                                        |    |
|           | ii. Resorcinol to resacetophenone, benzene and maleic anhydride                |    |
|           | to <i>β</i> -benzoylacrylic acid                                               |    |
|           | k. Solvent free preparation of coumarin by the Knoevenagel                     |    |
|           | condensation under MW irradiation.                                             |    |
|           | I. Preparation of oxidizing agent (any one): Pyridinium                        |    |
|           | chlorochromate-silica, pyridinium chlorochromate-alumina,                      |    |
|           | MnO <sub>2</sub> .                                                             |    |
|           | m. Preparation of cuprous chloride.                                            |    |
|           | 4. Isolation from natural sources (Any two)                                    | 8  |
|           | i. Caffeine from tea powder.                                                   |    |
|           | ii. Piperine from pepper.                                                      |    |
|           | iii. Cinnamaldehyde from cinnamon                                              |    |
|           | iv. Lemongrass oil from lemongrass                                             |    |
| Pedagogy: | Students should be given suitable pre- and post-lab assignments                |    |

|              | and explanation revising the theoretical aspects of laboratory                   |
|--------------|----------------------------------------------------------------------------------|
|              | experiments prior to the conduct of each experiment. Each of the                 |
|              | experiments should be done individually by the students.                         |
| References / | 1. A.I. Vogel, A., R. Tatchell, B. S. Furniss, A.J. Hannaford, Vogel's           |
| Readings     | Textbook of Practical Organic Chemistry, 5 <sup>th</sup> Ed., Prentice Hall;     |
|              | 2011.                                                                            |
|              | 2. D. Pasto, C. Johnson and M. Miller, Experiments and                           |
|              | Techniques in Organic Chemistry, 1 <sup>st</sup> Ed., Prentice Hall, 1991.       |
|              | 3. L.F. Fieser, K.L. Williamson, Organic Experiments, 7 <sup>th</sup> edition D. |
|              | C. Heath, 1992.                                                                  |
|              | 4. K.L. Williamson, K.M. Masters, Macroscale and Microscale                      |
|              | Organic Experiments, 6 <sup>th</sup> Edition, Cengage Learning, 2010             |
|              | 5. R.K. Bansal, Laboratory Manual in Organic Chemistry, New Age                  |
|              | International, 5 <sup>th</sup> Edition, 2016.                                    |
|              | 6. S. Delvin, Green Chemistry, Sarup& Sons, 2005.                                |
|              | 7. O.R. Rodig, C.E. Bell Jr. and A.K. Clark, Organic Chemistry                   |
|              | Laboratory Standard and Microscale Experiments, Saunders                         |
|              | College Publishing, 3 <sup>rd</sup> edition, 2009.                               |
|              | 8. J. Mohan, Organic Analytical Chemistry, Narosa Publishing                     |
|              | House, 2014.                                                                     |
| Course       | 1. Students will be in a position to understand stoichiometric requirements      |
| outcomes     | during organic syntheses.                                                        |
|              | 2. Students will be in a position to understand Safe and good laboratory         |
|              | practices, handling laboratory glassware, equipment and chemical                 |
|              | reagents.                                                                        |
|              | 3. Students will be in a position to apply the practical knowledge to            |
|              | perform                                                                          |
|              | experiments involving common laboratory techniques like reflux,                  |
|              | distillation, steam distillation, vacuum distillation, aqueous extraction,       |
|              | thin layer chromatography (TLC) etc.                                             |
|              | 4. Students will get hands-on experience on isolation of some important          |
|              | natural products.                                                                |

Course Code: CHO-522 Title of the course: Practical Course in Organic Chemistry-II

#### Number of Credits: 02

| Prerequisites | Students should have studied chemistry practical courses at graduate level |        |
|---------------|----------------------------------------------------------------------------|--------|
| for the       | or must have cleared change of discipline entrance test conducted by Goa   |        |
| course        | University.                                                                |        |
| Course        | To translate certain theoretical concepts learnt earlier into experi       | mental |
| Objective:    | knowledge by providing hands on experience of basic laboratory             |        |
|               | techniques required for organic syntheses.                                 |        |
| Content       | Minimum 13 experiments from the list shall be conducted.                   | No of  |
|               | 1. Introduction to laboratory equipments, apparatus and                    | hours  |
|               | safety                                                                     |        |
|               | a. Common Hazards in Chemical Laboratory, Risk assessment                  | 04     |
|               | b. Accidents and Emergency procedures                                      |        |
|               | 2. Laboratory Techniques (Any Two)                                         | 08     |
|               | a. Simple distillation                                                     |        |
|               | i. Simple distillation of thionyl chloride under anhydrous                 |        |
|               | condition                                                                  |        |
|               | ii. Simple distillation under Nitrogen atmosphere                          |        |
|               | b. Fractional distillation                                                 |        |
|               | i. Chloroform-dichloromethane mixture using water                          |        |
|               | condenser.                                                                 |        |
|               | ii. Toluene and cyclohexane by fractionating column.                       |        |
|               | c. Vacuum distillation under inert atmosphere                              |        |
|               | Dry Distillation of DMF, o-dichlorobenzene, POCl <sub>3</sub>              |        |
|               | d. Thin layer Chromatography                                               |        |
|               | i. Purification and isolation of mixture of acids by using                 |        |
|               | Preparative TLC.                                                           |        |
|               | ii. Purification and isolation of mixture of phenols by using              |        |
|               | Preparative TLC.                                                           |        |
|               | iii. Purification and isolation of pharmaceutical drugs using              |        |
|               | Preparative TLC.                                                           |        |
|               | 3. Organic Synthesis (Any Four)                                            | 16     |
|               | a. <i>p</i> -lodonitrobenzene by Sandmeyer reaction                        |        |
|               | b. Pinacol- Pinacolone rearrangement                                       |        |
|               | c. Hydrogenation of Maleic acid (Hydrogen balloon)                         |        |
|               | d. Preparation of nitrostyrene from aldehyde                               |        |
|               | e. Preparation of $lpha,eta$ -dibromocinnamic acid                         |        |
|               | f. Reduction of nitro compounds                                            |        |
|               | g. Synthesis of Urea from ammonium cyanate                                 |        |

|            | 4. Solvent Free Organic synthesis (Any Two)                                     | 08         |
|------------|---------------------------------------------------------------------------------|------------|
|            | a. Reduction using ball milling technique                                       |            |
|            | b. Oxidation of 2° alcohol using KMnO <sub>4</sub> /Alumina by grinding         |            |
|            | technique.                                                                      |            |
|            | c. Synthesis of (±)-Binol from $\beta$ -naphthol                                |            |
|            | d. Hunsdiecker reaction of cinnamic acid derivatives                            |            |
|            | e. Beckmann rearrangement of oxime derivatives                                  |            |
|            | 5. Two-step Organic Synthesis (Any Two)                                         | 16         |
|            | a. Benzamide-Benzoic acid-Ethyl Benzoate                                        |            |
|            | b. Phthalic anhydride – Phthalimide – Anthranilic acid.                         |            |
|            | c. Methyl benzoate- <i>m</i> -nitrobenzoate- <i>m</i> -nitrobenzoic acid        |            |
|            | d. Chlorobenzene – 2, 4 – dinitrochlorobenzene – 2,4-                           |            |
|            | dinitrophenol                                                                   |            |
|            | e. Acetanilide – <i>p</i> –Bromo acetanilide – <i>p</i> –Bromoaniline           |            |
|            | f. Acetophenone – Oxime – Acetanilide                                           |            |
|            | 6. Separation, Isolation and Identification of Organic                          | 08         |
|            | compounds (Any One)                                                             |            |
|            | a. Separation, purification and identification of compounds                     |            |
|            | of binary mixture (Solid-Solid, Solid-liquid and Liquid-liquid)                 |            |
|            | using the TLC and column chromatography, chemical tests.                        |            |
|            | IR spectra to be used for functional group identification.                      |            |
| Pedagogy   | Students should be given suitable pre- and post-lab assignments a               | ind        |
|            | explanation revising the theoretical aspects of laboratory experim              | ents       |
|            | prior to the conduct of each experiment.                                        |            |
| References | 1. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's         | Textbook   |
| / Readings | of Practical Organic Chemistry, 5 <sup>th</sup> Ed., Prentice Hall; 2011.       |            |
|            | 2. K. Tanaka, Solvent-free Organic Synthesis, Wiley-VCH, 2 <sup>th</sup> Ed., 2 | 009        |
|            | 3. L. F. Fleser, K. L. Williamson "Organic Experiments" / edit                  | ION D. C.  |
|            | Health, 1992.                                                                   | Organia    |
|            | 4. K. L. Williamson, K. W. Wasters, Macroscale and Microscale                   | Organic    |
|            | 5 P. K. Bansal, Laboratory, Manual in Organic Chomistry, N                      |            |
|            | International 5 <sup>th</sup> Edition 2016                                      | vew Age    |
|            | 6 S Delvin Green Chemistry Sarun& Sons 2005                                     |            |
|            | 7 O B Rodig C F Bell Ir A K Clark Organic Chemistry La                          | horatory   |
|            | Standard and Microscale Experiments, Saunders College Pi                        | ublishing. |
|            | 3 <sup>rd</sup> edition, 2009.                                                  |            |
|            | 8. J. Mohan, Organic Analytical Chemistry. Narosa Publishing Hous               | se, 2014.  |
| Course     | 1. Students will be in a position to adopt Safe and good la                     | boratorv   |
| outcomes   | practices, handling laboratory glassware, equipment and                         | chemical   |
|            | reagents.                                                                       |            |
|            | 2. Students will be in a position to understand and calculate stoic             | niometric  |
|            | requirements during organic syntheses.                                          |            |

| 3. Students will be in a position to perform common laboratory techniques     |
|-------------------------------------------------------------------------------|
| including reflux, distillation, vacuum distillation, aqueous extraction, thin |
| layer chromatography (TLC).                                                   |
| 4. Students will get hands-on experience on isolation of some important       |
| natural products.                                                             |

Course Code: CHP-500 Title of the course: General Physical Chemistry

Number of Credits: 04

| Prerequisites | Students should have studied chemistry courses at graduate level                         | or must    |
|---------------|------------------------------------------------------------------------------------------|------------|
| for the       | have cleared change of discipline entrance test conducted by Goa Uni                     | versity.   |
| course:       |                                                                                          |            |
| Course        | 1. Introduction of various concepts on thermodynamics.                                   |            |
| Objective:    | 2. Introduction of electro chemistry and kinetics.                                       |            |
|               | 3. Learning quantum chemistry.                                                           | <b>N C</b> |
| Content       | 1. Mathematical Preparations                                                             | NO OT      |
|               | a. Introduction to various functions and function plotting                               | hours      |
|               | (exponential, logarithmic, trigonometric etc.), functions of many                        | 12         |
|               | variables. Complex numbers and complex functions.                                        | 12         |
|               | b. Linear equations, vectors, matrices and determinants.                                 |            |
|               | c. Basic rules of differentiation and integration, Partial                               |            |
|               | differentiation, location and characterization of critical points of                     |            |
|               | a function, Regression methods, curve fitting.                                           |            |
|               | a. Introduction to series, convergence and divergence, power                             |            |
|               | series, Fourier series                                                                   |            |
|               | e. Probability (permutations and combinations).                                          |            |
|               | 2. Quantum Chemistry                                                                     | 20         |
|               | a. Operators, Functions, Eigen value equations, Postulates.                              |            |
|               | b. Schrödinger equation, application to simple system viz. free                          |            |
|               | particle, particle in one dimensional, two dimensional and three-                        |            |
|               | dimensional box (quantization, separation of variables,                                  |            |
|               | degenerate wave functions).                                                              |            |
|               | c. Hydrogen like atoms, Schrödinger equation and its solutions,                          |            |
|               | atomic orbital wave functions and interpretation.                                        |            |
|               | d. Huckel MO theory, Secular equations, Secular determinant,                             |            |
|               | delocalization energy, charge density, $\pi$ -bond order, free                           |            |
|               | valence, applications to $C_2H_4$ , $C_3H_5$ (radical), $C_4H_6$ , $C_4H_4$ , $C_6H_6$ , |            |
|               |                                                                                          | 12         |
|               | 3. Inermodynamics                                                                        | 12         |
|               | a. mermodynamic properties: Gas laws, Keal gasses, Boyle                                 |            |
|               | Interpretature, Critical temperature, State and path properties.                         |            |
|               | differentiale Internal operation on the law entropy free energy and                      |            |
|               | their relations and significances. Manually relations                                    |            |
|               | Thermodynamic equations of state                                                         |            |
|               | h louis Themson offect, louis Themson coefficient for yer der                            |            |
|               | b. Joule-Inomson effect. Joule-Inomson coefficient for van der                           |            |

| Waals' gas. Joule-Thomson effect and production of low                                                                    |          |
|---------------------------------------------------------------------------------------------------------------------------|----------|
| temperature, adiabatic demagnetization, Joule-Thompson                                                                    |          |
| coefficient, inversion temperature.                                                                                       |          |
| c. The third law of thermodynamics. Need for the third law.                                                               |          |
| Apparent exceptions to third law. Application of third law. Use                                                           |          |
| of thermodynamic functions in predicting direction of chemical                                                            |          |
| change. Entropy and third law of thermodynamics.                                                                          |          |
| d. Phase equilibria: Phase rule. Discussion of two component                                                              |          |
| systems forming solid solutions with and without maximum or                                                               |          |
| minimum in freezing point curve. Systems with partially miscible                                                          |          |
| solid phases.                                                                                                             |          |
| e. Three component systems: Graphical representation. Three                                                               |          |
| component liquid systems with one pair of partially miscible                                                              |          |
| liquids Influence of temperature Systems with two pairs and                                                               |          |
| three pairs of partially miscible liquids. The role of added salts                                                        |          |
| 4 Electrochemistry                                                                                                        | <u>8</u> |
| a EME series. The cell notential: The Nernst equation. Cells at                                                           | 0        |
| equilibrium Determination of thermodynamic functions                                                                      |          |
| h Decomposition notential and overvoltage electronegativity                                                               |          |
| hasic principles completeness of deposition. Separation with                                                              |          |
| controlled notentials constant current electrolysis composition                                                           |          |
| of electrolyte potential buffers, physical characteristics of metal                                                       |          |
| denosits                                                                                                                  |          |
| c Electroniating and electroless niating electrosynthesis                                                                 |          |
| d Concents of acid-base aqueous and non-aqueous solvents                                                                  |          |
| bard and soft acid base concept and applications                                                                          |          |
| 5 Chemical Kinetics                                                                                                       | Q        |
| a General introduction to various types of order of reaction                                                              | 0        |
| a. General inforduction to various types of order of reaction<br>including fractional order. Molecularity of the reaction |          |
| h Introduction to reversible and irreversible reactions and                                                               |          |
| b. Incloduction to reversible and inteversible reactions and                                                              |          |
| analysis of Cibbs free energy of equilibrium reactions                                                                    |          |
| analysis of Gibbs free energy of equilibrium reactions.                                                                   |          |
| c. Comsion meory and Maxwell Boltzmann distribution of                                                                    |          |
| energies of colliginal grass section and repetite grass section and                                                       |          |
| its significance                                                                                                          |          |
| its significance.                                                                                                         |          |
| d. Comparative study of transition state and collision state theory                                                       |          |
| (derivation not required).                                                                                                |          |
| e. Reaction intechanisms: elementary reactions, consecutive                                                               |          |
| elementary reactions, steady state approximation, the rate                                                                |          |
| determining step and pre-equilibria                                                                                       |          |
| T. Free radical reactions, Complex reactions such as acetaldehyde                                                         |          |
| decomposition and reaction between $H_2$ and $Br_2$ , Homogeneous                                                         |          |
| reactions and acid-base catalysis.                                                                                        |          |

|                     | g. Elementary enzyme reactions. Lineweaver-Burk plot and its analysis                                                                                                                                                                                     |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pedagogy            | Mainly lectures and tutorials. Seminars / term papers /assignments / presentations / self-study or a combination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. |
| References /        | 1. P. W. Atkins and J. D. Paula, Physical Chemistry, 8 <sup>th</sup> Ed., Oxford University                                                                                                                                                               |
| Readings            | Press, New Delhi. 2007                                                                                                                                                                                                                                    |
|                     | 2. G. M. Barrow, Physical Chemistry, 5 <sup>th</sup> Ed., Tata McGraw Hill, New Delhi. 2016                                                                                                                                                               |
|                     | 3. J. E. House, Principles of Chemical Kinetics, 2 <sup>nd</sup> Ed., Academic Press, Elsevier Burlington, USA, 2007                                                                                                                                      |
|                     | 4. I. N. Levine, Quantum Chemistry, 7 <sup>th</sup> Ed., Prentice-Hall, New Delhi. 1999                                                                                                                                                                   |
| Course<br>outcomes: | 1. Students should be in a position to understand and explain various concepts in physical chemistry.                                                                                                                                                     |
|                     | 2. Students should be in a position to apply these concepts during the lab course in physical chemistry.                                                                                                                                                  |
|                     | 3. Students will understand concepts of electrochemistry.                                                                                                                                                                                                 |
|                     | 4. Students will be able to apply fundamentals of chemical kinetics for                                                                                                                                                                                   |
|                     | understanding reaction mechanisms.                                                                                                                                                                                                                        |

Course Code: CHP-521 Title of the course: Practical course in Physical Chemistry-I

Number of Credits: 02

| Prerequisites | Students should have studied chemistry courses at graduate        | level or |
|---------------|-------------------------------------------------------------------|----------|
| for the       | must have cleared change of discipline entrance test conducte     | d by Goa |
| course:       | University.                                                       |          |
| Course        | 1. To develop experimental skills on basic lab techniques in phys | ical     |
| Objective:    | chemistry                                                         |          |
|               | 2. To acquire skills for data analysis and interpretation         |          |
|               | 3. To help the students to develop research skills                |          |
| Content       | Minimum 13 Experiments to be performed per Semester               | No of    |
|               | Non-instrumental Experiments (any 7)                              | hours    |
|               |                                                                   |          |
|               | 1. To study the kinetics of hydrolysis of ethyl acetate and to    | 20       |
|               | determine a) Energy of activation b) Entropy of activation        | 50       |
|               | and c) Free energy change.                                        |          |
|               | 2. To determine the order of reaction between potassium           |          |
|               | persulphate and potassium iodide by graphical, fractional         |          |
|               | change and differential methods.                                  |          |
|               | 3 To study the three-component system such as acetic              |          |
|               | acid chloroform: and water and obtain tio line                    |          |
|               | 4. To determine the melecular unight of roluminal clockel         |          |
|               | 4. To determine the molecular weight of polyvinyl alcohol         |          |
|               | by viscosity measurement.                                         |          |
|               | 5. To study the electro-kinetics of rapid reaction between        |          |
|               | $SO_4^2$ and $\Gamma$ in an aqueous solution.                     |          |
|               | 6. To determine the buffer capacity of acidic buffer              |          |
|               | solution.                                                         |          |
|               | 7. To determine the partial molal volume of ethanol-water         |          |
|               | mixture at a given temperature.                                   |          |
|               | 8. To measure energy content of various types of plastics         |          |
|               | using bomb calorimetry                                            |          |
|               | 9. To determine number average molecular weight of a              |          |
|               | polymer sample with an indirect titration method.                 |          |
|               | 10. To investigate basic hydrolysis of ethyl acetate at four      |          |
|               | different temperatures and find out energy of activation          |          |
|               | Instrumental Experiments (any 6)                                  |          |
|               |                                                                   |          |

|              | <ol> <li>To determine the degree of hydrolysis of salt of weak base and strong acid using conductometer.</li> <li>To determine the dissociation constants of a tribasic acid (Phosphoric acid obtain derivative plot to get equivalence point.</li> <li>To determine formal redox potential of Fe<sup>2+</sup>/Fe<sup>3+</sup> and Ce<sup>3+</sup>/Ce<sup>4+</sup> system obtain derivative plot to get equivalence point.</li> <li>To study spectrophotometric titration of ferrous ammonium sulphate with potassium permanganate (or dichromate vs permanganate)</li> <li>To determine the zeta potential of colloidal system and investigate the effect of different surfactants on stability of the colloids</li> <li>To verify the Kohlrausch's law for weak electrolyte by conductometry</li> <li>To determine the transport numbers of Cu<sup>2+</sup> and SO<sub>4</sub><sup>2-</sup></li> </ol> | 30                             |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|              | ions in CuSO <sub>4</sub> solution by Hittorf's method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |
| Pedagogy     | Mainly pre-laboratory exercises Seminars / term papers /assign<br>presentations / lab hand-out /self-study or a combination of<br>these can also be used. ICT mode should be preferred. Session<br>be interactive in nature to enable peer group learning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ments /<br>some of<br>s should |
| References / | 1. A. Finlay & J.A. Kitchener, Practical Physical Chemistry, Longm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ian.                           |
| Readings     | 2. F. Daniels & J.H. Mathews, Experimental Physical Chemistry,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
|              | 3. A. M. James, Practical Physical Chemistry, Longman.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |
|              | 4. D.P. Shoemaker & C.W. Garland, Experimental Physical Chem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | istry,                         |
| Course       | 1 Students will able to explain various fundamental lab technique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es                             |
| outcomes:    | 2. Students should be in a position to apply the knowledge for th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eir                            |
|              | dissertation and research work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |
|              | 3. Students will be able to use spectrophotometric titrat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ions for                       |
|              | appropriate analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
|              | 4. Students will be able to determine molecular weight of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of some                        |
|              | polymers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |

Course Code: CHP-522 Title of the course: Practical course in Physical Chemistry-II

Number of Credits: 02

| for the<br>course:have cleared change of discipline entrance test.Course1. To develop experimental skills on basic lab techniques in physical<br>chemistryObjective:1. To develop experimental skills on basic lab techniques in physical<br>chemistry2. To acquire skills for data analysis and interpretation<br>3. To help the students to develop research skillsNo of<br>hoursContentMinimum 13 experiments to be conducted per Semester<br>Non-instrumental Experiments (any 8)No of<br>hours1. To determine the radius of a molecule by viscosity<br>measurements.352. To determine $\Delta G$ , $\Delta H$ and $\Delta S$ of silver benzoate by solubility<br>product method35 | Prerequisites | Students should have studied chemistry courses at graduate level                        | or must |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------|---------|
| course:Course1. To develop experimental skills on basic lab techniques in physical<br>chemistryObjective:chemistry2. To acquire skills for data analysis and interpretation<br>3. To help the students to develop research skillsContentMinimum 13 experiments to be conducted per Semester<br>No of<br>hoursNo of<br>non-instrumental Experiments (any 8)No of<br>hours1. To determine the radius of a molecule by viscosity<br>measurements.352. To determine ΔG, ΔH and ΔS of silver benzoate by solubility<br>product method40                                                                                                                                                     | for the       | have cleared change of discipline entrance test.                                        |         |
| Course<br>Objective:1. To develop experimental skills on basic lab techniques in physical<br>chemistry<br>2. To acquire skills for data analysis and interpretation<br>3. To help the students to develop research skillsContentMinimum 13 experiments to be conducted per Semester<br>No of<br>hoursNo of<br>hoursI. To determine the radius of a molecule by viscosity<br>measurements.352. To determine ΔG, ΔH and ΔS of silver benzoate by solubility<br>product method41                                                                                                                                                                                                          | course:       |                                                                                         |         |
| Objective:chemistry2. To acquire skills for data analysis and interpretation<br>3. To help the students to develop research skillsContentMinimum 13 experiments to be conducted per Semester<br>No of<br>hoursNo of<br>hoursNo of a molecule by viscosity<br>measurements.1. To determine the radius of a molecule by viscosity<br>measurements.352. To determine $\Delta G$ , $\Delta H$ and $\Delta S$ of silver benzoate by solubility<br>product method4                                                                                                                                                                                                                           | Course        | 1. To develop experimental skills on basic lab techniques in physica                    | al      |
| 2. To acquire skills for data analysis and interpretation<br>3. To help the students to develop research skillsContentMinimum 13 experiments to be conducted per Semester<br>No of<br>hoursNo of<br>Non-instrumental Experiments (any 8)No of<br>hours1. To determine the radius of a molecule by viscosity<br>measurements.352. To determine $\Delta G$ , $\Delta H$ and $\Delta S$ of silver benzoate by solubility<br>product method4                                                                                                                                                                                                                                               | Objective:    | chemistry                                                                               |         |
| 3. To help the students to develop research skillsContentMinimum 13 experiments to be conducted per SemesterNo of<br>hoursNon-instrumental Experiments (any 8)No of<br>a molecule by viscosity<br>measurements.352. To determine ΔG, ΔH and ΔS of silver benzoate by solubility<br>product method35                                                                                                                                                                                                                                                                                                                                                                                    |               | 2. To acquire skills for data analysis and interpretation                               |         |
| ContentMinimum 13 experiments to be conducted per SemesterNo of<br>hoursNon-instrumental Experiments (any 8)1. To determine the radius of a molecule by viscosity<br>measurements.352. To determine ΔG, ΔH and ΔS of silver benzoate by solubility<br>product method35                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 3. To help the students to develop research skills                                      |         |
| Non-instrumental Experiments (any 8)hours1. To determine the radius of a molecule by viscosity<br>measurements.352. To determine ΔG, ΔH and ΔS of silver benzoate by solubility<br>product method4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Content       | Minimum 13 experiments to be conducted per Semester                                     | No of   |
| <ol> <li>To determine the radius of a molecule by viscosity<br/>measurements.</li> <li>To determine ΔG, ΔH and ΔS of silver benzoate by solubility<br/>product method</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | Non-instrumental Experiments (any 8)                                                    | hours   |
| <ul> <li>measurements.</li> <li>2. To determine ΔG, ΔH and ΔS of silver benzoate by solubility product method</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 1. To determine the radius of a molecule by viscosity                                   |         |
| 2. To determine $\Delta G$ , $\Delta H$ and $\Delta S$ of silver benzoate by solubility product method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | measurements.                                                                           | 35      |
| product method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 2. To determine $\Delta G$ , $\Delta H$ and $\Delta S$ of silver benzoate by solubility |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | product method                                                                          |         |
| 3. To investigate the adsorption of oxalic acid by activated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 3. To investigate the adsorption of oxalic acid by activated                            |         |
| charcoal and test the validity of Freundlich and Langmuir's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | charcoal and test the validity of Freundlich and Langmuir's                             |         |
| isotherms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | isotherms.                                                                              |         |
| 4. To determine the molecular weight of a given polymer by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 4. To determine the molecular weight of a given polymer by                              |         |
| turbidimetry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | turbidimetry                                                                            |         |
| 5. To study the rate of reaction between ethyl bromoacetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 5. To study the rate of reaction between ethyl bromoacetate                             |         |
| and sodium thiosulphate kinetically.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | and sodium thiosulphate kinetically.                                                    |         |
| 6. To determine the percentage composition of a given mixture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 6. To determine the percentage composition of a given mixture                           |         |
| of two liquids by stalagmometer method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | of two liquids by stalagmometer method.                                                 |         |
| 7. To study the kinetics of hydrolysis of methyl acetate and to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 7. To study the kinetics of hydrolysis of methyl acetate and to                         |         |
| determine a) Energy of activation b) Entropy of activation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | determine a) Energy of activation b) Entropy of activation                              |         |
| and c) Free energy change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | and c) Free energy change.                                                              |         |
| 8. To study the kinetics of the reaction between Potassium per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 8. To study the kinetics of the reaction between Potassium per                          |         |
| sulphate $(K_2S_2O_8)$ , and Potassium iodide (KI), and to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | sulphate ( $K_2S_2O_8$ ), and Potassium iodide (KI), and to                             |         |
| determine a) Energy of activation b) Entropy of activation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | determine a) Energy of activation b) Entropy of activation                              |         |
| and c) Free energy change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | and c) Free energy change.                                                              |         |
| 9. To determine the order of reaction for hydrolysis of ethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 9. To determine the order of reaction for hydrolysis of ethyl                           |         |
| acetate by graphical, fractional change and differential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | acetate by graphical, fractional change and differential                                |         |
| methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | methods.                                                                                |         |
| 10. To determine the molecular weight of polystyrene by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 10. To determine the molecular weight of polystyrene by                                 |         |

|              | viscosity measurement.                                                             |            |
|--------------|------------------------------------------------------------------------------------|------------|
|              | Instrumental Experiments (any 5)                                                   |            |
|              | 11. To determine the relative strength of chloroacetic acid and                    |            |
|              | acetic acid by conductometry.                                                      | 25         |
|              | 12. To determine the degree of hydrolysis of salt of weak base                     | 25         |
|              | and strong acid using conductometry.                                               |            |
|              | 13. To determine the composition of a mixture of acetic acid,                      |            |
|              | dichloroacetic acid and hydrochloric acid by conductometric                        |            |
|              | titration.                                                                         |            |
|              | 14. To determine the dissociation constants of monobasic acid                      |            |
|              | and dibasic acid and obtain derivative plot to get                                 |            |
|              | equivalence point.                                                                 |            |
|              | 15. To determine the redox potential of $Fe^{2+}/Fe^{3+}$ system by                |            |
|              | titrating it with standard K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> solution. |            |
|              | 16. To study the electrodeposition of metal.                                       |            |
| Pedagogy     | Mainly pre-laboratory exercises Seminars / term papers /assign                     | ments /    |
|              | presentations / lab hand-out /self-study or a combination of a                     | some of    |
|              | these can also be used. ICT mode should be preferred. Sessions si                  | noula be   |
| References / | 1. A. Finlay & J.A. Kitchener, Practical Physical Chemistry, Longma                | n.         |
| Readings     | 2. F. Daniels & J.H. Mathews, Experimental Physical Chemistry, Lo                  | ngman.     |
|              | 3. A. M. James, F. E. Prichard, Practical Physical Chemistry, Longm                | an.<br>trv |
|              | McGraw-Hill.                                                                       | u y,       |
| Course       | 1. Students will gain knowledge of various fundamental lab technic                 | ques.      |
| outcomes:    | 2. Students should be in a position to apply the knowledge for their               | r          |
|              | dissertation and research work.                                                    |            |
|              | 3. Students will be able to use spectrophotometric titrati                         | ons for    |
|              | 4. Students will be able to determine molecular weight of some po                  | lymers     |

#### Name of the Programme: M. Sc -I (Organic Chemistry)

Course Code: CHO-501 Title of the course: Organic Spectroscopy

Number of Credits: 04

| Prerequisites   | Students should have studied Organic chemistry courses at M.Sc. Ch       | emistry |
|-----------------|--------------------------------------------------------------------------|---------|
| for the course: | in semester l                                                            |         |
| Course          | 1. To study various theoretical concepts related to organic spectr       | oscopic |
| Objective:      | techniques.                                                              |         |
|                 | 2. To understand the introductory aspects of commonly used 2             | D NMR   |
|                 | techniques.                                                              |         |
|                 | 3. To learn interpretational aspects of spectral data pertaining to      | UV, IR, |
|                 | PMR, CMR and MS.                                                         |         |
| Content         | 1. UV-Visible Spectroscopy                                               | No of   |
|                 | a. Introduction. Electronic transition and energy levels, the            | hours   |
|                 | absorption laws.                                                         |         |
|                 | b. Measurement of the spectrum, chromophores, Effect of solvent,         | 04      |
|                 | Conjugation on UV-spectra.                                               |         |
|                 | c. Study of Tautomerism, Steric effect and geometrical isomerism in      |         |
|                 | UV spectra.                                                              |         |
|                 | d. Woodward-Fieser rule for conjugated dienes and carbonyl               |         |
|                 | compounds.                                                               |         |
|                 | 2. Infrared Spectroscopy                                                 | 08      |
|                 | a. IR spectroscopy in structural elucidation of organic compounds        |         |
|                 | (various functional classes to be considered).                           |         |
|                 | b. Methods in IR-Spectroscopy, effect of hydrogen bonding and            |         |
|                 | solvent effect on vibrational frequencies, overtones, combination        |         |
|                 | and Fermi resonance bands.                                               |         |
|                 | c. Factors influencing vibrational frequencies.                          |         |
|                 | d. Characteristic frequencies of organic molecules.                      |         |
|                 | e. Interpretation of spectra.                                            |         |
|                 | 3. NMR Spectroscopy                                                      | 14      |
|                 | a. Principles of NMR.                                                    |         |
|                 | b. Instrumentation.                                                      |         |
|                 | c. Chemical shift- (revision of the basic concepts)                      |         |
|                 | d. Interpretation of PMR spectra.                                        |         |
|                 | i.Coupling constants and AB, $A_2B_2/A_2X_2$ , AMX and ABX spin systems. |         |
|                 | ii. Double resonance and decoupling                                      |         |
|                 | iii. Nuclear Overhauser Effect and its applications.                     |         |
|                 | iv. NMR Shift reagents                                                   |         |
|                 | v. Determination of Absolute and Relative configuration                  |         |
|              |                                                                                                                                           | 1                |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|              | 4. <sup>13</sup> C –NMR spectroscopy                                                                                                      | 8                |
|              | a. Introductionto <sup>13</sup> C –NMR spectroscopy.                                                                                      |                  |
|              | b. <sup>13</sup> C- chemical shifts effects ( $\alpha$ -, $\beta$ -, $\gamma$ -, $\delta$ -substituent effects, $\pi$ -                   |                  |
|              | conjugation, heavy atom effect and ring size effects)                                                                                     |                  |
|              | c. Proton coupled and proton decoupled 13Cspectra.                                                                                        |                  |
|              | d. Off- resonance decoupling, APT & DEPT techniques.                                                                                      |                  |
|              | 5. <sup>19</sup> F- NMR and <sup>31</sup> P- NMR spectroscopy                                                                             | 6                |
|              | Principles and applications; heteronuclear coupling of carbon to <sup>19</sup> F                                                          |                  |
|              | and <sup>31</sup> P.                                                                                                                      |                  |
|              | 6. Two-dimensional NMR spectroscopy                                                                                                       | 8                |
|              | Introduction to 2D NMR techniques and interpretation ofspectra of                                                                         |                  |
|              | simple organic compounds using following 2d-NMR techniques-                                                                               |                  |
|              | COSY, NOESY, HSQC, HMQC, HMBC, TOCSY and INADEQUATE                                                                                       |                  |
|              | 7. Mass spectrometry                                                                                                                      | 12               |
|              | a. Ionization Methods, Mass Analysis, Even and odd electron ions                                                                          |                  |
|              | and fragmentation modes.                                                                                                                  |                  |
|              | b. Molecular Formulae Index (D.B.E), Molecular ion peak, base                                                                             |                  |
|              | peak, metastable ions, Nitrogen rule, effect of isotopes.                                                                                 |                  |
|              | c.Prediction of molecular formulae based on relative abundance.                                                                           |                  |
|              | Rules for fragmentation, McLafferty rearrangement, retro-Diels-                                                                           |                  |
|              | Alder fragmentation, fragmentation associated with functional                                                                             |                  |
|              | groups; rearrangement and mass spectra of some chemical classes.                                                                          |                  |
|              |                                                                                                                                           |                  |
|              | Note: Problems involving combined use of different type of                                                                                |                  |
|              | spectra, in line with course objective/ Course outcomes are to be                                                                         |                  |
|              | emphasized.                                                                                                                               |                  |
| Pedagogy     | Mainly lectures and tutorials. Semina                                                                                                     | rs/term          |
|              | papers/assignments/presentations/self-study or a combination of s                                                                         | ome of           |
|              | these can be used. ICT mode should be preferred. Sessions sho                                                                             | ould be          |
|              | interactive to enable peer group learning.                                                                                                |                  |
| References / | 1. P.S. Kalsi, Spectroscopy of Organic compounds, New Age Internation                                                                     | nal Pub.         |
| Readings     | Itd. & Wiley Fastern Itd., 2 <sup>nd</sup> Ed., 1995.                                                                                     |                  |
|              | 2. R.M. Silverstein, F. X. Webster, D.Kiemle, D. Bryce, S.Samant                                                                          | V.S.             |
|              | Nadkarni Spectrometric Identification of Organic compounds An                                                                             | Indian           |
|              | Adaptation John Wiley & Sons Inc. 8 <sup>th</sup> Ed. 2022                                                                                | maran            |
|              | 3 D I Pavia G M Jampman G S Kriz I R Vyyyan Introduc                                                                                      | tion to          |
|              | Spectroscopy Brooks Cole 5 <sup>th</sup> Ed. 2015                                                                                         |                  |
|              | A P.M. Silverstein E.X. Webster Spectrometric Identification of                                                                           | Organic          |
|              | 4. K.W. Silverstein, F. X. Webster, Spectrometric identification of a compounds John Wiley & Sons Inc. 7 <sup>th</sup> Ed. (reprint) 2011 | Organic          |
|              | Compounds, John Whey & Sons Inc., 7 Eu. (reprint), 2011.                                                                                  | ۸ ما ما : ۵ م ،۵ |
|              | 5. V.IVI. Parikin, Absorption Spectroscopy of Organic Molecules, A                                                                        | Addison          |
|              | wesiey Longman Publishing Co., 1974.                                                                                                      |                  |
|              | 6. D.H Williams & I. Fleming, Spectroscopic Methods in Organic Che                                                                        | emistry,         |
|              | Tata Mcgraw Hill Education, 6 <sup>11</sup> Ed., 2011.                                                                                    |                  |

|           | 7. W. Kemp, Organic Spectroscopy, Palgrave Macmillan, 3 <sup>rd</sup> Ed., 1991.  |
|-----------|-----------------------------------------------------------------------------------|
|           | 8. W. Kemp, NMR in Chemistry: A Multinuclear Introduction, Macmillan,             |
|           | 1986.                                                                             |
|           | 9. J. R. Dyer, Applications of Absorption Spectroscopy of Organic compounds,      |
|           | Prentice Hall of India, 1987.                                                     |
|           | 10. L. D. Field, H. L. Li., A. M. Magill, Organic Structures from 2D NMR Spectra, |
|           | Wiley, 2015.                                                                      |
| Course    | 1. Students will be in a position to understand how spectral techniques can       |
| outcomes: | be used in structure elucidation.                                                 |
|           | 2. Students will be able to deduce structures of simple to moderately             |
|           | complex molecules by combining the spectral data obtained using two or            |
|           | more spectral techniques.                                                         |
|           | 3. Students will be in a position to apply various concepts in organic            |
|           | spectroscopy (PMR, CMR, MS and 2D NMR) and analyse/ predict PMR, CMR,             |
|           | MS and 2D NMR spectral data based on given structures of simple molecules.        |
|           | 4. Students will understand the fundamental difference between various            |
|           | spectroscopic techniques.                                                         |

**Course Code:** CHO-502 **Title of the course:** Pericyclic and Organic Photochemical

Reactions

Number of Credits: 04

| Prerequisites   | Students should have studied organic chemistry courses at M.Sc. Ch                  | emistry  |
|-----------------|-------------------------------------------------------------------------------------|----------|
| for the course: | in semester l                                                                       |          |
| Course          | 1. To introduce various concepts in pericyclic chemistry based on mo                | olecular |
| Objective:      | orbital theory and apply for solving pericyclic reactions                           |          |
|                 | 2. To introduce analysis of pericyclic reactions using theoretical conce            | epts.    |
|                 | 3. To learn mechanistic aspects of pericyclic & photochemical reac                  | tions in |
|                 | organic synthesis.                                                                  |          |
| Content         | 1. Pericyclic Reactions                                                             | No of    |
|                 | a. Theory of pericyclic reactions                                                   | hours    |
|                 | i. Frontier Molecular Orbital (FMO) theory                                          |          |
|                 | ii. Transition state aromaticity (Mobius-Huckel theory) concept                     | 34       |
|                 | iii. Orbital correlation diagram method.                                            |          |
|                 | b. Analysis of pericyclic reactions (including stereochemistry)                     |          |
|                 | using the above concepts                                                            |          |
|                 | i. Cycloaddition reactions                                                          |          |
|                 | ii. Electrocyclic reactions                                                         |          |
|                 | iii.Sigmatropic rearrangements under thermal and photochemical                      |          |
|                 | conditions                                                                          |          |
|                 | (Note: Various important features to be discussed taking examples                   |          |
|                 | important reactions of each type)                                                   |          |
|                 | c. Some synthetically useful reactions (examples via theory of pericyclic reaction) |          |
|                 | d Diels–Alder and retro Diels-Alder reaction: Regiochemistry                        |          |
|                 | stereochemistry and intramolecular reactions                                        |          |
|                 | e. 1. 3-dipolar additions                                                           |          |
|                 | f. [3. 3]-Shifts: Claisen and Cope. aza-Cope oxy-Cope                               |          |
|                 | rearrangements and fluxional molecules, variants of Claisen                         |          |
|                 | Rearrangement such as Johnson-Claisen, Eschenmoser-Claisen,                         |          |
|                 | Carroll- Claisen and Ireland-Claisen.                                               |          |
|                 | g. [2,3]-Sigmatropic rearrangements such as Sommelet-Hauser                         |          |
|                 | rearrangement, Sulfonium ylide rearrangement, Meisenheimer                          |          |
|                 | rearrangement, Wittig rearrangement, Mislow-Evans                                   |          |
|                 | rearrangement                                                                       |          |
|                 | h. Ene reaction, hetero-ene, retro-ene reactions                                    |          |
|                 | i. [1,5]-Thermal and [1,7]-photochemical sigmatropic hydrogen                       |          |

|              | shifts                                                                |          |
|--------------|-----------------------------------------------------------------------|----------|
|              |                                                                       |          |
|              | 2. Organic Photochemistry                                             | 26       |
|              | a. Interaction of electromagnetic radiation with matter, laws of      |          |
|              | photochemistry; fateof excited molecule; principles of energy         |          |
|              | transfer, types of photochemical reactions.                           |          |
|              | Theoretical concepts in organic photochemistry w. r. t.               |          |
|              | cycloadditions, Electrocyclicreactions and sigmatropic reactions      |          |
|              | b. Photochemical reactions of alkenes, dienes, carbonyl               |          |
|              | compounds and arenes including the following- geometrical             |          |
|              | isomerisation: <i>Cis-trans</i> isomerization andphotostationary      |          |
|              | equilibrium; Paterno-Buchi reaction; Norrish Type cleavages; Di-      |          |
|              | pimetnane rearrangement; bicycle rearrangement                        |          |
|              | c. Photochemistry of aromatic compounds: valance isomerization;       |          |
|              | photostationary state of benzene and azabenzenes. [4+4]-              |          |
|              | photodimenzation of derivatives of napritualenes. Cycloaddition       |          |
|              | alkonos and alkynos                                                   |          |
|              | d Reactions involving singlet and triplet ovvgen:                     |          |
|              | Photooxygenation reactions examples of $[2+2]$ and $[4+2]$ -          |          |
|              | cycloaddition reaction with isocyclic heterocyclic dienes and         |          |
|              | nolynuclear aromatic compounds                                        |          |
|              | e. Applications of Organic Photochemistry: Photochemical              |          |
|              | Reactions as Key Steps in Natural Product Synthesis (any four         |          |
|              | examples): example of photopolymerization: photochemical              |          |
|              | functionalization at unactivated carbon: Barton reaction, the         |          |
|              | hypohalite reaction and the Hofmann-Loffler-Frevtag reaction          |          |
| Pedagogy     | Mainly lectures and tutorials. Seminars / term papers /assignm        | nents /  |
|              | presentations / self-study or a combination of some of these can      | also be  |
|              | used. ICT mode should be preferred. Sessions should be interac        | ctive in |
|              | nature to enable peer group learning.                                 |          |
| References / | 1. N. Turro, V. Ramamurthy, J.C. Scaiano, Modern Mo                   | olecular |
| Readings     | Photochemistry of Organic molecules , University Science Books, 2     | 2010.    |
|              | 2. B. Dinda, Essentials of Pericyclic and Photochemical Reactions, Sp | pringer, |
|              | 1 <sup>st</sup> Ed. 2017.                                             |          |
|              | 3. S.Kumar, V. Kumar, S.P. Singh, Pericyclic Reactions: A Mechanis    | stic and |
|              | Problem-Solving Approach, Elsevier, 2016.                             |          |
|              | 4. R. E. Lehr., A. P. Marchand, Orbital Symmetry: A Problem           | Solving  |
|              | Approach, Academic Press, 1972.                                       |          |
|              | 5. R. B. Woodward, R. Hoffmann, Conservation of Orbital Symmetry      | , Verlag |
|              | chemie, Academic Press, NY, 1972.                                     |          |
|              | 6. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John | n Wiley  |
|              | & Sons, 1 <sup>st</sup> Ed., 1991                                     |          |
|              | 7. T. L. Gilchrist, R. C. Storr, Pericyclic Reactions, Cambridge Univ | . Press, |

|           | 1972.                                                                                                               |
|-----------|---------------------------------------------------------------------------------------------------------------------|
|           | 8. F. A. Carrey, R. J. Sundberg , Advanced Organic Chemistry Part A and B, Pelnum Pub., 3rd Ed. 1990.               |
|           | 9. T. Lowery, K. Richardson, Mechanisms and Theory in Organic Chemistry,<br>Harper and Row Pub., NY, 3rd Ed., 1987. |
|           | 10. C. H. DePay, Molecular Reactions and Photochemistry, Prentice Hall (I)<br>Ltd, NewDelhi.                        |
|           | 11. J. Kopecky, Organic Photochemistry- A Visual Approach, VCH Pub., 1992.                                          |
| Course    | 1. Students will be in a position to predict course of a given pericyclic                                           |
| outcomes: | reaction using the theoretical concepts.                                                                            |
|           | 2. Students will be able to apply knowledge of stereochemical output in a reaction.                                 |
|           | 3. Students will be able to understand and propose plausible mechanism of                                           |
|           | pericyclic/photochemical reactions.                                                                                 |
|           | 4. Students will understand applications of organic photochemistry.                                                 |

**Course Code:** CHO-503 **Title of the course:** Synthetic Methodologies in Organic Chemistry

Number of Credits: 04

| Prerequisites   | Students should have studied organic chemistry courses at         | M.Sc.    |
|-----------------|-------------------------------------------------------------------|----------|
| for the course: | Chemistry in semester I                                           |          |
|                 | 1. To study various concepts related to carbon-carbon bond form   | nation.  |
| Course          | 2. To understand designing of organic synthesis to make molec     | cules of |
| Objective:      | interest.                                                         |          |
|                 | 3. To plan total synthesis based on protection-deprotection strat | egy.     |
| Content         | 1. Chemistry of enols and enolates                                | No of    |
|                 | a. Keto-enol tautomerism; Introduction, acidity, basicity         | hours    |
|                 | concepts & pKa scale, neutral nitrogen and oxygen bases.          |          |
|                 | Formation of enols by proton transfer, mechanism of               | 22       |
|                 | enolization by acids & bases, types of enols & enolates,          |          |
|                 | kinetically & thermodynamically stable enols, consequences of     |          |
|                 | enolization, stable enolate equivalents, preparation and          |          |
|                 | reactions of enol ethers.                                         |          |
|                 | b. Formation of Enolates; Introduction, preparation &             |          |
|                 | properties, non-nucleophilic bases, E / Z geometry in enolate     |          |
|                 | formation, kinetic vs. thermodynamic control, other methods       |          |
|                 | for the generation of enolates, issue of enolate                  |          |
|                 | ambidoselectivity.                                                |          |
|                 | c. Alkylation of enolates; diverse reactivity of carbonyl groups, |          |
|                 | alkylation involving nitriles and nitroalkanes, choice of         |          |
|                 | electrophile for alkylation, lithium enolates of carbonyl         |          |
|                 | compounds and alkylation, specific enol equivalents to            |          |
|                 | alkylate aldehydes and ketones, alkylation of $\beta$ -dicarbonyl |          |
|                 | compounds, problem of regioselectivity during ketone              |          |
|                 | alkylation and the remedy provided by enones.                     |          |
|                 | d. Reaction of enolates with aldenydes and ketones;               |          |
|                 | introduction, aldoi reaction including cross & intramolecular     |          |
|                 | version, enolisable substrates which are not electrophilic in     |          |
|                 | nature, controlling autor reactions with specific end             |          |
|                 | equivalents, specific entri equivalents for carboxylic acids,     |          |
|                 | a Aculation at carbon: Introduction the Claicon ector             |          |
|                 | condensation (intramolecular and inter / crossed) aculation of    |          |
|                 | enclates by esters preparation of keto-esters by the Claisen      |          |
|                 | reaction directed C-acylation of enols and enolates &             |          |
|                 | aculation of enamines                                             |          |
|                 | מכיומנוסו טו בוומווווובא.                                         |          |

|                          | <ul> <li>derived chiral auxiliary controlled Diels-Alder reaction and<br/>alkylation of chiral enolates and aldol reaction, Alkylation<br/>using SAMP and RAMP.</li> <li>c. Chiral Reagents - Use of (-)-sparteine.</li> <li>d. Asymmetric catalysis; CBS catalyst, Ruthenium catalyzed<br/>chiral reductions of ketones, Catalytic asymmetric<br/>hydrogenation of alkenes, Asymmetric epoxidation (Sharpless<br/>and Jacobson), Sharpless asymmetric dihydroxylation reaction,<br/>Organocatalyzed aldol reaction (Use of proline).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                          | <ul> <li>6. Halogenation and esterification reactions <ul> <li>a. Formation of Carbon Halogen bonds; Substitution in saturated compounds, alcohols, carbonyl compounds, substitution at allylic and benzylic compounds, bromodecarboxylation (Hunsdiecker reaction), Finkelstein reaction, iodolactonisation.</li> <li>b. Acid and base catalyzed esterification and hydrolysis.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                              |
| Pedagogy                 | Mainly lectures and tutorials. Seminars / term papers /assignr<br>presentations / self-study or a combination of some of these of<br>be used. ICT mode should be preferred. Sessions should be inter-<br>in nature to enable peer group learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ments /<br>an also<br>eractive |
| References /<br>Readings | <ol> <li>In nature to enable peer group learning.</li> <li>W. Caruthers, I. Coldham, Modern Methods of Organic Synthesis,<br/>Cambridge University Press, 4th Ed, 2016.</li> <li>M. B. Smith, Organic Synthesis, McGraw-HILL, New York,<br/>International Edition, 1994.</li> <li>J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry,<br/>Oxford University Press, 2<sup>nd</sup> edition, 2012.</li> <li>R. Bruckner, Advanced Organic Chemistry – Reaction Mechanisms,<br/>San Diego, CA: Harcourt /Academic Press, San Diego, 2002.</li> <li>J. Fuhrhop, G. Penxlin, Organic Synthesis – Concepts, Methods,<br/>Starting Materials, VCH Publishers Inc., New York, 1994.</li> <li>H. O. House, Modern Synthetic Reactions, W. A. Benjamin, 1965,<br/>2nd Ed. (revised with corrections).</li> <li>M. Nogradi, Stereoselective Synthesis, VCH Publishers, Inc., Revised<br/>and Enlarged Edition, 1994.</li> <li>F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Springer<br/>India Private Limited, 5th Ed, 2007.</li> <li>T. Laue, A. Plagens, Named Organic Reactions, John Wiley and Sons,<br/>Inc., 2005.</li> </ol> |                                |
| Course<br>outcomes:      | 1. Students will be in a position to explain how a carbon-carbo<br>can be constructed along with the selectivity in bond formations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on bond                        |
|                          | 2. Students will be able to apply knowledge of various react                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tions in                       |

| constructions of simple to complex organic molecules.                   |
|-------------------------------------------------------------------------|
| 3. Students will be in a position to design protecting group strategies |
| for synthesis of organic molecules.                                     |
| 4. Students will understand use of protecting groups in organic         |
| synthesis.                                                              |

**Course Code:** CHO-504 **Title of the course:** Stereochemistry and Organic Transformations

Number of Credits: 04

| Prerequisit | Students should have studied organic chemistry courses at                                  | M.Sc.   |
|-------------|--------------------------------------------------------------------------------------------|---------|
| es for the  | Chemistry in semester I                                                                    |         |
| course:     |                                                                                            |         |
| Course      | 1. To study various principles of stereochemistry                                          |         |
| Objective:  | 2. To understand the importance of chirality in organic syntheses                          |         |
|             | 3. To learn stereoselective reactions and toplan oxidation, re                             | duction |
|             | reactions                                                                                  |         |
| Content     | 1. Stereochemistry                                                                         | No of   |
|             | a. Stereoselectivity in cyclic compounds: Introduction,                                    | hours   |
|             | stereochemical control in six membered rings, reactions on                                 |         |
|             | small rings, regiochemical control in cyclohexene epoxides,                                | 20      |
|             | Stereoselectivity in bicyclic compounds                                                    |         |
|             | b. Conformations, stability and reactivity of fused ring                                   |         |
|             | compounds: Fused bicyclic systems with small and medium                                    |         |
|             | rings: cis- and trans- decalones and decalols,                                             |         |
|             | Octahydronaphthalins (octalins), Bicyclo [4.3.0] nonane (cis-                              |         |
|             | and trans-hydrindanes)                                                                     |         |
|             | c. Fused polycyclic systems: Perhydrophenanthrenes,                                        |         |
|             | Perhydroanthracenes, Perhydrocyclopentenophenanthrene                                      |         |
|             | system (steroids, triterpenoids and hormones). Conformations                               |         |
|             | and reactivity towards esterification, hydrolysis, chromium                                |         |
|             | trioxide oxidation, ionic additions of halogen $(X_2)$ to double                           |         |
|             | bonds, formation and opening of epoxide ring, epoxidation by                               |         |
|             | peroxy acids.                                                                              |         |
|             | d. Spirocyclic compounds                                                                   |         |
|             | e. Reactions with cyclic intermediates or cyclic transition                                |         |
|             | state                                                                                      |         |
|             | f. Stereoisomerism due to axial chirality, planar chirality and                            |         |
|             | nelicity.                                                                                  |         |
|             | g. Stereochemistry and configurational ( <i>R/S</i> ) nomenciature                         |         |
|             | in appropriately substituted allenes, alkylidenecycloalkenes,                              |         |
|             | spiranes, adamantolos, plaryis, trans-cycloaikenes, cyclophanes                            |         |
|             | and ansa compounds.                                                                        |         |
|             | Accopisomensm in pipenyls and pridged pipnenyls     Conformation of bridged vice compounds | 10      |
|             | 2. Conformation of bridged ring compounds                                                  | 10      |
|             | a. Bicycio [2.2.1] neptane (norbornane): Geometry and topic                                |         |
|             | relationship of hydrogens, solvolysis of bicycle [2.2.1]heptyl                             |         |

|          | <ul> <li>systems, formation, stability and reactivity of norbornylcation, relative stability and the rate of formation of endo and exo isomers in both bornane and norbornane systems.</li> <li>b. Bicyclo [2.2.2] octane system: Geometry and topic relationship of hydrogens, solvolysis of bicycle [2.2.2]octyl system.</li> <li>c. Other bridged ring systems: starting from bicycle [1.1.1]pentane to bicycle [3.3.3] undecane</li> <li>d. Bicyclo system with heteroatom: the relative stabilities of tropine, pseudotropine and benzoyl derivatives of norpseudotropine.</li> </ul>                                                                                                                                                                                                                                                                                                                                               |                      |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|          | <ul> <li>3. Dynamic Stereochemistry: Stereoselective Reactions <ul> <li>a. Stereoselectivity: classification, terminology and principle.</li> <li>Selectivity in chemistry– substrate and product selectivity.</li> <li>b. Stereoselective reaction of cyclic compounds:</li> <li>Introduction, reactions of four, five and six-membered rings.</li> <li>Conformational control in the formation of six-membered ring.</li> <li>c. Diastereoselectivity: Introduction, making single diastereoisomers using stereospecific reactions of alkenes.</li> <li>d. 1,2-Addition to carbonyl compounds: Predicting various addition outcomes using different predictive models such as, Cram Chelate, Cornforth, Felkin-Anh. Specific reactions: allylation/crotylation by Brown, Roush, BINOL catalyzed.</li> <li>e. Stereoselective reaction of acyclic alkenes: The Houk model</li> </ul> </li> </ul>                                        | 14                   |
|          | <ul> <li>4. Oxidation and reduction reactions <ul> <li>a. Oxidation reactions: Oxidation of organic compounds using Oppenauer oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc)<sub>4</sub>, HIO<sub>4</sub>, OsO<sub>4</sub>, RuO<sub>4</sub>, DMSO (Swern) sodium bromate / CAN &amp;NaOCI, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents.</li> <li>b. Reduction reactions: Reduction of organic compounds using hydride-transfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl<sub>3</sub> reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH &amp; Bakers' yeast, catalytic hydrogenation, other methods of reduction: Raney Ni desulphurisation, di-imide</li> </ul> </li> </ul> | 16                   |
| Pedagogy | Lectures & tutorials. Seminars / assignments / presentations / self-s<br>a combination of some of these could also be used to some extern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | study or<br>ent. ICT |

|            | mode should be preferred. Sessions should be interactive in nature to        |
|------------|------------------------------------------------------------------------------|
|            | anable neer group learning                                                   |
|            |                                                                              |
| References | 1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction,           |
| / Readings | Mechanism and Structure, Wiley, 2006, 6th Ed.                                |
|            | 2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and         |
|            | applications, New Age International Pvt. Ltd., 1994, 2nd Ed.                 |
|            | 3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill,         |
|            | 1975.                                                                        |
|            | 4. W. Caruthers, I. Colddham, Modern Methods of Organic Synthesis,           |
|            | Cambridge University Press, 2016, 4th Ed.                                    |
|            | 5. J. Clayden, N. Greeves, S. Warren, Oxford, 2016.                          |
|            | 6. I. L. Finar, Stereochemistry and the Chemistry of Natural Products,       |
|            | ELBS, Vol. 2, Longman Edn, 1975. 5th Ed.                                     |
|            | 7. E.S. Gould, Mechanism and Structure in Organic Chemistry, Holt,           |
|            | Reinhart and Winston, 1965.                                                  |
|            | 8. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry: Part A and B,    |
|            | Springer India Private Limited, 2007, 5th Ed.                                |
|            | 9. R. O. Norman J, M. Coxon, Principles of Organic Syntheses, CRC Press      |
|            | Inc, 1993, 3rd Ed.                                                           |
|            | 10. V.M. Potapov, A. Beknazarov, Stereochemistry, Central Books Ltd.,        |
|            | 1980.                                                                        |
|            | 11. D. G. Morris, Stereochemistry, Wiley-RSC, 2002, 1st Ed.                  |
|            | 12. C., Greeves, W., Wothers, Organic Chemistry, Oxford University Press,    |
|            | 2002, 2nd Ed.                                                                |
|            | 13. M. Nogradi, Stereoselective Synthesis, VCH Publishers, Inc., 1994.       |
|            | Revised and Enlarged Ed.                                                     |
| Course     | 1. Students will be in a position to explain stereochemistry and organic     |
| outcomes:  | transformations.                                                             |
|            | 2. Students will be in a position to apply knowledge of various reactions in |
|            | functional group manipulations.                                              |
|            | 3. Students will be in a position to apply stereoselective reactions for the |
|            | synthesis of chiral organic molecules.                                       |
|            | 4. Students will understand conformations of bridged ring compounds.         |
|            |                                                                              |

M.Sc. Organic/Inorganic/Analytical/Physical Chemistry Part-II syllabus for AY 2023-24 (SEM III and SEM IV) based on NEP 2020

| SEM III & IV |                                          |                                                    |         |  |
|--------------|------------------------------------------|----------------------------------------------------|---------|--|
|              | Research Specific Elective (RSE) Courses |                                                    |         |  |
| Sr. No.      | Subject code                             | Paper title                                        | Credits |  |
| 1.           | <u>CHO-600</u>                           | Practical Course in Organic Chemistry-III          | 4       |  |
| 2.           | <u>CHO-601</u>                           | Practical Course in Organic Chemistry-IV           | 4       |  |
| 3.           | <u>CHO-602</u>                           | Retrosynthesis and Heterocyclic Chemistry          | 4       |  |
| 4.           | <u>CHO-603</u>                           | Chemistry of Natural Products                      | 4       |  |
| 5.           | <u>CHI-600</u>                           | Practical Course in Inorganic Chemistry-III        | 4       |  |
| 6.           | <b>CHI-601</b>                           | Practical Course in Inorganic Chemistry-IV         | 4       |  |
| 7.           | <b>CHI-602</b>                           | Principles and applications in catalysis           | 4       |  |
| 8.           | <b>CHI-603</b>                           | Selected Topics in Inorganic Chemistry             | 4       |  |
| 9.           | <b>CHA-600</b>                           | Practical Course in Analytical Chemistry-III       | 4       |  |
| 10.          | <b>CHA-601</b>                           | Practical Course in Analytical Chemistry-IV        | 4       |  |
| 11.          | <b>CHA-602</b>                           | Advanced Mass Spectrometry                         | 4       |  |
| 12.          | <b>CHA-603</b>                           | Selected Topics in Analytical Chemistry            | 4       |  |
| 13.          | <b>CHP-600</b>                           | Practical Course in Physical Chemistry-III         | 4       |  |
| 14.          | <b>CHP-601</b>                           | Practical Course in Physical Chemistry-IV          | 4       |  |
| 15.          | <b>CHP-602</b>                           | Heterogeneous Catalysis: Fundamentals and          | 4       |  |
|              |                                          | Applications                                       |         |  |
| 16.          | <u>CHP-603</u>                           | Applied Electrochemistry                           | 4       |  |
| 17.          | <b>CHC-600</b>                           | Research Methodology and instrumental techniques-I | 4       |  |
| 18.          | <b>CHC-601</b>                           | Research Methodology and instrumental techniques-  | 4       |  |
|              |                                          | II                                                 |         |  |
| 19.          | <u>CHC-651</u>                           | Discipline Specific Dissertation                   | 16      |  |
|              |                                          | Generic Elective (GE) Courses                      |         |  |
| Sr. No.      | Subject code                             | Paper title                                        | Credits |  |
| 1.           | <u>CHO-621</u>                           | Polymer Chemistry: Concepts, Synthesis and         | 4       |  |
|              |                                          | Processing of Polymers                             |         |  |
| 2.           | <u>CHO-622</u>                           | Concepts in Medicinal Chemistry                    | 4       |  |
| 3.           | <u>CHO-623</u>                           | Concepts in Green Chemistry                        | 4       |  |
| 4.           | <u>CHO-624</u>                           | Chemistry of Life                                  | 4       |  |
| 5.           | <u>CHO-625</u>                           | Organometallic Chemistry and Rearrangement         | 4       |  |
|              |                                          | Reactions                                          |         |  |
| 6.           | <u>CHI-621</u>                           | Bioinorganic Chemistry                             | 4       |  |
| 7.           | <u>CHI-622</u>                           | Chemistry of p-block elements & their compounds    | 4       |  |

| 8.  | <u>CHI-623</u> | Environmental Chemistry                            | 4  |
|-----|----------------|----------------------------------------------------|----|
| 9.  | <u>CHI-624</u> | Inorganic Chemistry: Industrial Perspective        | 4  |
| 10. | <u>CHA-621</u> | Fundamentals of Crystallography                    | 4  |
| 11. | <u>CHA-622</u> | Advanced NMR and combined Spectroscopy             | 4  |
| 12. | <u>CHA-623</u> | Bioanalytical Techniques                           | 4  |
| 13. | <u>CHA-624</u> | Calibration and Validation in Analytical Chemistry | 4  |
| 14. | <u>CHP-621</u> | Solid State Chemistry: Concepts and Applications   | 4  |
| 15. | <u>CHP-622</u> | Nanoscience: Concepts and Applications             | 4  |
| 16. | <u>CHP-623</u> | Physical aspects of Polymer Chemistry              | 4  |
| 17. | <u>CHP-624</u> | Colloids and Surface Chemistry                     | 4  |
|     |                | Dissertation                                       |    |
| 1.  | <u>CHC-651</u> | Discipline Specific Dissertation                   | 16 |

| SEM III ORGANIC CHEMISTRY |         |                                                     |         |
|---------------------------|---------|-----------------------------------------------------|---------|
| Sr. No.                   | Subject | Paper title                                         | Credits |
|                           | code    |                                                     |         |
| 1                         | СНО-600 | Practical Course in Organic Chemistry-III           | 4       |
| 2                         | CHO-601 | Practical Course in Organic Chemistry-IV            | 4       |
| 3                         | CHC-600 | Research Methodology and instrumental techniques-I  | 4       |
| 4                         | CHC-601 | Research Methodology and instrumental techniques-II | 4       |
| 5                         | СНО-621 | Polymer Chemistry: Concepts, Synthesis and          | 4       |
|                           |         | Processing of Polymers                              |         |
| 6                         | СНО-622 | Concepts in Medicinal Chemistry                     | 4       |
| 7                         | СНО-623 | Concepts in Green Chemistry                         | 4       |
| 8                         | СНО-624 | Chemistry of Life                                   | 4       |
| 9                         | СНО-625 | Organometallic Chemistry and Rearrangement          | 4       |
|                           |         | Reactions                                           |         |
|                           |         | SEM-IV ORGANIC CHEMISTRY                            |         |
| Sr. No.                   | Subject | Paper title                                         | Credits |
|                           | code    |                                                     |         |
| 1                         | СНО-602 | Retrosynthesis and Heterocyclic Chemistry           | 4       |
| 2                         | СНО-603 | Chemistry of Natural Products                       | 4       |
| 3                         | CHC-651 | Discipline Specific Dissertation                    | 16      |
|                           |         |                                                     |         |

# M.Sc. Organic Chemistry Part-II syllabus for AY 2023-24 (SEM III and SEM IV)

Course Code: CHO-600 Title of the course: Practical Course in Organic Chemistry-

III

### Number of Credits: 4

| Prerequisites  | Should have studied organic chemistry practical course at M.Sc. Pa            | art-I.     |  |
|----------------|-------------------------------------------------------------------------------|------------|--|
| for the course |                                                                               |            |  |
| Course         | 1. To translate certain theoretical concepts learnt earlier into experimental |            |  |
| Objective      | knowledge                                                                     |            |  |
|                | 2. To provide hands-on experience of laboratory techniques re                 | quired for |  |
|                | organic syntheses, organic mixture separations and purification.              |            |  |
| Content        | 1. Organic ternary mixture separation (Minimum 10                             | No of      |  |
|                | experiments of 6h each)                                                       | hours      |  |
|                | Three component mixture separation based upon differences in                  |            |  |
|                | the physical and the chemical properties of the components.                   | 60         |  |
|                | Elemental and functional group analysis, determination of                     |            |  |
|                | physical constant and derivative preparation-its recrystallization            |            |  |
|                | and melting point/boiling point of any one compound.                          |            |  |
|                |                                                                               |            |  |
|                | 2. Organic synthesis (Any Six)                                                | 36         |  |
|                | a. Benzophenone oxime to benzanilide (Beckmann                                |            |  |
|                | rearrangement)                                                                |            |  |
|                | b. Benzil to hydrobenzoin (NaBH <sub>4</sub> reduction)                       |            |  |
|                | c. Diels - Alder reaction of anthracene and maleic anhydride                  |            |  |
|                | using microwave irradiation                                                   |            |  |
|                | d. Friedel- Crafts acylation of anisole                                       |            |  |
|                | e. 2-methyl benzimidazole from <i>o</i> -phenylene diamine                    |            |  |
|                | f. Dicoumarol from coumarin derivative                                        |            |  |
|                | g. Halogenation using NBS: preparation of 9-                                  |            |  |
|                | bromoanthracene (or benzylic bromides)                                        |            |  |
|                | h. Resolution of racemic phenyl ethylamine using tartaric acid                |            |  |
|                | i. Ferric chloride oxidative coupling of 2-naphthol to [1,1'-                 |            |  |
|                | binaphthalene]-2,2'-diol]                                                     |            |  |
|                | j. Dimedone from mesityl oxide (Dieckmann condensation)                       |            |  |
|                | k. KMnO <sub>4</sub> oxidation of toluene assisted by microwave               |            |  |
|                | <i>l</i> . 2-phenylindole from acetophenone (Fisher indole synthesis)         |            |  |
|                | 3. Polarimetry and column chromatography                                      | 24         |  |
|                | (Any 4 experiments of 6h from ' <b>sections a and b</b> ')                    |            |  |
|                | a. Enantiomeric excess by Polarimetry                                         |            |  |
|                | Determination of optical rotation and enantiomeric excess                     |            |  |
|                | of enantiomers and unknown mixtures of:                                       |            |  |
|                | i. Amino acids                                                                |            |  |

|            | ii. Drugs                                                                           |  |  |
|------------|-------------------------------------------------------------------------------------|--|--|
|            | iii. Carbohydrates                                                                  |  |  |
|            | iv. Other readily available Chiral compounds                                        |  |  |
|            | b. Purification of organic compounds by column                                      |  |  |
|            | chromatography                                                                      |  |  |
|            | i. Mixture of ortho and para nitrophenols                                           |  |  |
|            | ii. Mixture of benzil and benzoin                                                   |  |  |
|            | iii. Mixture of acetophenone and benzylideneacetophenone                            |  |  |
|            | <i>iv.</i> Mixture of benzophenone and benzanilide                                  |  |  |
|            | v. Other Chiral natural product mixtures                                            |  |  |
| Pedagogy   | Students should be given suitable pre- and post-lab assignments and                 |  |  |
|            | explanations revising the theoretical aspects of laboratory experiments prior       |  |  |
|            | to the conduct of each experiment.                                                  |  |  |
| References | 1. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's             |  |  |
| /Readings  | Textbook of Practical Organic Chemistry, 5 <sup>th</sup> Ed., Prentice Hall, 2011.  |  |  |
|            | 2. N. K. Vishnoi, Advanced Practical Organic Chemistry, South Asia                  |  |  |
|            | Books, 2010.                                                                        |  |  |
|            | 3. K. Tanaka, Solvent-free Organic Synthesis, 2 <sup>nd</sup> Ed., Wiley-VCH, 2009. |  |  |
|            | 4. L. F. Fieser, K. L. Williamson, Organic Experiments, 7 <sup>th</sup> Ed., D. C.  |  |  |
|            | Heath, 1992.                                                                        |  |  |
|            | 5. K. L. Williamson, K. M. Masters, Macroscale and Microscale Organic               |  |  |
|            | Experiments, 6 <sup>th</sup> Ed., Cengage Learning, 2010.                           |  |  |
|            | 6. R. K. Bansal, Laboratory Manual in Organic Chemistry, 5 <sup>th</sup> Ed. New    |  |  |
|            | Age International, 2016.                                                            |  |  |
|            | 7. S. Delvin, Green Chemistry, Sarup & Sons, 2005.                                  |  |  |
|            | 8. O. R. Rodig, C. E. Bell Jr., A. K. Clark, Organic Chemistry Laboratory           |  |  |
|            | Standard and Microscale Experiments, 3 <sup>rd</sup> Ed., Saunders College          |  |  |
|            | Publishing, 2009.                                                                   |  |  |
|            | 9. J. Mohan, Organic Analytical Chemistry, Narosa Publishing House,                 |  |  |
|            |                                                                                     |  |  |
|            | 10. G. J. Shugar, J. I. Ballinger, Chemical Technicians Ready Reference             |  |  |
|            | Handbook, McGraw-Hill, Inc. 1996.                                                   |  |  |
|            | 11. D. P. Snoemaker, Experimental Physical Chemistry, McGraw-Hill,                  |  |  |
| Course     | 1707.                                                                               |  |  |
| Course     | 1. Students will be in a position to perform separation of organic components       |  |  |
| Juicome    | 2 Students will be in a position to understand staichiometric requirements in       |  |  |
|            | 2. Students will be in a position to understand storeniometric requirements in      |  |  |
|            | Organic syntheses.                                                                  |  |  |
|            | 5. Students will be able to monitor progress of reaction by chromatographic         |  |  |
|            | A Students will be able to come out munification of reaction and insta but          |  |  |
|            | 4. Students will be able to carry out purification of reaction products by          |  |  |
|            | corumn chromatography.                                                              |  |  |

Course Code: CHO-601 Title of the course: Practical Course in Organic Chemistry-

IV

Number of Credits: 4

| Prerequisite | Should have studied organic chemistry practical course at M.Sc. Par   | t-I.      |
|--------------|-----------------------------------------------------------------------|-----------|
| s for the    |                                                                       |           |
| course       |                                                                       |           |
| Course       | 1. To translate certain theoretical concepts learnt earlier into expe | erimental |
| Objective    | knowledge                                                             |           |
|              | 2. To provide hands on experience of laboratory techniques req        | uired for |
|              | organic syntheses and organic mixture separations.                    |           |
| Content      | 1. Organic ternary mixture separation and identification              | No of     |
|              | (Minimum 14 experiments of 6h each)                                   | hours     |
|              | Three component mixture separation based upon differences in          |           |
|              | the physical and the chemical properties of the components.           | 84        |
|              | Elemental and functional group analysis and determination of          |           |
|              | physical constants of the individual compounds. Derivative            |           |
|              | preparation, its recrystallization and m. p. of each component        |           |
|              | and characterization of each component and its derivative by m.       |           |
|              | p. comparison.                                                        |           |
|              |                                                                       |           |
|              | 2. Organic synthesis (Any Six)                                        | 36        |
|              | a. 1,2,3,4 - tetrahydrocarbazole from cyclohexanone (Fischer          |           |
|              | indole synthesis).                                                    |           |
|              | b. Resolution of racemic phenylethylamine using tartaric acid.        |           |
|              | c. Trans - Stilbene by Wittig reaction.                               |           |
|              | d. Enamine alkylation: 2-methyl cyclohexanone pyrrolidine             |           |
|              | enamine with CH <sub>3</sub> I.                                       |           |
|              | e. Chlorobenzylidene rhodanine (Perkin reaction).                     |           |
|              | f. Diels-Alder reaction of anthracene and maleic anhydride            |           |
|              | using microwave irradiation. Oxidation of a primary /                 |           |
|              | secondary alcohol to carbonyl compound by polymer                     |           |
|              | supported chromic acid (Amberlyst A-26, chromate form).               |           |
|              | g. Phenytoin from benzil and urea.                                    |           |
|              | h. Isoborneol from camphor (NaBH <sub>4</sub> reduction)              |           |
|              | 1. 3 -Methyl -2-phenyl-2-butanol from 2-bromopropane and              |           |
|              | acetophenone                                                          |           |
|              | J. Iriphenyl carbinol from benzophenone or ethyl benzoate             |           |
|              | (Grignard reaction).                                                  |           |
|              | k. Benzidine from hydrazobenzene (benzidine rearrangement).           |           |
|              | I. Methyl orange/red from sulphanilic acid/anthranilic acid           |           |

|            | (diazotization).                                                                                                                            |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|            | m. Reduction of Nitrobenzene to aniline by Sn/HCl.                                                                                          |  |  |
|            | n. LAH reduction of Anthranilic acid.                                                                                                       |  |  |
|            | o. Norborneol to norcamphor using chromium trioxide/sulfuric                                                                                |  |  |
|            | acid                                                                                                                                        |  |  |
|            | <i>p</i> Benzhydrol from benzaldehyde (Grignard reaction)                                                                                   |  |  |
|            | <i>a</i> Diethyl 4-butyl malonate by malonic ester condensation                                                                             |  |  |
| Pedagogy   | Students should be given suitable pre- and post-lab assignments and                                                                         |  |  |
| I cuagogy  | explanations revising the theoretical aspects of laboratory experiments prior                                                               |  |  |
|            | to the conduct of each experiment                                                                                                           |  |  |
| References | 1 A I Vogel A R Tatchell B S Eurniss A I Hannaford Vogel's                                                                                  |  |  |
| /Doodings  | Textbook of Practical Organic Chemistry 5 <sup>th</sup> Ed. Prantice Hall 2011                                                              |  |  |
| /Reaulings | 2 N K Vishnoi Advanced Practical Organic Chemistry South Asia                                                                               |  |  |
|            | 2. N. K. Visinioi, Advanced Tractical Organic Chemistry, South Asia<br>Books 2010                                                           |  |  |
|            | 2 K. Tanaka Salvent free Organic Synthesis Wiley VCH 2 <sup>nd</sup> Ed. 2000                                                               |  |  |
|            | A L E Eiger K L Williamson Organic Experiments 7 <sup>th</sup> Ed D C                                                                       |  |  |
|            | 4. L. F. Fieser, K. L. Williamson, Organic Experiments, 7 Ed. D. C.<br>Heath 1002                                                           |  |  |
|            | 5 K I Williamson K M Masters Macroscale and Microscale Organic                                                                              |  |  |
|            | 5. K. E. Winnamson, K. W. Wasters, Wateroscale and Witeroscale organic<br>Experiments $6^{th}$ Ed. Cengage Learning 2010                    |  |  |
|            | 6 R K Bansal Laboratory Manual in Organic Chemistry 5 <sup>th</sup> Ed. New                                                                 |  |  |
|            | Age International 2016.                                                                                                                     |  |  |
|            | 7 S Delvin Green Chemistry Sarun & Sons 2005                                                                                                |  |  |
|            | 8. O. R. Rodig, C. F. Bell, Ir. A. K. Clark, Organic Chemistry Laboratory                                                                   |  |  |
|            | 8. O. K. Roug, C. E. Den J., A. K. Clark, Organic Chemistry Laboratory<br>Standard and Microscole Experiments, Sounders, College Publishing |  |  |
|            | 3 <sup>rd</sup> Ed. 2000                                                                                                                    |  |  |
|            | 9 I. Mohan, Organic Analytical Chemistry, Narosa Publishing House                                                                           |  |  |
|            | <i>7. J. Wohan, Organic Anarytical Chemistry, Narosa Fublishing House,</i>                                                                  |  |  |
| Course     | 1 Students will be in a position to adopt Safe and good laboratory practices                                                                |  |  |
| Outcomo    | 1. Students will be in a position to adopt Safe and good laboratory practices,                                                              |  |  |
| Outcome    | 2. Students will be in a position to understand and calculate staichiometric                                                                |  |  |
|            | 2. Students will be in a position to understand and calculate stolemometric<br>requirements during organic syntheses                        |  |  |
|            | 2 Students will be in a position to perform concretion of erroric                                                                           |  |  |
|            | someonents based on chemical nature, solubility and bailing points                                                                          |  |  |
|            | 4 Students will be able to identify organic compounds with charging tests                                                                   |  |  |
|            | 4. Students will be able to identify organic compounds with chemical tests.                                                                 |  |  |

# **Course Code:** CHO-602 **Title of the course:** Retrosynthesis and Heterocyclic

Chemistry

### Number of Credits: 4

| Prerequisit          | Students should have studied Organic Chemistry courses at M.Sc. Part-                                                                                                                                                                                                                                                                                     | I level. |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| es for the           |                                                                                                                                                                                                                                                                                                                                                           |          |
| course               |                                                                                                                                                                                                                                                                                                                                                           |          |
| Course<br>Objective: | <ul> <li>1.To apply the knowledge gained in organic synthesis for making new molecules.</li> <li>2.To understand various strategies involved in retrosynthesis of organic molecules</li> <li>3.To understand the concepts in heterocyclic chemistry and its applications</li> <li>4 To be able to propose routes for synthesis of heterocycles</li> </ul> |          |
| Content              | 1. Disconnection approach – Introduction, types of disconnection                                                                                                                                                                                                                                                                                          | No of    |
|                      | a. One-group disconnection                                                                                                                                                                                                                                                                                                                                | hours    |
|                      | b. Disconnection of simple alcohols and compounds derived                                                                                                                                                                                                                                                                                                 |          |
|                      | from alcohols, disconnections of simple olefins, simple/aryl                                                                                                                                                                                                                                                                                              | 15       |
|                      | ketones and carboxylic acids                                                                                                                                                                                                                                                                                                                              |          |
|                      | c. Two-group disconnection                                                                                                                                                                                                                                                                                                                                |          |
|                      | d. Disconnection of 1,3-dioxygenated skeletons, $\beta$ -hydroxy                                                                                                                                                                                                                                                                                          |          |
|                      | carbonyl compounds, $\alpha$ , $\beta$ -unsaturated carbonyl compounds,                                                                                                                                                                                                                                                                                   |          |
|                      | 1,5-dicarbonyl compounds, Mannich reaction                                                                                                                                                                                                                                                                                                                |          |
|                      | e. 'Illogical' Two-group disconnection                                                                                                                                                                                                                                                                                                                    |          |
|                      | f. Disconnection of the 1,2-dioxygenated skeleton, $\alpha$ -hydroxy                                                                                                                                                                                                                                                                                      |          |
|                      | carbonyl compounds, 1,2-diols, 'Illogical' electrophiles,                                                                                                                                                                                                                                                                                                 |          |
|                      | disconnection for the 1,4-dioxygenated pattern in 1,4-                                                                                                                                                                                                                                                                                                    |          |
|                      | dicarbonyl compounds, $\gamma$ -hydroxy carbonyl compounds,                                                                                                                                                                                                                                                                                               |          |
|                      | Other 'Illogical' synthons, disconnection for the 1,6-                                                                                                                                                                                                                                                                                                    |          |
|                      | dicarbonyl compounds, synthesis of lactones                                                                                                                                                                                                                                                                                                               |          |
|                      | (General review problems to be discussed for above approaches)                                                                                                                                                                                                                                                                                            | 1.5      |
|                      | 2. Disconnection strategies                                                                                                                                                                                                                                                                                                                               | 15       |
|                      | a. Disconnection of heteroatom and heterocyclic compounds                                                                                                                                                                                                                                                                                                 |          |
|                      | b Disconnection strategies of four periovalia reactions                                                                                                                                                                                                                                                                                                   |          |
|                      | <ul> <li>Disconnection strategies of few pericyclic reactions</li> <li>Convergent and divergent synthesis</li> </ul>                                                                                                                                                                                                                                      |          |
|                      | d Strategic devices for carbon-heteroatom bonds polycyclic                                                                                                                                                                                                                                                                                                |          |
|                      | compounds: the common atom approach                                                                                                                                                                                                                                                                                                                       |          |
|                      | e. Considering all possible disconnections                                                                                                                                                                                                                                                                                                                |          |
|                      | f. Alternative FGI's before disconnection- the cost of synthesis                                                                                                                                                                                                                                                                                          |          |
|                      | g. Features which dominate strategy, functional group addition                                                                                                                                                                                                                                                                                            |          |
|                      | and molecules with unrelated functional groups                                                                                                                                                                                                                                                                                                            |          |

|            | 3. Heterocyclic compounds                                                            | 15                     |  |
|------------|--------------------------------------------------------------------------------------|------------------------|--|
|            | a. Introduction, classification and nomenclature of mono- and                        |                        |  |
|            | bicyclic heteroaromatic molecules                                                    |                        |  |
|            | b. Physical properties, dipole moment, acidity-basicity,                             |                        |  |
|            | aromaticity, electron density distribution and reactivity of furan,                  |                        |  |
|            | thiophene, pyrrole, indole, pyridine, pyridine-N-oxide,                              |                        |  |
|            | quinoline, isoquinoline, diazines and triazines, 1,3- and 1,2-                       |                        |  |
|            | azoles                                                                               |                        |  |
|            | 4. Synthetic strategies for heterocycle synthesis                                    | 15                     |  |
|            | General methods of synthesis of the following: furan, thiophene,                     |                        |  |
|            | pyrrole, indole, pyridine, quinoline, isoquinoline, chromones,                       |                        |  |
|            | imidazoles, oxazoles, thiazoles                                                      |                        |  |
| Pedagogy   | Mainly lectures and tutorials. Seminars / term papers /assign                        | ments /                |  |
|            | presentations / self-study or a combination of some of these can also                | be used.               |  |
|            | ICT mode should be preferred. Sessions should be interactive in                      | nature to              |  |
|            | enable peer group learning.                                                          |                        |  |
|            | 1. S. Warren, Designing Organic Synthesis, John Wiley & Sons, 2009.                  |                        |  |
| References | 2. G. S. Zweifel, M. H. Nantz, P. Somfai, Modern Organic Synth                       | esis: An               |  |
| / Readings | Introduction, 3 <sup>rd</sup> Ed. W. H. Freeman and Company, New York, 2022.         |                        |  |
|            | 3. J. Clayden, N. Greeves & S. Warren, Organic Chemistry, Oxford, 20                 | 16.                    |  |
|            | 4. J. A. Joule, K. Mills & G. F. Smith, Heterocyclic Chemistry, 3 <sup>rd</sup> Ed., | 1995.                  |  |
|            | 5. J. A. Joule & K. Mills, Heterocyclic Chemistry, Wiley-Blackwell                   | , 5 <sup>th</sup> Ed., |  |
|            | 2010.                                                                                |                        |  |
|            | 6. T. L. Gilchrist, Heterocyclic Chemistry, Pitman Publishing, 2005.                 |                        |  |
|            | 7. R. M. Acheson, An Introduction to Chemistry of Heterocyclic Cor                   | npounds,               |  |
|            | John Wiley and Sons, 3 <sup>rd</sup> Ed, 1977.                                       |                        |  |
|            | 8. D. W. Young, Heterocyclic Chemistry, Longman Group Ltd., Londo                    | n, 1975.               |  |
|            | 9. R. O. C. Norman and J. M. Coxon. Principles of Organic Synthe                     | sis, CRC               |  |
|            | Press, 3 <sup>rd</sup> Ed., 2009.                                                    |                        |  |
|            |                                                                                      |                        |  |
|            | 1. Students will be in a position to understand how a carbon-carbon                  | bond can               |  |
|            | be constructed and/or cleaved                                                        |                        |  |
|            | 2. Students will be in a position to understand how retrosynthesis car               | be used                |  |
| ~          | in finding out easily available chemical precursors for making                       | g organic              |  |
| Course     | molecules                                                                            |                        |  |
| Outcome:   | 3. Students will be in a position to apply retrosynthetic strategies and             | l propose              |  |
|            | routes for synthesis of organic molecules and heterocycles                           | ,• •,                  |  |
|            | 4. Students will be able to understand and apply the concepts of the                 | reactivity             |  |
|            | of heterocycles towards electrophilic, nucleophilic, reducing and                    | oxidizing              |  |
|            | reagents.                                                                            |                        |  |

## **Course Code:** CHO-603 **Title of the course:** Chemistry of Natural Products

### Number of Credits: 4

| Prerequisites  | Students should have studied Organic Chemistry courses at M.Sc. Part- | I level. |
|----------------|-----------------------------------------------------------------------|----------|
| for the course |                                                                       |          |
|                | 1. To study the main classes of natural products.                     |          |
| Course         | 2. To understand the different methods that are used in natural       | product  |
| Course         | chemistry, including extraction, isolation and structural elucidation | 1.       |
| Objectives     | 3. To understand the key biosynthetic pathways for the biosynthesis   |          |
|                | terpenes, alkaloids and steroids.                                     |          |
| Content        | 1. Source and isolation of natural products                           | No of    |
|                | General methods of isolation: The modern distillation process,        | hours    |
|                | maceration, enfleurage, extraction by cold pressing and extraction    |          |
|                | with solvents                                                         | 2        |
|                | 2. General methods of purification and structure elucidation of       | 4        |
|                | Natural Products                                                      |          |
|                | a. Fractionation of the crude extracts and purification of the        |          |
|                | individual compounds from the respective fractions using              |          |
|                | chemical and chromatographic techniques such as Column                |          |
|                | Chromatography, TLC, Preparative TLC, HPLC, etc.                      |          |
|                | b. Chemical methods based on the functional groups present:           |          |
|                | Bicarbonate extraction, sodium bisulphite adduct formation,           |          |
|                | derivatization, etc.                                                  |          |
|                | c. General approach to structure elucidation of the isolated pure     |          |
|                | compounds using UV, IR, NMR spectroscopy, MS                          |          |
|                | spectrometry, optical polarimetry.                                    |          |
|                | 3. Structure elucidation by classical chemical methods                | 12       |
|                | a. Terpenoids: α-cedrene                                              |          |
|                | b. Alkaloids: Morphine, thebaine and codeine                          |          |
|                | c. Steroids: Cholesterol, bile acids                                  |          |
|                | 4. Structure elucidation by combination of chemical and spectral      | 10       |
|                | methods                                                               |          |
|                | a. Terpenoids: $\alpha$ - and $\beta$ -vetivones, Ishwarone           |          |
|                | b. Hormones: Cecropia Juvenile hormone, brevicomin and                |          |
|                | frontalin                                                             |          |
|                | c. Oxygen heterocycles: Aflatoxin-B1, rotenone                        |          |
|                | 5. Structure elucidation involving stereochemistry, spectral and      | 8        |
|                | chemical methods                                                      |          |
|                | a. Terpenoids: Menthol and hardwickiic acid                           |          |
|                | b. Alkaloids: Reserpene                                               |          |
|                | 6. Synthesis of selected natural products, planning and execution     | 14       |
|                | a. Terpenoids: Longifolene (E. J. Corey), Caryophyllene (E J          |          |

|              | Corey) Nootkatone (A. Yoshikoshi), Menthol (Tagasago)                       |              |
|--------------|-----------------------------------------------------------------------------|--------------|
|              | b. Alkaloids: Reserpine (R. B. Woodward), Morphine (Marshall                |              |
|              | Gates)                                                                      |              |
|              | c. Hormones: Cecropia JH (Edward), Progesterone                             |              |
|              | d. Prostaglandins: Prostaglandin E2 (E. J. Corey)                           |              |
|              | e. Antibiotics: Cephalosporin (R. B. Woodward)                              |              |
|              | 7. Biogenesis and biosynthesis of natural products                          | 10           |
|              | a. Terpenoids and Steroids: General approach towards                        |              |
|              | biosynthesis of mono-, sesqui-, di-, tri-, tetraterpenoids and              |              |
|              | steroids through mevalonate pathway with special reference to               |              |
|              | the biosynthesis of terpenoids and steroids included in topics 3            |              |
|              | to 6                                                                        |              |
|              | b. Alkaloids: The shikimate pathway formation of                            |              |
|              | hydroxybenzoic acid derivatives, aromatic amino acids, L-                   |              |
|              | phenylalanine, L-tyrosine, phenolic oxidative coupling,                     |              |
|              | biosynthesis of thebaine, codeine and morphine.                             |              |
|              |                                                                             |              |
| Pedagogy     | Mainly lectures and tutorials. Seminars / term papers /assign               | ments /      |
|              | presentations / self-study or a combination of some of these can also       | be used.     |
|              | ICT mode should be preferred. Sessions should be interactive in n           | nature to    |
|              | enable peer group learning.                                                 |              |
| References / | 1. I. L. Finar, Organic Chemistry: Stereochemistry and the Chem             | nistry of    |
| Readings     | Natural Products, Pearson Education India, 2002.                            |              |
|              | 2. K. Nakanishi, Natural Product Chemistry, Academic Press, 2013.           |              |
|              | 3. D. R. Dalton, The Alkaloids. New York: M. Dekker, 1979                   |              |
|              | 4. Barton and Olis, Comprehensive Organic Chemistry, Pergamon, 1979.        |              |
|              | 5. D. Paul, Medicinal Natural Products: A Biosynthetic Approach, John Wiley |              |
|              | and Sons, 2002.                                                             |              |
|              | 6. M. Paolo, Biosynthesis of Natural Products, Wiley, 2010                  |              |
|              | 7. J. ApSimon, The Total Synthesis of Natural Products, John Wiley a        | and Sons,    |
|              | 1992.                                                                       |              |
|              | 8. E. J. Corey & X-M. Cheng, The Logic of Chemical Synthesi                 | s, Wiley     |
|              | Interscience, a division of John Wiley and Sons Inc, 1995.                  |              |
|              | 9. K. C. Nicolaou & E. J. Sorensen, Classics in Total Synthesis, W          | einhem:      |
|              | VCH, 1996.                                                                  | · and        |
|              | 10. R. O. C. Norman and J. M. Coxon. Principles of Organic Synthes          | sis, CRC     |
|              | Press, 3 <sup>rd</sup> Ed., 2009.                                           |              |
|              | 1. Students will be able to identify different types of natural products    | C / 1        |
| C            | 2. Students will be able to describe the properties and structure o         | 1 natural    |
| Course       | products, their occurrence, biosynthetic pathways                           | - <b>f</b> 1 |
| Outcomes     | 5. Students will be able to carry out independent investigations            | of plant     |
|              | A Studente will be able to understand a light three distributions           | of           |
|              | 4. Students will be able to understand and explain the synthesis            | of some      |
|              | classes of natural products.                                                |              |

**Course Code:** CHO-621 **Title of the course:** Polymer Chemistry: Concepts,

Synthesis and Processing

Number of Credits: 4

| Prerequisites | Students should have studied M.Sc. Part-I Chemistry.                       |       |
|---------------|----------------------------------------------------------------------------|-------|
| for the       |                                                                            |       |
| course        |                                                                            |       |
| Course        | 1. To introduce various concepts in organic polymer chemistry.             |       |
| Objective     | 2. To understand the synthesis, polymer processing and applications.       |       |
| Content       | 1. Brief history of natural and synthetic polymers                         | No of |
|               | Classification & nomenclature of polymers, functionality concept-          | hours |
|               | linear, -branched and -cross linked polymers. Introduction to              |       |
|               | biodegradable polymers.                                                    | 5     |
|               | 2. Methods and chemistry of polymerization                                 | 12    |
|               | Bulk, solution, suspension, emulsion, addition, condensation               |       |
|               | polymerizations. Free-radical, Ionic and coordination                      |       |
|               | polymerization reactions. Introduction to controlled free radical          |       |
|               | polymerization. Carothers equation in condensation                         |       |
|               | polymerizations.                                                           |       |
|               | 3. Properties of polymers                                                  | 10    |
|               | a. Number and weight average molecular weights, Molecular                  |       |
|               | weight distribution, polydispersity.                                       |       |
|               | b. Glassy state and glass transition temperature, crystallinity            |       |
|               | in polymers.                                                               |       |
|               | c. Characterization of polymers.                                           |       |
|               | 4. Resources for monomers, manufacture of important                        | 12    |
|               | monomers and reagents                                                      |       |
|               | Ethylene, propylene, butadiene, isoprene, styrene, divinyl benzene,        |       |
|               | acrylonitrile, vinyl chloride, adipic acid, urea, bisphenol-A,             |       |
|               | melamine, phthalates, glycol, glycerol, ethylene oxide,                    |       |
|               | epichlorohydrin, $\epsilon$ -caprolactum, di-isocyanates, pentaerythritol, |       |
|               | allylic carbonate monomers.                                                |       |
|               | 5. Synthesis, properties and applications of polymers                      | 14    |
|               | a. Vinyl polymers-LDPE, HDPE, PVC, PVA, polyvinyl                          |       |
|               | acetate, polyacrylates, methacrylates, polystyrene, teflon,                |       |
|               | ABS, SBR, SAN.                                                             |       |
|               | b. Condensation polymers- Nylons, polyesters, polyurethanes,               |       |
|               | polycarbonates.                                                            |       |
|               | c. Thermoset polycarbonates like CR-39 Cellulose esters-                   |       |
|               | cellulose acetate, nitrates and acetatebutyrates.                          |       |
|               | d. Thermoset resins- phenol-formaldehyde, melamine-                        |       |

|              | formaldehyde, epoxy resins - their curing.                                                      |           |
|--------------|-------------------------------------------------------------------------------------------------|-----------|
|              | e. Natural rubber.                                                                              |           |
|              | 6. Additives in polymers and Polymer processing                                                 | 7         |
|              | a. Lubricants, plasticizers, stabilizers, antioxidant, fire                                     |           |
|              | retardants, blowing agents, fillers, colorants, crosslinking                                    |           |
|              | agents, UV-Vis degradants etc.                                                                  |           |
|              | b. Introduction to compounding, and processing techniques                                       |           |
|              | like calendaring, casting, moulding and spinning in                                             |           |
|              | polymer processing.                                                                             |           |
| Pedagogy     | Mainly lectures and tutorials. Seminars / term papers /assign                                   | nments /  |
|              | presentations / self-study or a combination of some of these can also                           | be used.  |
|              | ICT mode should be preferred. Sessions should be interactive in a                               | nature to |
|              | enable peer group learning.                                                                     |           |
| References / | 1. V. R. Gowarikar, N.V. Vishwanathan, J. Sreedhar, Polymer                                     | Science,  |
| Readings     | New Age International, 2015.                                                                    |           |
|              | 2. J. R. Fried, Polymer Science and Technology, PHI Pvt. Ltd.,2000                              | ).        |
|              | 3. R. Sinha, Outlines of Polymer Technology: Manufacture of P                                   | olymers,  |
|              | PHI Pvt Ltd., 2000.                                                                             |           |
|              | 4. K. Y. Saunders, Organic Polymer Chemistry, Chapman and H                                     | Iall, UK, |
|              | 1976.                                                                                           |           |
|              | 5. H. R. Kircheldorf, Handbook of Polymer Synthesis, PART                                       | Aand B,   |
|              | Marcel Dekkar Inc., 1992.                                                                       |           |
|              | 6. R. P. Brown, Handbook of Plastic Test Methods, 2 <sup>nd</sup> Ed.,                          | George    |
|              | Godwin Ltd., 1981.                                                                              |           |
|              | 7. M. P. Stevens, Polymer Chemistry- An Introduction, 2 <sup>nd</sup> Ed.<br>Univ. Press, 1990. | , Oxford  |
|              | 8. W. Y. Mijs, New Methods in Polymer Synthesis, PelnumPress I                                  | Ltd., NY, |
|              | 1992.                                                                                           |           |
|              | 9. M. Arora, Polymer Chemistry, Anmol Publications 2001.                                        |           |
|              | 10. C. E. Carraher, Polymer Chemistry, New York M. Dekker 2005.                                 |           |
|              | 11. P.C. Hiemenz, Polymer Chemistry, CRC Press, 2007.                                           |           |
|              | 12. V. K. Selvaraj, Advanced Polymer Chemistry, New Delhi                                       | Campus    |
|              | books, CRC Press, 2008.                                                                         |           |
|              | 13. A. Ravve, Principles of polymer Chemistry, Springer 2012.                                   |           |
|              | 14. J. David, Polymers, Oxford University Press 2015.                                           |           |
|              |                                                                                                 |           |
| Course       | 1. Students will be in a position to understand and evaluate the dis                            | fferences |
| Outcome      | in structures and properties of small molecules and macromolecu                                 | les.      |
|              | 2. Students will be in a position to apply concepts involved in                                 | polymer   |
|              | synthesis, characterization and processing.                                                     |           |
|              | 3. Students will be in a position to understand and apply con                                   | cepts of  |
|              | synthesis and applications of organic polymers.                                                 |           |
|              | 4. Students will understand properties of polymers                                              |           |

**Course Code:** CHO-622 **Title of the course:** Concepts in Medicinal Chemistry

### Number of Credits: 4

| Prerequisites | Students should have studied the chemistry courses in M.Sc. Part I lev   | vel.    |    |
|---------------|--------------------------------------------------------------------------|---------|----|
| for the       |                                                                          |         |    |
| course:       |                                                                          |         |    |
|               | 1. To understand the concepts of drug discovery and development          |         |    |
| Course        | 2. To learn drug screening, target identification, lead discovery, optin | nizatio | n  |
| Objective:    | 3. To understand molecular basis of drug design and drug action          |         |    |
|               |                                                                          |         |    |
| Content       | 1. Introduction to Drugs                                                 | No      | of |
|               | Requirement of an ideal drug, sources of drugs, important terms          | hours   | 5  |
|               | used in chemistry of drugs, classification and nomenclature of           |         |    |
|               | drugs, drugs and the medicinal chemists.                                 | 15      |    |
|               | a. Drug Design: Analogues and pro-drugs, concept of lead                 |         |    |
|               | compounds, features governing drug design - the method of                |         |    |
|               | variation, drug design through disjunction, conjunction,                 |         |    |
|               | tailoring of drugs, cimetidine – a rational approach to drug             |         |    |
|               | design.                                                                  |         |    |
|               | b. Drug Development: Screening of natural products, isolation            |         |    |
|               | and purification, structure determination, structure-activity            |         |    |
|               | relationship, QSAR, synthetic analogues, natural products as             |         |    |
|               | leads for new pharmaceuticals, receptor theories,                        |         |    |
|               | oxamniquine – a case study                                               |         |    |
|               |                                                                          |         |    |
|               | 2. Mechanism of drug action                                              | 10      |    |
|               | Introduction, enzyme stimulation, enzyme inhibition, membrane-           |         |    |
|               | active drugs, polymorphism and drug delivery.                            |         |    |
|               | 3 Study of Pharmacodynamic Agents (minimum two examples                  | 15      |    |
|               | for each)                                                                | 15      |    |
|               | a. Local anesthetics                                                     |         |    |
|               | b. Analgesics : narcotic and non-steroidal anti-inflammatory,            |         |    |
|               | narcotic antagonists                                                     |         |    |
|               | c. Antiepileptic drugs                                                   |         |    |
|               | d. Antiparkinsonism drugs                                                |         |    |
|               | e. Antihistaminics                                                       |         |    |
|               | f. Seditives and hypnotics                                               |         |    |
|               | g. Antipsychotics                                                        |         |    |
|               | h. Cardiovascular agents : Cardiovascular diseases. Antianginal          |         |    |
|               | agents and vasodilators. Antihypertensive agents.                        |         |    |
|               | Antiarrhythmic drugs. Adrenergic blocking agents                         |         |    |
|               | Automity unite drugs, Automotigie bioeking agents                        |         |    |

|              | i. Antihyperlipidemic and antiatherosclerotic agents                           |            |
|--------------|--------------------------------------------------------------------------------|------------|
|              | j. Anticoagulants, blood coagulation and anticoagulant                         |            |
|              | mechanism                                                                      |            |
|              | k. Diuretics                                                                   |            |
|              | 1. Antidiabetic drugs : Synthetic hypoglycemic agents                          |            |
|              |                                                                                |            |
|              | 4. Study of Chemotherapeutic Agents and Antibiotics                            | 15         |
|              | a. Chemotherapeutic Agents (with examples)                                     |            |
|              | i. Sulfonamides                                                                |            |
|              | ii. Antitubercular and Antilepral agents                                       |            |
|              | iii. Antiamoebics                                                              |            |
|              | iv. Anthelmintics                                                              |            |
|              | v. Antimalarials                                                               |            |
|              | vi. Antiviral agents                                                           |            |
|              | vii. Antineoplastic Agents                                                     |            |
|              | b. Antibiotics : General information, mode of action and                       |            |
|              | applications                                                                   |            |
|              | i. β-Lactam antibiotics : Penicillins and Cephalosporins                       |            |
|              | ii. Aminoglycocides : Streptomycin, Neomycin                                   |            |
|              | iii. Tetracyclines                                                             |            |
|              | iv. Macrolides : Erythromycin, Rifamycin, Lincomycin                           |            |
|              | v. Polypeptides : Bacitracin                                                   |            |
|              | vi. Unclassified antibiotics : Chloramphenicol                                 |            |
|              | 5. New Developments in Drug Discovery                                          | 5          |
|              | Introduction, gene therapy, drug resistance, antisense drugs,                  |            |
|              | cytokines, drugs to combat AIDS.                                               |            |
| Pedagogy     | Mainly lectures and tutorials. Seminars / term papers /assign                  | ments /    |
|              | presentations / self-study or a combination of some of these can also          | be used.   |
|              | ICT mode should be preferred. Sessions should be interactive in                | nature to  |
|              | enable peer group learning.                                                    |            |
| References / | 1. R. F. Doerge, J. B. Lippincott, Wilson and Gisvold's Text book of           | f Organic  |
| Readings     | Medicinal and Pharmaceutical Chemistry, 8 <sup>th</sup> Ed, Philadelphia, US   | SA, 2010   |
|              | 2. M. E. Wolff, Burger's Medicinal Chemistry, Part I and II, 4 <sup>th</sup> I | Ed., John  |
|              | Wiley, 1980                                                                    |            |
|              | 3. W. O. Foye, Principles of Medicinal Chemistry, 7 <sup>th</sup> Ed., K. M.   | Varghese   |
|              | and Co., Bombay, 2012.                                                         |            |
|              | 4. Lednicer and Mitscher, Organic Chemistry of Drug Synthesis, V               | ols I and  |
|              | II, John Wiley, 1980.                                                          |            |
|              | 5. G. Patrick, An Introduction to Medicinal Chemistry, Oxford U                | niversity  |
|              | Press, Oxford, 1998.                                                           |            |
|              | 6. D. J. Abraham, Burgers Medicinal Chemistry and Drug Discover                | y, Vol. I, |
|              | 6 <sup>th</sup> Ed., John Wiley and Sons, New Jersey, 2003.                    |            |
|              | 7. J. Janata, Z. Kamenik, R. Gazak, S. Kadlcik and L. Najmanov                 | va, Nat.   |
|              | Prod. Rep., <b>2018</b> , 35, 257–289                                          |            |

| Course   | 1. Students will be able to explain classes of drugs and their structure activity |
|----------|-----------------------------------------------------------------------------------|
| Outcome: | relationship with examples of some important class of drugs.                      |
|          | 2. Students will be able to explain mechanism of action of the drugs.             |
|          | 3. Students will be able to describe the therapeutic uses of drugs and specific   |
|          | side effect of 'Drug Substances'.                                                 |
|          | 4. Students will be able to explain physico-chemical properties related to        |
|          | QSAR.                                                                             |
|          | 5. Students will be able to describe various approaches in designing of drug      |
|          | molecules including prodrug and combinatorial chemistry.                          |
|          |                                                                                   |

**Course Code:** CHO-623 **Title of the course:** Concepts in Green Chemistry

### Number of Credits: 4

| Prerequisites     | Students should have studied M.Sc. Part-I Chemistry/Biochemistry. |         |
|-------------------|-------------------------------------------------------------------|---------|
| for the           |                                                                   |         |
| course:           |                                                                   |         |
|                   | 1. To understand various concepts involved in Green synthesis     |         |
| Course            | 2. To understand green technologies used in chemistry             |         |
| <b>Objective:</b> | 3. To learn application of green chemistry approaches to cl       | hemical |
|                   | industry                                                          |         |
| Content           | 1. Principles and Concepts of Green Chemistry                     | No of   |
|                   | a. Introduction. twelve green principles. sustainable             | hours   |
|                   | development and green chemistry.                                  |         |
|                   | b Atom Economy: atom economic reactions- rearrangement            | 6       |
|                   | and addition reactions.                                           | 0       |
|                   | c Atom un-economic reactions- substitution, elimination and       |         |
|                   | Wittig reactions. Reducing toxicity                               |         |
|                   | 2. Waste: Production. Problems and Prevention                     | 6       |
|                   | a Introduction Some problems caused by waste sources of           | 0       |
|                   | waste from the chemical industry and the cost of waste            |         |
|                   | b Waste minimization techniques: the team approach and            |         |
|                   | process design for waste minimization minimizing waste            |         |
|                   | from existing processes                                           |         |
|                   | c On site waste treatment: Physical chemical and                  |         |
|                   | biotreatment                                                      |         |
|                   | d Design for degradation: degradation and surfactants DDT         |         |
|                   | u. Design for degradation, degradation and suffactants, DD1,      |         |
|                   | Polymers and some fulles for degradation.                         |         |
|                   | e. Polymer recycling: separation and sorting, incineration,       |         |
|                   | mechanical recycling and chemical recycling to monomers.          | (       |
|                   | 3. Measuring and Controlling Environmental Performance            | 6       |
|                   | a. The importance of measurement: Lactic acid production,         |         |
|                   | sater gasoline.                                                   |         |
|                   | b. Introduction to life cycle assessment and green process        |         |
|                   | metrics.                                                          |         |
|                   | c. Environmental management systems: ISO and European             |         |
|                   | Eco-Management and Audit Scheme, eco-labels, green                |         |
|                   | chemical supply, Strategies, Legislation and integrated           |         |
|                   | pollution prevention and control.                                 | 10      |
|                   | 4. Catalytic processes and Green Chemistry                        | 10      |
|                   | a. Introduction to catalysis and comparison of catalyst types.    |         |
|                   | b. Heterogeneous catalysts: Basics of heterogeneous catalysis,    |         |
|                   | Zeolites and the bulk chemical industry, heterogeneous            |         |

|        | catalysis in the fine chemical and pharmaceutical industries. |    |
|--------|---------------------------------------------------------------|----|
|        | Catalytic converters.                                         |    |
| c.     | Homogeneous catalysis: Transition metal catalysts with        |    |
|        | phosphine ligands, greener Lewis acids and asymmetric         |    |
|        | catalysis.                                                    |    |
| d.     | Phase transfer catalysis: Hazard reduction, C - C bond        |    |
|        | formation and oxidation using hydrogen peroxide.              |    |
| e.     | Biocatalysis and photocatalysis.                              |    |
| 5. Or  | ganic Solvents: Environmentally Benign Solutions              |    |
| a.     | Organic solvents and volatile organic components, solvent     |    |
|        | free systems.                                                 |    |
| b.     | Supercritical fluids: supercritical carbon dioxide and        |    |
|        | supercritical water.                                          | 10 |
| c.     | Water as a reaction solvent and water-based coatings.         |    |
| d.     | Ionic liquids as catalysts and solvents.                      |    |
| e.     | Fluorous biphase solvents.                                    |    |
| f.     | Deep eutectic solvents                                        |    |
| 6. Rei | newable Resources                                             |    |
| a.     | Biomass as a renewable resource. Energy: Fossil fuels,        |    |
|        | biomass, solar power, fuel cells and other forms of           |    |
|        | renewable energy.                                             | 6  |
| b.     | Chemicals and polymers from renewable feedstock.              | U  |
| c.     | Alternative economies: the syngas economy and the             |    |
|        | biorefinery.                                                  |    |
|        |                                                               |    |
| 7. Gr  | eener Technologies and Alternative Energy Sources             |    |
| a.     | Design for energy efficiency                                  |    |
| b.     | Photochemical reactions: advantages of and challenges         |    |
|        | faced by photochemical processes, examples of                 |    |
|        | photochemical reactions.                                      |    |
| c.     | Chemistry using Microwaves: microwave heating and             | 10 |
|        | microwave-assisted reactions.                                 |    |
| d.     | Sonochemistry and green chemistry examples.                   |    |
| e.     | Electrochemical synthesis and examples.                       |    |
| f.     | Flow chemistry                                                |    |
|        | -                                                             |    |
| 8. Ind | ustrial case studies                                          |    |
| a.     | A brighter shade of green: synthesis of stilbene              |    |
|        | intermediates for optical brightners.                         |    |
| b.     | Greening of acetic acid manufacture, EPDM rubbers and         | (  |
|        | Vitamin C.                                                    | 0  |
| с.     | Leather manufacture: tanning and fatliquoring.                |    |
| d.     | Dyeing to be green: some manufacturing and products           |    |
|        | improvement and dye application                               |    |

|              | e. Polyethene: Radical process, Ziegler – Natta and                            |
|--------------|--------------------------------------------------------------------------------|
|              | metallocene catalysis.                                                         |
|              | f. Eco-friendly pesticides.                                                    |
|              |                                                                                |
| Pedagogy     | Mainly lectures and tutorials. Seminars / term papers /assignments /           |
|              | presentations / self-study or a combination of some of these can also be used. |
|              | ICT mode should be preferred. Sessions should be interactive in nature to      |
|              | enable peer group learning.                                                    |
| References / | 1. M. Lancaster, Green Chemistry, The Royal Society of Chemistry,              |
| Readings     | Cambridge, UK, 2002.                                                           |
|              | 2. V. K. Ahluwalia, Green Chemistry: Environmentally Benign Reactions,         |
|              | Ane Books India, New Delhi, 2006.                                              |
|              | 3. A. S. Matlack, Introduction to Green Chemistry, Marcel Dekker, Inc.,        |
|              | New York, 2001.                                                                |
|              | 4. P. T. Anastas and T. C. Williamson, Green Chemistry: Frontiers in           |
|              | benign chemical synthesis and processes, Oxford University Press,              |
|              | Oxford, Ed. 1998.                                                              |
|              | 5. R. Sanghi and M. M. Srivastava, Green Chemistry: Environment Friendly       |
|              | Alternatives, Narosa Publishing House, Ed. New Delhi, 2007.                    |
|              | 6. Samuel Delvin, Green Chemistry, IVY Publishing House, Delhi, 2006.          |
|              | 7. V. K. Ahluwalia and M. Kidwai, New Trends in Green Chemistry,               |
|              | Anamaya Publishers, New Delhi, 2004.                                           |
|              | 8. P. G. Jessop and W. Leitner, Chemical Synthesis using Supercritical         |
|              | fluids, Wiley – VCH, Verlag, Ed., Weinheim, 1999.                              |
|              | 9. K. Tanaka, Solvent Free Organic Synthesis, Wiley – VCH GmbH and Co.         |
|              | KgaA, Weinheim, 2003.                                                          |
|              | 10. P. T. Anastas and J. C. Warner, Green Chemistry, Theory and Practice,      |
|              | Oxford University Press, N. York, 1998.                                        |
|              | 11. C - Jun Li and T – Hang Chan, Organic Reactions in Aqueous Media,          |
|              | John Wiley and Sons INC., N. York, 2001.                                       |
|              | 12. F. Z. Dorwald, Organic Synthesis on Solid Phase, Wiley – VCH Verlag,       |
|              | Weinheim, 2002.                                                                |
|              | 13. P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis, Wiley – VCH     |
|              | Verlag, Ed., Weinheim, 2003.                                                   |
|              | 14. A. Loupy, Microwaves in Organic Synthesis, Wiley – VCH Verlag,             |
|              | Weinheim, (Ed.), 2002.                                                         |
|              | 15. R. V. Eldik and F. G. Klarner, High Pressure Chemistry, Wiley – VCH        |
|              | veriag, (Eds.), weinheim, 2002.                                                |
|              | 16. F. Darvas, G. Dorman, V. Hessel, Flow Chemistry - Fundamentals:            |
|              | vol.1, De Gruyter, 1st Ed. 2014.                                               |
| Course       | 1. Students will be in a position to understand how chemistry can be           |
| Outcome:     | done using greener alternatives                                                |
|              | 2. Students will be in a position to apply green technologies as a             |
|              | sustainable solution for making molecules                                      |

| 3. Students will be able to understand and apply the concepts of green |
|------------------------------------------------------------------------|
| chemistry to develop scalable processes in industry                    |
| 4. Students will understand various renewable resources                |

Course Code: CHO-624 Title of the course: Chemistry of Life

### Number of Credits: 4

| Prerequisites  | Students should have studied M.Sc. Part-I Chemistry/Biochemistry.      |            |
|----------------|------------------------------------------------------------------------|------------|
| for the course |                                                                        |            |
|                | 1. Introduction to the chemistry of amino acids, proteins, carbohydrat | es, lipids |
|                | and their applicability in daily life.                                 |            |
| Course         | 2. Understanding chemicals used in food production through food pro-   | ocessing,  |
| Objective:     | storage and cooking.                                                   |            |
|                | 3. Understanding food analysis and the chemistry of the digestion of   | food and   |
|                | energy provided by food.                                               |            |
| Content        | 1. Chemistry of Proteins: Structure, function and food analysis        | No of      |
|                | a. Introduction to amino acids and role of polar, non-polar,           | hours      |
|                | acidic and basic side chains, their properties and Isoelectric         |            |
|                | point                                                                  | 10         |
|                | b. Introduction to peptides, dipeptides and proteins, types of         |            |
|                | proteins [primary (1°), secondary (2°), tertiary, (3°) and             |            |
|                | Quaternary (4°)]: hydrogen bonding, salt bridges,                      |            |
|                | hydrophobic - non-polar interactions and disulfide linkages            |            |
|                | c. Protein folding, denaturation and functional properties of          |            |
|                | proteins.                                                              |            |
|                | d. Food Proteins - Source of Proteins, Analysis of amino acids         |            |
|                | and proteins in food                                                   |            |
|                | 2. Chemistry of Nucleic Acids                                          | 15         |
|                | Brief history of sugars and bases, conformation of sugar-phosphate     |            |
|                | backbone, hydrogen bonding by bases, the double helix: A,B, and Z      |            |
|                | double helices, stability of double helix, DNA intercalators,          |            |
|                | chemical synthesis of DNA, catalytic RNA, siRNA, micro RNA             |            |
|                | 3. Chemistry of Carbohydrates and Lipids: Structure, function          | 20         |
|                | and food Analysis                                                      |            |
|                | a. Carbohydrates                                                       |            |
|                | i. Introduction to mono-, di- and oligosaccharides,                    |            |
|                | polysaccharides: starch, dietary, fibre, their physical                |            |
|                | function.                                                              |            |
|                | ii. Fischer projections, Haworth Projections, stereoisomerism          |            |
|                | in carbohydrates.                                                      |            |
|                | iii. Food Carbohydrates – Source of carbohydrates, Analysis of         |            |
|                | carbohydrates in food                                                  |            |
|                | iv. Sugars: Hydrolysis, thermal degradation, Maillard                  |            |
|                | reaction (non-enzymic browning reaction between                        |            |
|                | reducing carbohydrates and proteins), Amadori                          |            |
|                | Rearrangement and Analysis of Sugars, Mutarotation                     |            |

|              | b. Lipids                                                                         |             |
|--------------|-----------------------------------------------------------------------------------|-------------|
|              | i. Introduction to lipids, types of lipids and fatty acids                        |             |
|              | ii. Monoglycerides, diglycerides, triglycerides, polar lipids                     |             |
|              | iii. Reactions of fatty acids - Oxidative and hydrolytic rancidity                |             |
|              | iv. Sources of fats and analysis in food                                          |             |
|              | 4. Chemistry of Enzymes                                                           | 15          |
|              | a. Introduction to Enzyme Catalysis and Kinetics                                  |             |
|              | b. The Catalytic Triad                                                            |             |
|              | c. Enzyme Inhibition and Drug design                                              |             |
|              | d. Enzymes in Organic Synthesis                                                   |             |
|              | e. Antibody Catalysed Organic Reaction                                            |             |
|              | f. Enzyme Models: Biomimetic Polyene Cyclisation and                              |             |
|              | Squalene Biosynthesis                                                             |             |
| Pedagogy     | Mainly lectures and tutorials. Seminars / term papers /assign                     | nments /    |
|              | presentations / self-study or a combination of some of these can also             | be used.    |
|              | ICT mode should be preferred. Sessions should be interactive in                   | nature to   |
|              | enable peer group learning.                                                       |             |
| References / | 1. J. Clayden, N. Greeves, & S. Warren. Organic Chemistry, 2 <sup>nd</sup> Ed     | ., Oxford   |
| Readings     | University Press, 2012.                                                           |             |
|              | 2. T. P. Coultate, Food - The Chemistry of its Components, Royal S                | ociety of   |
|              | Chemistry, 5 <sup>th</sup> Ed., 2009.                                             |             |
|              | 3. H. D. Belitz. & W. Grosch, Food Chemistry, 4 <sup>th</sup> Ed., Springer, 200  | )9.         |
|              | 4. B. Selinger, Chemistry in the Marketplace, 3 <sup>rd</sup> Ed., Harcourt Brace | e, 1986.    |
|              | 5. O. R. Fennema, Food Chemistry, 4 <sup>th</sup> Ed., Marcel Dekker, 2008.       |             |
|              | 6. H. Dugas, Bioorganic Chemistry - A Chemical Approach to                        | Enzyme      |
|              | Action, 3 <sup>rd</sup> Ed. Springer, 1999.                                       |             |
|              | 7. R. B. Silverman, The Organic Chemistry of Enzyme-catalyzed R                   | leactions,  |
|              | Academic Press, San Diego, 717 pp., 2000.                                         |             |
|              | 8. J. S. Davies, Amino acids, Peptides and Proteins, Royal So                     | ociety of   |
|              | Chemistry, UK, Vol. 35, 4, 2006.                                                  |             |
|              | 9. L. Stryer, J. M. Berg, and J. L. Tymoczko, Biochemistry, 5th Ed                | d., W. H.   |
|              | Freeman & Co Ltd, 2002.                                                           |             |
| Course       | 1. Students will be in a position to predict type of proteins, li                 | pids and    |
| Outcome:     | carbohydrates available in food.                                                  |             |
|              | 2. Students will be in a position to explore the chemical struc                   | ture and    |
|              | functionality for the macronutrient categories like carbohydrate                  | es, lipids, |
|              | and proteins in 100d                                                              |             |
|              | 3. Student will be able to design experiments through an inquiry-                 | -oriented,  |
|              | The stadents will be shift to identify program.                                   |             |
|              | 4. The students will be able to identify the essential chemical comp              | onents of   |
|              | 1000 and nave knowledge of their analyses, and gain knowledge                     | ge of the   |
|              | chemistry of lipids, carbohydrates and proteins                                   |             |

Course Code: CHO-625 Title of the course: Organometallic Chemistry and

Rearrangement Reactions

Number of Credits: 4

| Prerequisites | Students should have studied chemistry courses at M.Sc. Part-I level. |           |
|---------------|-----------------------------------------------------------------------|-----------|
| for the       |                                                                       |           |
| course:       |                                                                       |           |
|               | 1. To understand concepts and various strategies involved in organ    | ometallic |
|               | chemistry.                                                            |           |
| Course        | 2. To apply organometallic chemistry in the formation of carbon       | n-carbon, |
| Objective:    | carbon-hetero atom bonds.                                             |           |
|               | 3. To understand and apply molecular rearrangements for               | synthetic |
|               | applications.                                                         |           |
| Content       | 1. Introduction to organometallic chemistry                           | No of     |
|               | a. Introduction to Organometallic Chemistry, Definitions,             | hours     |
|               | Types of Metal-carbon bonds with main-group metals and                |           |
|               | transition metals                                                     | 08        |
|               | b. Sigma and pi bonds: linear pi system and cyclic pi system          |           |
|               | c. Organic ligands, Nomenclature, heptacity, Electron counting        |           |
|               | and 18-electron rule                                                  |           |
|               | d. Orbital interactions and bonding                                   |           |
|               | e. Kinetic stability                                                  |           |
|               | 2. Organometallic compounds of main group elements                    | 12        |
|               | a. Preparation, properties and applications of Lithium                |           |
|               | Magnesium, Cadmium, Zinc, Cerium, Mercury and                         |           |
|               | Chromium Compounds.                                                   |           |
|               | b. Heteroatom directed lithiation reactions                           |           |
|               | 3. Role of transition metals in organic synthesis                     | 20        |
|               | a. Preparation and properties of Copper, Palladium, Nickel,           |           |
|               | Rhodium, Ruthenium and Gold reagents/complexes.                       |           |
|               | b. Mechanisms and applications of Mizoroki-Heck, Suzuki,              |           |
|               | Stille, Hiyama, Negishi, Sonogashira, Wacker, Kumada,                 |           |
|               | Buchwald-Hartwig, carbonylation, homogenous                           |           |
|               | hydrogenation, carbonylation, allylic substitution)                   |           |
|               | 4. Molecular rearrangements and their synthetic applications          | 20        |
|               | a. Unifying principles and mechanisms of rearrangements taking        |           |
|               | place at an electron deficient and electron rich substrates.          |           |
|               | b. Rearrangements taking place at carbon: Arndt-Eistert,              |           |
|               | Wagner-Meerwein, benzil-benzilic acid, Pinacol-pinacolone,            |           |
|               | semipinacol, Tiffeneau Demjanov, dienone-phenol, Wittig,              |           |
|               | Favorskii, Stevens, Wolff, Baker-Venkatraman, Barton                  |           |

|              | december y valetion Dynamen and needed and an ant                                       |
|--------------|-----------------------------------------------------------------------------------------|
|              | Decarboxylation, Punimerer rearrangement.                                               |
|              | c. Rearrangements at nitrogen: Hormann, Curtius, Lossen,                                |
|              | Schmidt, Beckmann, Neber, Stieglitz rearrangement.                                      |
|              | d. Rearrangements at oxygen: Payne (including aza- and thia-                            |
|              | Payne) rearrangement, hydroperoxide rearrangement, Criegee                              |
|              | rearrangement, Baeyer–Villiger oxidation                                                |
|              | e. Aromatic rearrangements: Benzidine, Fries, Von Richter,                              |
|              | Sommelet-Hauser, Smile's, Jacobsen. Rearrangement on                                    |
|              | aniline derivatives- Bamberger rearrangement, Fischer-Hepp,                             |
|              | Orton. Hofmann-Martius. Reilly-Hickinbottom.                                            |
|              | rearrangements of <i>N</i> -arylazoanilines. Phenylnitramines                           |
|              | Phenylsulfamines                                                                        |
|              | f Pearrongements involving fragmentations: Eschenmoser                                  |
|              | for amontation                                                                          |
|              | Iragmentation.                                                                          |
| Pedagogy     | Mainly lectures and tutorials. Seminars / term papers /assignments /                    |
|              | presentations / self-study or a combination of some of these can also be used.          |
|              | ICT mode should be preferred. Sessions should be interactive in nature to               |
|              | enable peer group learning.                                                             |
| References / | 1. A. Edward, Comprehensive Organometallic Chemistry, 2 <sup>nd</sup> Ed., 14 vols.     |
| Readings     | Pergman, 1995.                                                                          |
|              | 2. F. R. Hartley, Chemistry of Metal-Carbon Bond, 6 vols. Wiley, 1982-83.               |
|              | 3. M. Schlosser, Organometallics in Synthesis - A Manual, John & Wiley,                 |
|              | 1994.                                                                                   |
|              | 4. R. H. CraJohn, The Organometallic Chemistry of the Transition Metals,                |
|              | Wiley, 1994.                                                                            |
|              | 5. G. R. Stephenson, Transition Metal Organometallics for Organic Synthesis,            |
|              | Cambridge University Press, 1991.                                                       |
|              | 6 L. S. Liebeskind Advances in Metal Organic Chemistry Vols 1 and 2                     |
|              | (Ed.) IAI Press 1989                                                                    |
|              | 7 I. P. Colliman I. S. Hegedus, I. R. Norton & R. G. Finke Principles and               |
|              | Applications of Organotransition Metal Chemistry University Science                     |
|              | Pools 1027                                                                              |
|              | DUUKS, 1907.                                                                            |
|              | o. A. Famamoto, Organotranstron Metar Chemistry - Fundamentar Concepts                  |
|              | and Applications, whey, 1986.                                                           |
|              | 9. A. J. Pearson, Metallo-Organic Chemistry, John Wiley, 1985.                          |
|              | 10. W. Caruthers & I. Colddham, Modern Methods of Organic Synthesis, 4th                |
|              | Ed., Cambridge University Press, 2016.                                                  |
|              | 11. J. Clayden, N. Greeves and S. Warren, Organic Chemistry, Oxford, 2016.              |
|              | 12. F. A. Carey & R. J. Sundberg, Advanced Organic Chemistry: Part A and B,             |
|              | 5th Ed., Springer India Private Limited, 2007.                                          |
|              | 13. R. O. C. Norman & J. M. Coxon, Principles of Organic Syntheses, 3 <sup>rd</sup> Ed. |
|              | CRC Press Inc, 2009.                                                                    |
|              | 14. M. B. Smith & Jerry March, Advanced Organic Chemistry- 50 Reaction,                 |
|              | Mechanism and Structure, 6 <sup>th</sup> Ed., Wiley, 2006.                              |
| Course   | 1. Students will be in a position to understand how a carbon-carbon and carbon-   |
|----------|-----------------------------------------------------------------------------------|
| Outcome: | hetero atom bonds can be constructed using organometallic chemistry.              |
|          | 2. Students will be able to understand and apply the concepts of organometallic   |
|          | chemistry in syntheses of organic molecules.                                      |
|          | 3. Students will be in a position to write synthetic routes for organic molecules |
|          | using various molecular rearrangements.                                           |

Г

## Name of the Programme: M.Sc. Part-II (Chemistry)

**Course Code:** CHC-600 **Title of the course:** Research Methodology and instrumental

techniques-I

Number of Credits: 4

Effective from AY: 2023-24

| Prerequisites     | Students should have studied chemistry courses at MSc-I level.        |       |
|-------------------|-----------------------------------------------------------------------|-------|
| for the           |                                                                       |       |
| course:           |                                                                       |       |
| Course            | 1. To introduce various aspects of research methodology.              |       |
| <b>Objective:</b> | 2. To provide understanding ethics & scientific conduct.              |       |
|                   | 3. To introduce academic writing.                                     |       |
|                   | 4. To introduce databases used in chemistry.                          |       |
|                   | 5. To provide understanding and importance of lab safety.             |       |
|                   | 6. To understand the usefulness of various instrumental techniques in |       |
|                   | characterization of chemical compounds.                               |       |
| Content           | 1. Introduction to Research Methodology                               | No of |
|                   | Research- meaning, objectives, motivation, types and                  | hours |
|                   | methodology.                                                          |       |
|                   | Process- formulating the research problem; literature survey;         | 5     |
|                   | developing the hypothesis and the research design; sample             |       |
|                   | design and collection of the data; execution of the project;          |       |
|                   | analysis of data; testing of hypothesis; generalizations and          |       |
|                   | interpretation, and preparation of the report or presentation of      |       |
|                   | the results & conclusions.                                            |       |
|                   | 2. Scientific conduct and ethics                                      | 5     |
|                   | Ethics: definition, nature of moral judgements and reactions,         |       |
|                   | Ethics with respect to science and research.                          |       |
|                   | Intellectual honesty and research integrity.                          |       |
|                   | Scientific misconducts: Falsification, Fabrication, and               |       |
|                   | Plagiarism (FFP).                                                     |       |
|                   | Redundant publications: duplicate and overlapping                     |       |
|                   | publications.                                                         |       |
|                   | Selective reporting and misrepresentation of data.                    |       |
|                   | 3. Academic writing                                                   | 5     |
|                   | Publication ethics: definition, introduction and importance           |       |
|                   | Conflicts of interest                                                 |       |
|                   | Publication misconduct: definition, concept, problems that lead       |       |
|                   | to unethical behaviour and vice versa                                 |       |
|                   | Violation of publication ethics, authorship and contributorship       |       |
|                   | Identification of publication misconduct, complaints and              |       |
|                   | appeals                                                               |       |
|                   | Predatory publishers and journals                                     |       |

|              |                                                                     | 2        |
|--------------|---------------------------------------------------------------------|----------|
|              | 4. Data bases and research metrics                                  | 3        |
|              | Databases: 1. Indexing databases 2. Citation databases: Web of      |          |
|              | Science, Scopus, UGC-Care List etc.                                 |          |
|              | Research Metrics: 1. Impact Factor of journal as per Journal        |          |
|              | Citation Report, SNIP, SJR, IPP, Cite Score 2. Metrics: h-index,    |          |
|              | g index, i10 index etc                                              |          |
|              | 5. Safety aspects in Chemistry                                      | 5        |
|              | Good laboratory practices.                                          |          |
|              | Handling of various chemicals, solvents & glassware.                |          |
|              | Fires and fighting with fires.                                      |          |
|              | Hazardous substances, classification and handling                   |          |
|              | Safety Data Sheet                                                   |          |
|              | 6. Softwares in Chemistry                                           | 7        |
|              | Data plotting                                                       |          |
|              | Structure Drawing                                                   |          |
|              | Reference management software                                       |          |
|              | 7. Instrumental methods of analysis:                                | 30       |
|              | Demonstration and/ or data analysis in following techniques:        |          |
|              | Elemental analysis: CHNS analysis and AES                           |          |
|              | Infrared (IR), Raman, Ultraviolet-Visible (UV-Vis)                  |          |
|              | Nuclear magnetic resonance $({}^{1}H, {}^{13}C)$                    |          |
|              | Chromatographic techniques: HPLC, GC,                               |          |
|              | Hyphenated Techniques: LC-MS & GC-MS,                               |          |
|              | Diffraction methods: XRD                                            |          |
|              | Thermal analysis: DSC                                               |          |
|              | Microscopy: SEM, TEM                                                |          |
|              | Methods for determination of magnetic & dielectric                  |          |
|              | properties.                                                         |          |
|              | Cyclic voltammetry                                                  |          |
| Pedagogy     | Mainly lectures/recorded video lectures/ tutorials, discussions, se | minars,  |
|              | internal exams/ assignments, / demonstration/ self-study            | or a     |
|              | combination of some of these. ICT mode should be preferred. S       | essions  |
|              | should be interactive in nature to enable peer group learning.      |          |
| References / | 1. C. R. Kothari, Research Methodology: Methods & Tech              | niques,  |
| Readings     | New Age International Pvt. Ltd., 2004.                              | -        |
|              | 2. Bird, Philosophy of Science, Routledge, 2006.                    |          |
|              | 3. M. Coghill & L. R. Garson, The ACS Style Guide: Effective        |          |
|              | Communication of Scientific Information, American Cl                | hemical  |
|              | Society Washington, DC & OXFORD University Press New                |          |
|              | York. 2006.                                                         |          |
|              | 4. Y. K. Singh, Fundamentals of Research Methodol                   | ogy &    |
|              | Statistics, New Age International Pvt. Ltd., 2006.                  |          |
|              | 5. National Research Council, Prudent practices in the lab          | oratory: |
|              | handling and management of chemical hazards, The N                  | Jational |

|          | Academies Press, USA, 2011.                                                  |  |
|----------|------------------------------------------------------------------------------|--|
|          | 6. B. S. Furniss, A. J. Hannaford, P. W. G. Smith & A. R. Tatchell,          |  |
|          | Vogel's Text book of Practical Organic Chemistry. 5 <sup>th</sup> Ed.:       |  |
|          | Longmann, 1989                                                               |  |
|          | 7. E. A. V. Ebsworth, D. W. H. Rankin & S. Craddock, Structural              |  |
|          | Methods in Inorganic Chemistry, Blackwell Scientific Publishers              |  |
|          | 1986                                                                         |  |
|          | 8 R. S. Drago, Physical Methods in Chemistry, 2 <sup>nd</sup> Ed. W. B.      |  |
|          | Saunders Co. Ltd. 2016                                                       |  |
|          | 9. R. M. Silverstein, F. X. Webster; Spectrometric identification of         |  |
|          | Organic Compounds: $6^{th}$ Ed. Wiley. 2011.                                 |  |
|          | 10. J. Mendham, R. C. Denny, J. D. Barnes & M. Thomas, Vogel's               |  |
|          | Textbook of Ouantitative Chemical Analysis, 6 <sup>th</sup> Ed.: Pearson     |  |
|          | Education Asia, 2002.                                                        |  |
|          | 11. H. V. Keer, Principles of the Solid State, 1 <sup>st</sup> Ed. New Age   |  |
|          | International (P) Ltd., 2005.                                                |  |
|          | 12. G. D. Christian, Analytical Chemistry, 6 <sup>th</sup> Ed.; Wiley, 2004. |  |
|          | 13. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of           |  |
|          | Analytical Chemistry, 9 <sup>th</sup> Ed.; Cengage learning.                 |  |
|          | 14. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental            |  |
|          | Analysis, 7 <sup>th</sup> Ed.; Cengage learning.                             |  |
|          | 15. P. G. Lampman, G. Kriz and J. Vyvyan, Introduction to Organic            |  |
|          | Spectroscopy, 5 <sup>th</sup> Ed.; Cengage Learning, 2015.                   |  |
|          | 16. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T.          |  |
|          | T. Eisenhart, and J. L. Dempsey, A Practical Beginner's Guide to             |  |
|          | Cyclic Voltammetry, J. Chem. Educ. ACS, 2018, 95, 197-206.                   |  |
|          | 17. V. Rajaraman, Computer Programming in Fortran 90 And 95,                 |  |
|          | PHI Learning Pvt. Ltd., 2013.                                                |  |
|          | 18. Szabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction             |  |
|          | to Advanced Electronic Structure Theory, Dover Publications,                 |  |
|          | Inc. Mineola, 1989.                                                          |  |
|          |                                                                              |  |
| Course   | 1. Students will be able to apply research methodology concepts.             |  |
| Outcome: | 2. Students will be able to apply computer technology to solve their         |  |
|          | research problems in chemistry.                                              |  |
|          | 3. Students will know in advance the safety precautions to be taken          |  |
|          | in the chemical lab.                                                         |  |
|          | 4. Students will gain fundamental knowledge on characterization              |  |
|          | techniques.                                                                  |  |

## Name of the Programme: M.Sc. Part-II (Chemistry)

**Course Code:** CHC-601 **Title of the course:** Research Methodology and instrumental

techniques-II

Number of Credits: 4

Effective from AY: 2023-24

| Prerequisites   | Students should have studied chemistry courses at MSc-I.              |       |  |  |
|-----------------|-----------------------------------------------------------------------|-------|--|--|
| for the course: |                                                                       |       |  |  |
| Course          | 1. To introduce various aspects of research methodology.              |       |  |  |
| Objective:      | 2. To provide understanding ethics & scientific conduct.              |       |  |  |
|                 | 3. To introduce academic writing.                                     |       |  |  |
|                 | 4. To introduce databases used in chemistry.                          |       |  |  |
|                 | 5. To provide understanding and importance of lab safety.             |       |  |  |
|                 | 6. To understand the usefulness of various instrumental techniques in |       |  |  |
|                 | characterization of chemical compounds.                               |       |  |  |
| Content         | 1. Research Methodology, Scientific conduct, ethics &                 | No of |  |  |
|                 | academic writing                                                      | hours |  |  |
|                 | Research- meaning, objectives, motivation, types and                  |       |  |  |
|                 | methodology.                                                          | 15    |  |  |
|                 | Process- formulating the research problem; literature survey;         |       |  |  |
|                 | developing the hypothesis and the research design; sample             |       |  |  |
|                 | design and collection of the data; execution of the project;          |       |  |  |
|                 | analysis of data; testing of hypothesis; generalizations and          |       |  |  |
|                 | interpretation, and preparation of the report or presentation         |       |  |  |
|                 | of the results & conclusions.                                         |       |  |  |
|                 | Ethics: definition, nature of moral judgements and reactions,         |       |  |  |
|                 | Ethics with respect to science and research.                          |       |  |  |
|                 | Intellectual honesty and research integrity.                          |       |  |  |
|                 | Scientific misconducts: Falsification, Fabrication, and               |       |  |  |
|                 | Plagiarism (FFP).                                                     |       |  |  |
|                 | Redundant publications: duplicate and overlapping                     |       |  |  |
|                 | publications.                                                         |       |  |  |
|                 | Selective reporting and misrepresentation of data.                    |       |  |  |
|                 | Publication ethics: definition, introduction and importance           |       |  |  |
|                 | Conflicts of interest                                                 |       |  |  |
|                 | Publication misconduct: definition, concept, problems that            |       |  |  |
|                 | lead to unethical behaviour and vice versa                            |       |  |  |
|                 | Violation of publication ethics, authorship and                       |       |  |  |
|                 | contributorship                                                       |       |  |  |
|                 | Identification of publication misconduct, complaints and              |       |  |  |
|                 | appeals                                                               |       |  |  |
|                 | Predatory publishers and journals                                     |       |  |  |
|                 | 2. Softwares in chemistry, Data bases and Research metrics            | 10    |  |  |

|              | Data plotting using GNU plot; Structure Drawing using                       |          |  |
|--------------|-----------------------------------------------------------------------------|----------|--|
|              | ChemSktech; Reference management software such as                           |          |  |
|              | Mendeley and Zotero.                                                        |          |  |
|              | Databases: Indexing databases, Citation databases: Web of                   |          |  |
|              | Science, Scopus, UGC-Care List, Scimago etc.                                |          |  |
|              | Research Metrics: Impact Factor of journal as per Journal                   |          |  |
|              | Citation Report, SNIP, SJR, IPP, Cite Score; Metrics: h-                    |          |  |
|              | index, g-index, i10-index etc                                               |          |  |
|              | Molecular Docking software                                                  |          |  |
|              | 3. Safety practices in Chemical research                                    | 5        |  |
|              | Introduction to lab safety.                                                 |          |  |
|              | Handling of various chemicals, solvents & glassware.                        |          |  |
|              | Fires and fighting with fires.                                              |          |  |
|              | Hazardous substances, classification and handling                           |          |  |
|              | Safety Data Sheet                                                           |          |  |
|              | 4. Instrumental methods                                                     | 30       |  |
|              | UV-Visible spectroscopy in elucidation of mechanisms of                     |          |  |
|              | C-H activation reactions, epoxidation etc by transition metal               |          |  |
|              | catalyst.                                                                   |          |  |
|              | Understanding water oxidation reaction using Cyclic                         |          |  |
|              | voltammetry (CV) & Linear Sweep voltammetry (LSV)                           |          |  |
|              | Determining capacity of supercapacitors using                               |          |  |
|              | Galvanostatic Charge-Discharge (GCD)                                        |          |  |
|              | Electrochemical Impedance Spectroscopy (EIS)                                |          |  |
|              | Resonance Raman and isotope labelling studies.                              |          |  |
|              | Infrared (IR) spectroscopy applications                                     |          |  |
|              | <sup>1</sup> H, <sup>13</sup> C- NMR spectroscopy and applications          |          |  |
|              | Selected chromatographic techniques such as HPLC, GC.                       |          |  |
|              | Hyphenated Techniques/applications: LC-MS, GC-MS, LC-                       |          |  |
|              | NMR-MS, GC-IR, ICP-MS                                                       |          |  |
|              | Diffraction methods: High temperature XRD                                   |          |  |
|              | Thermal analysis: TG/DTA/DSC                                                |          |  |
|              | Microscopy: Fe-SEM, HR-TEM                                                  |          |  |
|              | Methods for determination Ms, Mr, Hc, Tc, $\epsilon^{I}$ and Tan $\delta$ . |          |  |
|              | Potentiometry                                                               |          |  |
| Pedagogy     | Mainly lectures/recorded video lectures/ tutorials, discu                   | ussions, |  |
|              | seminars, internal exams/ assignments, / demonstration/ self-stu            | dy or a  |  |
|              | combination of some of these. ICT mode should be preferred. S               | essions  |  |
|              | should be interactive in nature to enable peer group learning.              |          |  |
| References / | 1. C. R. Kothari, Research Methodology: Methods & Tech                      | iniques, |  |
| Readings     | New Age International Pvt. Ltd., 2004.                                      |          |  |
|              | 2. Bird, Philosophy of Science, Routledge, 2006.                            |          |  |
|              | Communication of Scientific Information. American Chemical                  |          |  |
|              | Society Washington, DC & OXFORD University Pres                             | ss New   |  |

|          | York, 2006.                                                                                                                                |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|          | 4 Y K Singh Fundamentals of Research Methodology &                                                                                         |  |  |
|          | Statistics New Age International Pyt I td 2006                                                                                             |  |  |
|          | 5 National Research Council Prudent practices in the laboratory:                                                                           |  |  |
|          | bandling and management of chemical hazards. The National                                                                                  |  |  |
|          | A codemics Press USA 2011                                                                                                                  |  |  |
|          | Academics Fless, USA, 2011.<br>6 D. S. Eurnige, A. I. Hannaford, D. W. G. Smith, & A. D.                                                   |  |  |
|          | 0. D. S. Fulliss, A. J. Hamalold, F. W. O. Simul & A. K.                                                                                   |  |  |
|          | Figure 1080                                                                                                                                |  |  |
|          | Eu., Longmann, 1969<br>7 E. A. V. Ehawarth, D. W. H. Dankin, & S. Craddaals, Structural                                                    |  |  |
|          | /. E. A. V. EDSWORTH, D. W. H. KAIKIN & S. Craudock, Structural                                                                            |  |  |
|          | Dublishers 1086                                                                                                                            |  |  |
|          | Publishers, 1960.<br>P = P = P = P = P = P = P = P = P = P =                                                                               |  |  |
|          | 6. R. S. Diago, Physical Methods III Chemistry, 2 Ed. W. D.                                                                                |  |  |
|          | Saunders Co. Lid. 2010<br>D. D. M. Silverstein, F. V. Websten, Spectrometric identification of                                             |  |  |
|          | 9. R. M. Silverstein, F. A. webster, Spectrometric identification of Organia Compounds 6 <sup>th</sup> Ed. Wiley, 2011                     |  |  |
|          | 10 L Mondham B. C. Danny, J. D. Dannag, & M. Thamag, Vagalla                                                                               |  |  |
|          | Touthook of Quantitative Chamical Analysis 6 <sup>th</sup> Ed. Barron                                                                      |  |  |
|          | Education Agia 2002                                                                                                                        |  |  |
|          | Education Asia, 2002.                                                                                                                      |  |  |
|          | II. H. V. Keer, Principles of the Solid State, 1 <sup>th</sup> Ed. New Age<br>International (P) Ltd., 2005.                                |  |  |
|          | 12. G. D. Christian, Analytical Chemistry, 6 <sup>th</sup> Ed : Wiley 2004                                                                 |  |  |
|          | 12. G. D. Christian, Analytical Chemistry, 6 <sup>th</sup> Ed.; Wiley, 2004.                                                               |  |  |
|          | 13. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of<br>Analytical Chemistry <sup>0<sup>th</sup></sup> Ed : Cangage learning |  |  |
|          | Analytical Unemistry, 9 <sup></sup> Ed.; Uengage learning.                                                                                 |  |  |
|          | Analysis, 7 <sup>th</sup> Ed.: Cengage learning.                                                                                           |  |  |
|          | 15. Pavia, G. Lampman, G. Kriz and J. Vyvyan, Introduction to                                                                              |  |  |
|          | Organic Spectroscopy 5 <sup>th</sup> Ed : Cengage Learning 2015                                                                            |  |  |
|          | 16 N Florishi K I Rountree B D McCarthy F S Rountree T                                                                                     |  |  |
|          | T Fisenhart and I L Demnsey A Practical Beginner's Guide                                                                                   |  |  |
|          | to Cyclic Voltammetry, J. Chem. Educ. ACS, 2018, 95,                                                                                       |  |  |
|          | 197–206                                                                                                                                    |  |  |
|          | 17. V. Rajaraman, Computer Programming in Fortran 90 And 95.                                                                               |  |  |
|          | PHI Learning Pvt. Ltd., 2013.                                                                                                              |  |  |
|          | 18. Attila Szabo, Neil S. Ostlund, Modern Quantum Chemistry:                                                                               |  |  |
|          | Introduction to Advanced Electronic Structure Theory. Dover                                                                                |  |  |
|          | Publications, Inc. Mineola, 1989.                                                                                                          |  |  |
|          | 19. Leach, Molecular Modelling, Principles and applications,                                                                               |  |  |
|          | Longman, 1998.                                                                                                                             |  |  |
|          | 20. W. Nam et al, Dioxygen activation by Metalloenzymes &                                                                                  |  |  |
|          | models, Accounts of Chemical Research, 2007, Volume 40 &                                                                                   |  |  |
|          | references cited therein.                                                                                                                  |  |  |
| 9        |                                                                                                                                            |  |  |
| Course   | 1. Students will be familiar with research methodology concepts.                                                                           |  |  |
| Outcome: | 2. Students will be able to apply computer technology to solve their                                                                       |  |  |
|          | research problems in chemistry.                                                                                                            |  |  |
|          | 3. Students will know in advance the safety precautions to be taken in                                                                     |  |  |
|          | the chemical lab.                                                                                                                          |  |  |
|          | 4. Students will gain fundamental knowledge on characterization                                                                            |  |  |
|          | techniques                                                                                                                                 |  |  |
|          | teeninques.                                                                                                                                |  |  |

## Name of the Programme: M.Sc. Part-II (Chemistry)

**Course Code:** CHC-651 **Title of the course:** Discipline Specific Dissertation

Number of Credits: 16

Effective from AY: 2023-24

| Prerequisites     | Students should have studied chemistry courses at MSc-I level.            |             |
|-------------------|---------------------------------------------------------------------------|-------------|
| for the course:   |                                                                           |             |
| Course            | To develop the skills of preparing and conducting independent research.   |             |
| <b>Objective:</b> |                                                                           |             |
| Content           | As per OA-35                                                              | No of Hours |
|                   |                                                                           | 480         |
| Pedagogy:         | Dissertation carried out individually by each student throughout the      |             |
|                   | academic year.                                                            |             |
| References /      | As required for the development of review and methodology.                |             |
| Readings:         |                                                                           |             |
| Course            | Students will be able to understand and apply the tools and techniques of |             |
| Outcome:          | chemistry in conducting independent research.                             |             |