Syllabus of M.Sc. Mathematics Programme w.e.f. 2018-2019

List of Courses:

(I) CORE COURSES

MTC-101: Real Analysis

MTC-102: Linear Algebra

MTC -103: Basic Algebra

MTC -104: Differential Equations

MTC -105: Topology

MTC -201: Several Variable Calculus

MTC -202: Algebra

MTC -203: Functional Analysis

(II) OPTIONAL COURSES

MTO -106: Methods of Applied Mathematics

MTO -107: Graphs and Networks

MTO -108: Actuarial Science

MTO -204: Partial Differential Equations

MTO -205: Complex Analysis

MTO -206: Measure Theory

MTO -207: Number Theory

MTO -208: Lie Algebra

MTO -209: Special Functions

MTO -210: Difference Equations

MTO -301: Advanced Algebra

MTO -302: Combinatorics

MTO -303: Differential Geometry

MTO -304: Mathematical Modeling

MTO -305: Integral Equations

MTO -306: Sturm Liouville Problem

MTO -307: Mathematics for Finance

MTO -401: Advanced Linear Algebra

MTO -402: Commutative Algebra

MTD-500: Dissertation

Note: All the courses are of 4 credit

Scheme of Instructions (Semester system) Choice Based Credit System

SEMESTER (I)			
Course Number and Name	No. Of Credits	L- T- P (hours per	
		week)	
MTC-101- Real Analysis	4	3-1-0	
MTC-102 -Linear Algebra	4	3-1-0	
MTC-103- Basic algebra	4	3-1-0	
Optional Course	4	3-1-0	
	STER (II)		
MTC-104- Differential Equations	4	3-1-0	
MTC-105 – Topology	4	3-1-0	
MTC-201 – Several Variable Calculus	4	3-1-0	
Optional Course	4	3-1-0	
SEME	STER (III)		
MTC-202 –Algebra	4	3-1-0	
MATH-203-Functional Analysis	4	3-1-0	
Optional Course	4	3-1-0	
Optional Course	4	3-1-0	
	STER (IV)		
Optional Course	4	3-1-0	
Optional Course	4	3-1-0	
Optional Course	4	3-1-0	
Optional Course	4	3-1-0	

Detail Syllabus

Programme: M. Sc. (Mathematics)
Course Code: MTC-101
Number of Credits: 4 Title of the Course: REAL ANALYSIS

Prerequisites	Basic Mathematical Analysis	
Objective	This course will develop fundamental concepts in Real Analysis and make the student acquainted with tools of analysis which is essential for the study and appreciation of many related branches of mathematics and applications.	
Content	1.Real and Complex Number Systems Peano's Axioms for Natural Numbers and Induction Principle, Integers and Rational numbers, Ordered sets and LUB Property, Ordered Field Axioms, Real Numbers and Completeness, Archimedean property, integral part of a real number, density of rationals, and irrationals, Existence of <i>n</i> th roots of nonnegative reals and decimal representation of reals, Complex Number System, Countable sets, Uncountable sets, Countabilty of Rationals, Uncountability of Reals, Extended Real Number System. 2.Elements of Point Set Toplogy	12 Hours
	Metric Spaces, Euclidean Spaces, Open balls and Open sets in \mathbb{R}^n , Structure of open sets in \mathbb{R}^1 , Adherent points and Accumulation points, Closed sets, Perfect sets, Bolzano- Weierstrass Theorem, Cantor Intersection Theorem, Lindelöf Covering Theorem, The Heine-Borel Covering Theorem, Compactness in \mathbb{R}^n , Compactness in metric spaces, Connected sets in metric spaces, Connected subsets of \mathbb{R} , Cantor set.	12 Hours
	3.Limits and Continuity Convergent sequences in a Metric space, Cauchy sequences and Complete metric spaces, Limit inferior and Limit superior of a sequence, Limit of a Function- (Real valued, complex valued, vector valued functions), Continuous Functions, Continuity and Compactness, Continuity and Connectedness, Bolzano's Theorem and Intermediate value Theorem, Uniform Continuity, Uniform Continuity and Compactness, Discontinuities of Real valued Functions, Monotonic Functions, Infinite limits and Limits at infinity.	12 Hours
	4.Derivatives Derivatives and Continuity, Algebra of Derivatives and Chain rule (Statements only), One sided derivatives and Infinite Derivatives, Functions with non-zero derivatives, Zero derivatives and Local extrema, Rolle's Theorem, Mean value Theorems and consequences, Intermediate value Theorem for Derivatives, Taylor's Formula with Remainder, Derivatives of Vector valued Functions and Complex valued Functions, Derivatives of Higher Order and L'Hospital's Rules.	12 Hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/ Readings	 Mathematical Analysis, Tom M. Apostol, Narosa Publishing House, 1996. Principles of Mathematical Analysis, Walter Rudin, McGraw-Hill International Editions, 1976. A Basic Course in Real Analysis, Kumar and Kumaresan, CRC Press, 2015. Real Analysis, N.L. Carothers, Cambridge University Press, 2000. 	
Learning Outcomes	 On Completion of this course the student will be able to Describe the difference between rational numbers and real numbers. Understand LUB property and apply it to proofs and solutions of problems. Calculate limit inferior and limit superior Understand and use concepts related to metric spaces such as continuity, compactness and connectedness Apply mean value theorem to problems in the context of Real Analysis 	

Course Code: MTC-102 Title of the Course: LINEAR ALGEBRA

Number of Credits: 04

Prerequisites	Should have passed B.Sc. with Linear Algebra as one of the subject	s Should	
Trerequisites	be familiar with the notions of vector spaces, basis, dimension, Linear maps,		
	matrix representation of linear maps and their algebra and Rank-Nullity		
	theorem.		
Objectives	To prepare students to handle solving problems involving linear equ	lations and	
Objectives	determining the qualitative properties of the solution set.	iations and	
Contents	1. Basic Linear Algebra : Vectors Spaces, Examples,	4 Hours	
Contents	Linear combinations, Linear Span, Linear dependence	4 110018	
	and independence, basis and dimension. (Review)	4 Hours	
	2. Linear Maps : Linear maps, Matrix Representation,	4 Hours	
	Algebra of Linear maps and Matrices, Rank Nullity		
	theorem. (Review)	0.11	
	3. Linear functionals : Linear functional on a vector space,	8 Hours	
	Dual of a vector space and properties, Transpose of a		
	linear map and the matrix.	4 Hours	
	4. Diagonalisation : Characteristic values and characteristic	4 Hours	
	vectors, Invariant subspaces, diagonalization. (Review).	1011	
	5. Inner Product spaces: Inner product spaces, examples	10Hours	
	and basic properties, Parallelogram law,		
	Orthonormalisation of a basis, Bessel's inequality, Linear		
	fucntionals on inner-product spaces, dual, Riesz		
	Representation theorem.	1611	
	6. Linear operators : Linear operators on inner-product	16Hours	
	spaces, adjoint of an operator, Unitary, self-adjoint and		
	normal operators, Spectral theorem for self-adjoint and		
D 1	normal operators.		
Pedagogy	Class room lectures and tutorials, assignments and library reference		
References	1. Kenneth Hoffmann and Ray Kunze, Linear Algebra, PHI, 19	99/.	
T .	2. S. Kumaresan, Linear Algebra, PHI, 2000.	1	
Learning	The students will be equipped to learn basic Functional analysis, Se	veral	
Outcomes	Variable Calculus, Advanced Algebra, Differential Equations, etc.		

Course Code: MTC-103 Title of the Course: Basic Algebra

Number of Credits: 4

Dranaguigitag for the	Basic group Theory. Basic set theory. Notion of function and relation.	<u> </u>
Prerequisites for the course:	Basic group Theory. Basic set theory. Notion of function and relation.	
Objective:	This course is also prerequisite for courses such as Algebra,	
<u> </u>	Commutative Algebra, Advanced Number Theory, Galois Theory.	
Content:	Logic: Mathematical statements, Quantifiers, Conjuction and Disjunction, Negation, Implications and Converses, Equivalence of Statements.	3 hours
	2. Set Theory: Familiarising Zarmilo-Frankel Axioms, Expressing Sets, Set Operations, Ordered Pairs of Points, Product of sets.	5 hours
	3. Relations: Equivalence Relations, Equivalence Classes and Quotient as a Set, Cross-sections.	5 hours
	4. Functions: Function from Sets to Sets, Images, Pre-images and their Algebra, One-one and Onto Functions and Quotient Map, Schauder-Bernstein Theorem, Cardinality.	5 hours
	5. Natural Number system: Partial Order, Well-ordered set, Well-ordering Principle, Axiom of Choice, Order Preserving Functions, Order Isomorphism, Peano's Axiom.	5 hours
	6. Groups and subgroups: Definition and examples of groups, Cyclic groups, Permutations groups, Dihedral groups, Some matrix groups.	9 hours
	7. Cosets and Direct Products: Group of Permutations, Orbits, cycles and Alternating groups. Subgroups, Cosets and Theorem of Lagrange's, Euler's Theorem, Wilson's Theorem, Direct products and Finitely generated abelian groups, class equations and p-groups.	9 hours
	8. Homomorphism and Factor groups: Homomorphisms and Factor groups and Fundamental theorem of Group Homomorphisms. Isomorphism Theorems.	7 hours
Pedagogy:	lectures/ tutorials/assignments/self-study	
References/Readings	 J.B. Fraleigh, A First Course in Abstract Algebra, Seventh Edition, Pearson International, 2002. I. N. Herstein, Topics in Algebra, Second Edition, Wiely Student Edition, 2006. V. Kakkar, Set Theory, Narosa Publisher, 2016. A. Kumar, S. Kumaresan and B.K. Sarma, A Foundation Course in Mathematics, Narosa Publisher, 2018. 	
Learning Outcomes	 Taking this course students get prepared to take more advanced courses such as Algebra, Advanced Algebra. Taking this course students can then read Galois theory and Rings and Field Theory. 	

Course Code: MTC -104 Title of the Course: DIFFERENTIAL EQUATIONS

Number of Credits: 04

Prerequisites	Knowledge of basic Real Analysis and Linear Algebra.	
Objectives	This course develops the ability to solve ordinary differential equations by	
	standard methods. It will help to understand some important properties of	
	solution of differential equation	
Contents	1. Review of Basic concepts: Linear differential equations of the	12 hours
	first order. Higher order Linear differential equations with	
	constant coefficients.	
	2. Linear Equations with variable coefficients. Standard methods	12 hours
	and series solution. Legendre equation. Bessel's equation.	
	3. Systems of Linear differential equations. Existence and	12 hours
	uniqueness of solutions of first order equation and nth-order	
	equation.	
	4. Self adjoint second order differential equation. Sturm	12 hours
	Liouville Problems. Greens functions. Zeros of solutions.	
	Comparison Theorems. Linear oscillations.	
	Oscillations of $x''(t) + a(t)x(t) = 0$.	
Pedagogy	Lectures/ tutorials/assignments/self-study	
References	Main Texts:	
	1 . Deo S.G.; Raghvendra V.; Lakshmikantham V.: Text book	of
	Ordinary Differential equations, 2nd edition, Tata McGraw Hill	,
	New Delhi 1997.	
	2 . E.A. Coddington; An introduction to Ordinary Differential I	Equations,
	Prentice Hall,India,2003.	
	Reference texts:	
	3. Kelly W. Patterson A.C.: Theory of Differential equations, S	pringer.
	4. Simmons G. F. Differential equations with historical notes. T	ata MH.
	5. Agarwal R. Essentials of Ordinary differential equations, Spr	inger.
Learning	Students will learn to solve ordinary differential equations and to ar	nalyse the
Outcomes	properties of solution.	

Course Code: MTC -105 Title of the Course: TOPOLOGY

Number of Credits: 04

Duana avriaita a	Chould have undersome a basic source in Deal Analysis. Chould be	formilian
Prerequisites	Should have undergone a basic course in Real Analysis. Should be familiar	
	with the notions of set theory. It is desirable to have familiarity with	the metric
01.1	topology.	
Objectives	To prepare students to handle courses involving topology and geometry	
	including complex analysis, functional analysis and several variable	
Contents	1. Topological Spaces and Continuous Functions:	12 hours
	Definition of Topological spaces, basis, subbasis, open sets,	
	closed sets, limit points, closure, interior, subspaces,	
	continuous functions, Product Topology and quotient	
	topology.	<i>c</i> 1
	2. Countability Properties: First and second countable	6 hours
	spaces, Separable spaces, Metric spaces and countability	
	properties.	
	3. Separation Properties : Hausdorff spaces, Regular spaces	6 hours
	and normal spaces, Product, subspace and continuous images	
	of regular and normal spaces.	
	4. Connectedness : Connected spaces, connected subsets of	10 hours
	\mathbb{R} , path connected spaces, Product and continuous images of	
	connected spaces, locally connected spaces, components and	
	path components.	
	5. Compactness : Compact subsets of topological spaces,	14 hours
	Compact subsets of \mathbb{R} , Products and continuous images of	
	compact subsets, Compact Hausdorff spaces, Limit point	
	compactness, Sequential compactness, Comapct metric	
	spaces, Lebesgue number lemma, Locally compact spaces	
	and one-point compactification.	
Pedagogy	Class room lectures and tutorials, assignments and library reference	•
References	1.James Munkres, Topology and Introduction, Pearson Education	
	2. Stephen Willard, General Topology,	ŕ
	3. M A Amstrong, Basic Topology, Springer Verlag, 1983.	
	4. J. Dugunji, Topology	
Learning	Students will be prepared to undertake basic courses in Complex A	nalysis.
Outcomes	Functional Analysis, Several Variable Calculus, Measure Theory et	•
	advanced courses in Topology and Geometry.	
	au and courses in reperces and cometry.	

Course Code: MTO-106 Title of the Course: METHODS OF APPLIED

MATHEMATICS

Number of Credits: 04

Prerequisites	Knowledge of basic Real Analysis, Linear Algebra, Differential	
	Equations.	
Objectives	This course develops the ability to apply mathematics to some of the	problems
	of Mathematics and Physics.	
Contents	1. Improper Integrals . Review, Properties and L^2 convergence.	6 hours
	2. Fourier series : Generalized Fourier series, Fourier sine/cosine	12 hours
	series. Point wise and uniform convergence. Differentiation and	
	integration of Fourier series.	
	3. Fourier Transforms and its properties : : Fourier Transform	10 hours
	of L 1 (IR)—functions. Basic properties related to translation,	
	dilation and linearity. Computation of Fourier transform of	
	simple functions. Fourier Inversion. Statement of Fourier	
	inversion Theorem. Convolution. Convolution Theorem.	
	Examples. Parsevaal's Identity.	
	4. Variational problems : Variational problems with fixed	20 hours
	boundaries. Euler-Lagrange equations, Brachistochrone problem,	
	Elementary variational problems with moving boundaries. One-	
	side variation, Isoperimetric problem, Canonical forms of Euler	
	equations. Sufficient conditions for extremum.	
Pedagogy	Lectures/ tutorials/assignments/self-study	
References	Main Texts:	
	1. J.W.Brown and R.V.Churchill, Fourier series and Boundary Val	ue
	Problems, McGraw Hill.	
	2. K.Sankara Rao, Introduction to Partial Differential	
	Equations, Prentice Hall of India, 1995.	
	3. Lev Elsgolts, Introduction to the Calculus of Variations, MIR Pu	blications.
	4. T.Apostal Mathematical analysis, Narosa Publishers.	
1	Reference texts:	
	4. G.B.Arfken and H. Weber, Mathematical methods for Physicists	. Elsevier
	Publications.	
	5. R. Weinstock, Calculus of Variations, Dover Publication.	
	6. I.M.Gelfand and S.V.Fomin, Calculus of Variations. Dover Publ	ication.
Learning	1. Theory and applications of Fourier Series	
Outcomes	2. Learns techniques of applying Fourier Transform.	
	3. Understands basic concepts of variational problems	

Course Code: MTO-107 Title of the Course: GRAPHS AND NETWORKS

Number of Credits: 4

Prerequisites	Basic set theory	
Objective	Course deals with the basics of graph theory, basic definition of simple graphs, types of graph, matrix representation of graphs, isomorphism in graphs, Euler & Hamiltonian graphs, trees & their properties, spanning trees, colouring of graphs, independence number and chromatic number of simple graphs, connectivity, cut-set, directed graphs, shortest paths & maximal flows in a network.	
Content	1. Introduction to graphs Graphs, degree sequence, distance in graphs, digraphs and multidigraphs, Cut-vertices bridges and blocks.	11 hours
	2. Trees and connectivity Elementary properties of trees, minimal spanning trees, Prims algorithm, Kruskal's algorithm, connectivity and edge-connectivity, connectedness of digraphs.	7 hours
	3. Eulerian and Hamiltonian graphs Eulerian graphs and digraphs, Hamiltonian graphs and digraphs, Fleury's algorithm and Hierholzer's algorithm.	7 hours
	4. Planar graphs Euler's formula, characterizations of planar graphs, crossing number and thickness.	7 hours
	5. Graph colorings Vertex colorings, edge colorings, map colourings.	5 hours
	6. Matchings and domination in graphs Matchings and independence in graphs, domination number of a graph, independence domination number of a graph.	4 hours
	7. Networks Relevance of maximum flow, Ford Fulkerson algorithm, Dijkstra's algorithm to find the shortest route.	7 hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/Readings:	 G. Agnarsson and R. Greenlaw, Graph Theory: Modeling, Applications and algorithms, Pearson, 2011. 	
	Gary Chartrand and Ping Zhang, Introduction to Graph Theory, Tata Mc-Graw-Hill Edition, 2006.	
	 F. Harary, Graph Theory, Narosa Publishing House, 2001. Gary Chartrand and O.R. Oellermann, Applied Algorithmic Graph Theory, McGraw-Hill Inc. 1993. L.R. Foulds, Graph Theory Applications, Springer Verlag, New York, 	
Learning	2009. Learner should be able to tell relevance of graphs in different context, ranging	
Outcomes:	from puzzles & games to social science/engineering/computer science. Problem solving & learning algorithms is also an essential part of graph theory.	

Course Code: MTO-108 Title of the Course: Actuarial Science

Number of Credits: 04

Prerequisites	Basic Real Analysis	
Objectives	This course will prepare a student to understand the basics of insurance and	
o o jeed ves	related concepts.	aree arra
Contents	1. Basic concepts of actuarial science and insurance. Accumulated Value, Present Value. Principals of compound interest: Normal and effective rates of interest and discount, force of interest and discount. Compound interest, accumulation factor. Annuities certain. Deferred annuities, annuities due. Redemption of Loans. Sinking Funds and Capital redemption assurance.	16 hours
	2. Life insurance: Insurance payable at the moment's of death and at the end of the year of death-level benefit insurance, endowment insurance, differed insurance and varying benefit insurances, recursions, commutation functions. Life annuities: Single payment, continuous life annuities, discrete life annuities, life annuities with monthly payments, commutation functions, varying annuities, recursions, complete annuities-immediate and	18 hours
	apportion able annuities -due. 3. The Mortality tables. Functions and laws of mortality tables. Select ultimate and aggregate mortality tables. Functions other than yearly policy Values. Surrender values and paid up Values. Bonus Special policies. Joint life and last survivor statuses.	14 hours
Pedagogy	Lectures/ tutorials/assignments/self-study	
References	 N./L Bower, H.U.Gerber, J.C. Hickman, D.A. Jones and C.J. Nesbitt (1986), Actuarial Mathematics society of Actuaries, Itasca, Illinois, USA Second Edition (1997) Spurgeon E.T. (1972), Life Contingencies, Cambridge University Press. Neill, A. (1977). Life Contingencies, Heinemann. M.A. Mackenzie, N.E. Sheppard, An Introduction to the Theory Of Life Contingencies, 1931. P. Zima & R.L. Brown, Mathematics of Finance, Schaum's Outline series. Elements of actuarial science Premiums, Mortality and valuation Federation of insurance institutes P.M. road, Mumbai. 	
Learning	Students will be able to understand various insurance schemes and various insurance schemes are schemes and various schemes are schemes and various schemes are schemes and various schemes are scheme	will be
Outcomes	prepared to take up career in Insurance industry.	

Course Code: MTC-201 Title of the Course: SEVERAL VARIABLE CALCULUS

Number of Credits: 04

Prerequisites	Knowledge of basic Real Analysis and Linear Algebra. Knowledge of Integration of real valued functions on a subset of R is desirable	
Objectives	This course develops the ability to understand concepts of fuseverable variables.	inctions of
Contents	1. Derivative of Function of more than one Variable: Partial Derivative. Total derivative of function of more than one Variable. Jacobian. Sufficient Condition for differentiability. Mean Value Theorem. Higher order derivatives. Condition for Equality of Mixed Partial Derivatives. Taylor's Theorem. Critical Points. Maximum, Minimum. Second Derivative condition for Maximum/minimum. Conditional Optimum and Lagrange Multipliers.	16 hours
	2. Inverse Function Theorem: Regular and Singular Points. Open Mapping Theorem. Inverse Function Theorem. Implicit Function Theorem.	8 hours
	3.Riemann Integration: Rectangles in IR ⁿ and Riemann sums over Rectangles. Upper and Lower Riemann Sums. Riemann Integral of a bounded Function. Algebra of Riemann Integrals. Sets of Jordan Measure Zero. Oscillation of a Function at a point, Integrability versus points of discontinuity of a Function. Fubini's Theorem. Mean value theorem for multiple integrals. Partitions of unity (Statement only). Change of variable formula.	24 hours
Pedagogy	Lectures/ tutorials/assignments/self-study	
References	 Main Texts: Tom M Apostol, Mathematical Analysis, Addison Wesley Publishing Company, 1996. M. Spivak, Calculus on Manifolds, Benjamin Cummings, London. Reference texts: Walter Rudin, Principles of Mathematical Analysis, International Student Edition. James Munkres, Analysis on Manifolds, Addison Wesley Publishing Company,1991. T. M. Apostol , Calculus Vol.II. John Wiley and sons. B.V.Limaye & S.Ghorpade, A course in multivariable calculus, Springer 	
Learning Outcomes	Learn to understand the concepts of functions of several variables. Compute maximum/minimum of functions of several variables and to evaluate multiple integrals.	

Course Code: MTC-202 Title of the Course: ALGEBRA

Number of Credits: 4

Prerequisites	Basic Group Theory	
Objective	This course develops concepts in advanced Group Theory, Basics of Ring Theory and their applications., This course will also be a prerequisite for courses such as Field Theory and Galois Theory and Commutative Algebra.	
Content	 Sylow Theorems Conjugacy Classes. The Class Equation. The probability that two elements commute. The Sylow Theorems. Sylow Theorems. Finite Simple Groups 	12 Hours
	Non simplicity Tests. The simplicity of A_5 3. Rings and Fields	4 Hours
	Rings. Fields. Integral Domains-definitions and Examples. Characteristic of Rings. Ideals and Factor Rings. Prime ideals and Maximal ideals. Ring Homomorphisms. Field of Quotients of an Integral Domain. 4. Polynomial Rings and Factorization of Polynomials	12 Hours
	Polynomial Rings-Notations and Terminologies, The Division algorithm and Consequences, Reducibility Tests, Irreducibility Tests, Unique factorization in $\mathbb{Z}[x]$. 5. Divisibility in Integral Domains	8 Hours
	Irreducibles. Primes. Unique Factorization Domains. Principal Ideal Domains. Euclidean Domains. Gaussian Integers and Fermat's $p = a^2+b^2$ Theorem.	12 Hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/ Readings	 Contemporary Abstract Algebra, Joseph A. Gallian, Narosa Publishing House, 1999. A First Course in Absract Algebra, John B. Fraleigh, Pearson (India), 2014. Topics in Algebra, I.N.Herstein, Wiley India Edition, 2006. Abstract Algebra, David S.Dummit and Richard M. Foote, Second Edition, John Wiley & Sons, 1999. 	
Learning Outcomes	 On completion of this course ,the student will be able to Explain Concepts in Algebra regarding Groups, Rings and related structures, and develop the ability to work with various algebraic structures. Lay foundation for research topics in Algebra, Number Theory, Algebraic Geometry etc. 	

Course Code: MTC-203 Title of the Course: FUNCTION ALANALYSIS

Number of Credits: 4

Prerequisites	A first course in Real Analysis, Linear Algebra and Metric Toplogy.	
•	Basic understanding of Lebesgue Integral Theory is desirable.	
Objective	Starting with the basics this course will cover the foundations of Functional Analysis such as normed spaces, inner product spaces, Banach spaces, Hilbert spaces, bounded linear operators and bounded functional, and the four fundamental theorems-Han-Banach Theorem. Uniform Boundedness Principle, Open Mapping Theorem and Closed Graph Theorem.	
Content	1.Normed Spaces, Banach Spaces	16 Hours
Content	Normed spaces - Properties and Banach spaces, Standard normed spaces - Sequence spaces, Function spaces and subspaces, Finite dimensional normed spaces and subspaces, Equivalence of norms, Compactness and finite dimension, Linear Operators-Boundedness and Continuity. Linear functional. Normed spaces of Operators, Dual space-Algebraic and Topological duals. 2.Inner Product Spaces, Hilbert Spaces	To Hours
	Inner Product Spaces- Properties and Hilbert spaces, Orthogonal Complement and Direct Sums, Orthonormal Sets and Sequences, Total Orthonormal Sets and Sequences, Representation of Functional on Hilbert Spaces, Hilbert -Adjoint Operator, Self Adjoint, Unitary and Normal Operators.	16 Hours
	3.Fundamental Theorems for Normed and Banach Spaces Hahn-Banach Theorem (Statements and idea of proof for the case of vector spaces, statement and proof for normed spaces), Applications to Existence of Functionals, Adjoint Operators, Reflexivity of Spaces, Baire Category Theorem (Statement only), Uniform Boundedness Theorem, Open Mapping Theorem, Closed Graph Theorem.	16 Hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/	Introductory Functional Analysis with Applications, Ervin Kreyszig,	
Readings	John Wiley & Sons, 1978. 2.Functional Analysis, Balmohan V. Limaye, III edition. 3. Functional Analysis: A First Course, M. Thamban Nair, PHI Learning, 2001. 4. Basic Operator Theory, Israyel Gohberg and Seymour Goldberg, Birkhäuser, 1981. 5. Linear Real analysis for Scientists and Engineers, B.V.Limaye, Springer.	
Learning	On completion of the course the student will have	
Outcomes	 Understanding of the basic concepts and fundamental theorems of Functional Analysis Appreciation of Functional Analysis as an important field for application oriented Mathematics. Ability to relate and apply the concepts learnt in the course to problems. Foundation for higher courses in Functional analysis, Operator Theory, PDE etc. 	

Course Code: MTO-204 Title of the Course: PARTIAL DIFFERENTIAL EQUATIONS

Number of Credits: 04 Effective from: June, 2018.

Prerequisites	Knowledge of Real Analysis, Calculus of Several Variables, Ordinary	
	differential equations, Methods of Applied Mathematics.	
Objectives	This course develops the ability to solve partial differential equations second order by standard methods.	of first and
Contents	1.Simultaneous differential equations of the first and first	4 hours
Contents	degree in three variables: Methods of solutions of $dx/P =$	4 Hours
	dy/Q = dz/R. Pfaffian differential forms and equations. Solution	
	of Pfaffian differential equations in three variables.	10.1
	2. First order PDE's: Origin and classifications. Solution of	12 hours
	Linear and Nonlinear First order PDE's. Methods of characteristics.	
	Charpit's Methods. Jacobi's method.	- 1
	3. Second Order Linear Partial Differential Equations: Origin.	6 hours
	Linear equations with constant coefficients in two independence	
	Variables. Linear equations with variable coefficients. Classification.	
	Reduction to Canonical Form. (only for the case of two independent	
	variables).	
	4. Methods of solving PDE :	8 hours
	Method of Separation of variables. Use of Integral transforms (Laplace	
	and Fourier).	
	5. Wave Equation. One dimensional Wave equation.D' Alembert'	18 hours
	solution, Wave equation-Infinite string case.	
	Laplace Equation : Harmonic function . Basic properties of	
	harmonic functions. Laplace equation. Translational and rotational	
	invariance of Laplace equation. Boundary value problems. Uniqueness	
	of solutions of Dirichlet and Neumann problems. Mean value theorem	
	for harmonic functions. Maximum and minimum principle for	
	harmonic functions. Uniqueness and stability for Dirichlet problem.	
	Heat equation - Infinite rod case. Non homogeneous equation.	
Pedagogy	Lectures/ tutorials/assignments/self-study	<u>'</u>
References	Main Texts:	
	1. I. Sneddon, Elements of Partial Differential Equations, McGrow Hill.	
	2. T.Amarnath, An elementary course in Partial Differential Equations, Na	arosa
	Publishing company, 1997.	
	Reference texts:	
	3.K.Sankara Rao, Introduction to Partial Differential Equations, Prentice I	Hall of India,
	1995.	
	4. F.John, Partial Differential equations, Springer Verlag Ltd.	
	5. C.R. Chester, Techniques of Partial Differential Equations.	
	6. R.Dennemeyer, Introduction to Partial Differential Equations and Bo	undary
	Value Problems, McGraw Hill.	·
	7. T.M. Hu, L. Debnath, Linear Partial differential equations for scientist	s and
	Engineers, Birkhauser.	
Learning	Learns to solve partial differential equations of first and second order. Learns to solve partial differential equations of first and second order.	arns to
Outcomes	model initial and boundary value problems. Analyses the properties of solution.	
Gutcomes	inoder initial and boundary value problems. Thatyses the properties of sor	u.1011.

Course Code: MTO-205 Title of the Course: COMPLEX ANALYSIS

Number of Credits: 04

Prerequisites	Algebra of complex numbers including polar representation, Basics in Real		
	Analysis including convergence series, Topology of the Complex/Real plane,		
	Basic Complex Analysis including Cauchy,s theorem.		
Objectives	This course will prepare a student to take up research in Complex Function		
	Theory, Several Complex Variable Complex Analysis etc.		
Contents	1. Complex Differentiability: Analytic Functions and Power	12 hours	
	series, Radius of convergence, Continuity and		
	differentiability of power series, Existence of power series		
	expansion, Exponential and Trigonometric function.		
	2. Contour Integration : Recall Cauchy's theorem; Cauchy's	10 hours	
	integral formulae, Analyticity of Complex differentiable		
	functions, Liouville's theorem, Fundamental theorem of		
	Algebra, Mean value property and Maximum modulus		
	principle.		
	3. Zeros and Poles: Zeros and Poles of holomorphic	8 hours	
	functions, Singularities, Laurent series, Residues, winding		
	number, The Argument principle.		
	4. Evaluation of Definite Real integrals: Trigonometric	10 hours	
	integrals, Improper integrals, Bypassing a pole, Inverse		
	Laplace transform, Branch cut and Key hole integrals.		
	5. Schwarz's lemma: Schwarz's lemma.	4 hours	
	6. Conformal maps.	4 hours	
Pedagogy	Class room lectures and tutorials, assignments and library reference.		
References	1. Anant R Shastri, Basic Complex Analysis of one variable, Mac	cMillan.	
	2011.II edition	,	
	2. J B Conwey, Complex Analysis, Springer Verlag.		
	3. Churchill and Brown, Complex Analysis,		
	4. E.B.Saff, A.D.Snider; Fundamentals of Complex Analysis. Pearson		
Learning	Students will be prepared to take up advanced complex analysis, com		
Outcomes	analysis of more than one variable and will be equipped to take research in		
	Complex Analysis and related subjects.		
	1		

Course Code: MTO -206 Title of the Course: MEASURE THEORY

Number of Credits: 04 Effective from: June, 2018.

Prerequisites	Should have undergone a course in Real Analysis that includes Riemann	
1	Integration in one variable. Should be familiar with set theory very well.	
Objectives	To prepare students to handle Functional Analysis, Fourier series and their	
,	convergence, Laplace and Fourier transforms Wavelets analysis and	
	Continuous probability theory.	
Contents	1.Reimann-Stieltjes Integral: Weights and measures, The	8 hours
	Riemann-Steiltjes integral, Space of integrable functions,	
	Integrators of bounded variation, The Riemann integral.	
	Shortcomings of Riemann integration.	
	2.Lebesgue Measure: Lebesgue outer measure, Riemann	10 hours
	integrability, Measurable sets, The structure of measurable	
	sets, A non-measurable sets.	
	3.Measurable Functions : Measurable functions, Extended	8 hours
	real valued functions, Sequence of measurable functions,	
	Approximation of measurable functions.	
	4.The Lebesgue Integral : Simple functions, Non-negative	12 hours
	functions, The general case, Lebesgue Dominated	
	convergence theorem, Approximation of integrable	
	functions.	
	5.Applications : The L^p spaces, Approximation of L^p -	10 hours
	functions, Fourier series. Convergence in mean of the Fourier	
	Series.	
Pedagogy	Class room lectures and tutorials, assignments and library reference	
References	1. N L Carothers, Real Analysis, Cambridge University Press, 2	2006.
	2.H L Royden, Real Analysis, PHI, 1995.	
	3.Charalambos D Aliprantis, Owen Burkinshaw, Principles of Real	
	Analysis, Academic Press/Elsevier, 2004.	
T .	4.Paul Halmos, Measure Theory.	1 '
Learning	The course will prepare the students to take courses in functional an	
Outcomes	Partial Differential equations etc. This enables the students to study Abstract	
	measure theory and Probability theory.	

Course Code: MTO -207 Title of the Course: Number Theory

Effective from AY: 201		
Prerequisites for the	Some basic Complex Analysis. Elementary number theory.	
course:	Congruences.	
Objective:	This course will serve as Prerequisites to an advanced Course	
	in Analytical Number Theory.	
Content:	1. Fundamental Theorem of Arithmetic. Divisibility.	10 hours
	Fibonacci numbers.	
	2. Arithmetical functions and Dirichlet multiplication.	
	Mobius function μ . Euler totient function φ . Relation	
	connecting μ and $\boldsymbol{\varphi}$. Product formula for $\boldsymbol{\varphi}$ (n).	
	Dirichlet product of arithmetical functions. Dirichlet	10 hours
	inverse and Mobius inversion formula. Mangoldt	10 Hours
	function. Multiplicative functions. Liouville function.	
	Divisor functions. Generalized convolutions. Formal	
	power series. Derivative of arithmetical functions.	10 hours
	3. Averages of arithmetical functions. Big oh notation.	10 Hours
	Euler summation formula. Some elementary asymptotic	
	formulas. Average order of d(n). Average order of	
	$\sigma_{\alpha}(n)$. Average order of ϕ (n). Average order of μ (n)	
	and $\Lambda(n)$.	<i>c</i> 1
	4. Some elementary theorems on distribution of prime	6 hours
	numbers.	4.1
	5. Characters of finite abelian groups.	4 hours
	6. Partition Theory. Partitions of numbers. Generating	
	function of p(n). Other generating functions. Theorems	6 hours
	of Euler. Theorem of Jacobi. Special cases of Jacobi's	
	identity.	
	7. Basic Cryptology.	2 hours
Pedagogy:	lectures/ tutorials/assignments/self-study.	
References/Readings	1. T. M Apostol, Introduction to Analystic Number Theory,	
	Narosa Publishing House.	
	2. Thomas Koshy, <i>Elementary Number Theroy with</i>	
	Applications, Second Edition, Elsevier India	
	Pvt. Ltd., 2005 . (Chapter 9)	
	3. G.H. Hardy and E.M. Wright, Introduction to theory of	
	numbers. (Chapter XIX)	
	4. Heng Huat Chan, Analytic Number Theory for	
	Undergraduates, (Monographs in Number	
	Theory), World Scientific, 2009 .	
	5. I. Niven, H.S. Zuckerman and H.L. Montgomery, <i>An</i>	
	Introduction to the Theory of Numbers, 5th edition, Wiley-	
	India.	
	6. David Burton, <i>Elementary Number Theory</i> , Sixth edition,	
	Tata McGraw-Hill Edition.	
	7. A. Baker, A concise introduction to theory of numbers,	
	Cambridge University Press.	
	8. J. Stillwell, Elements of Number Theory, Springer.	
Learning Outcomes	1. This course prepares the student to learn advanced	
_	number theory, Cryptography and Partition theory.	
	3. Taking this course students can read more advanced	
	Analytic Number Theory books.	

Course Code: MTO -208 Title of the Course: Lie Algebra

Propagnisites for the		
<u>Prerequisites for the</u>	Basic Linear Algebra, basic group theory, basic analysis.	
course:		
Objective:	This course develops concepts in Matrix Groups and Lie	
	algebras. It helps in understanding other concepts like	
	Manifold, Lie groups etc.	10.1
Content:	1. Matrix Groups. Matrices. Real and Complex Matrix	12 hours
	Groups. Orthogonal Groups. Topology of Matrix	
	Groups. Tangent space.	
	2. Lie algebras. Definition, Some Examples, subalgebras	10.1
	and Ideals. Homomorphisms. Algebras. Derivations.	10 hours
	Structure Constants. Ideals and Homomorphisms.	
	Constructions with Ideals. Quotient Algebras.	
	Correspondence between Ideals. Low-Dimensional Lie	
	Algebras.	
	2. Solvable Lie Algebras. Nilpotent Lie Algebras.	
	Subalgebras of $gl(V)$. Nilpotent Maps. Weights. The	8 hours
	Invariance Lemma. An Application of the Invariance	
	Lemma.	
	3. Some Representation Theory. Modules for Lie	
	Algebras. Submodules and Factor Modules. Irreducible	8 hours
	and Indecomposable Modules. Homomorphisms.	
	Schur's Lemma. Representations of sl(2,C). The	
	Modules V_d . Classifying the Irreducible sl(2,C)-	
	Modules.	
	4. Brief introduction to: Cartan's Criteria. Testing for	10 hours
	Solvability. The Killing Form. Testing for	
	Semisimplicity. Derivations of Semisimple Lie Algebras.	
	The Root Space Decomposition. Cartan Subalgebras.	
	Definition of the Root Space. Decomposition. Cartan	
	Subalgebras as Inner-Product Spaces. Root Systems.	
	Bases for Root Systems. Cartan Matrices and Dynkin	
	Diagrams.	
Pedagogy:	lectures/ tutorials/assignments/self-study.	
References/Readings	1. Kristopher Tapp, Matrix Groups for Undergraduates,	
	American Mathematical Society, 2005.	
	2. Karin Erdmann and Mark J. Wildon, <i>Introduction to</i>	
	Lie Algebras, Springer Undergraduate	
	Mathematics Series, Springer-Verlag. 2006.	
	3. J.E. Humphreys, Introduction to Lie algebras and	
	representation theory, Graduate Text in	
	Mathematics, Springer-Verlag.	
	4. N. Jacobson, <i>Lie Algebras</i> , Dover Publications.	
	5. JP. Serre, Complex Semisimple Lie Algebras, Springer.	
Learning Outcomes	1. Taking this course students get acquainted with Lie	
	algebras and Matrix groups theory.	
	2. Taking this course student can read Lie groups theory.	

Programme: M. Sc. (Mathematics) **Course Code:** MTO-209 Title of the Course: Special Functions

Effective from AY: 2018	8-19	
Prerequisites for the	Some basic Complex Analysis and Differential Equations.	
course:		
Objective:	This course develops concepts in Gamma, Beta functions and	
	also studies Legendre polynomials and Bessels functions.	
Objective: Content: Pedagogy:	 Infinite products:- Introduction, definition of an infinite product, a necessary condition for convergence, the associated series of logarithms, absolute convergence, uniform convergence. The Gamma and Beta functions:- The Euler and Mascheroni constant, the Gamma function, a series for Γ'(z)/ Γ(z), evaluation of Γ(1) and Γ'(1), the Euler product for Γ(z), the difference equation Γ(z + 1) = zΓ(z), evaluation of certain infinite products, Euler's integral for Γ(z), the Beta function, the value of Γ(z) Γ(1 - z), the factorial function, Legendre's duplication formulae, Gauss' multiplication theorem, a summation formula due to Euler. The hypergeometric function:- The function F(a,b; c; z), a simple integral form, F(a,b,c,1) as a function of the parameters, evaluation of F(a,b,c,1), the contiguous function relations, the hypergeometric differential equation, F(a,b,c,z) as a function of its parameters, elementary series manipulations, simple transformations. Series solution of differential equations. Method of Frobenius. Legendre Polynomials and Functions. Legendre equation and its solution. Generating function. Legendre series. Associated legendre functions. Properties of associated Legendre functions. Generating function. Resultions. Recurrence relations. Hankel functions. Equations reducible to Bessel's equation. Modified Bessels functions. Recurrence relations for modified Bessels functions. lectures/ tutorials/assignments/self-study. 	6 hours 10 hours 8 hours 8 hours 8 hours
Keterences/Keadings		
	. •	
	3. G.E. Andrews, R. Askey, R. Roy, Special .Functions,	
	Encyclopedia of Mathematics and its Applications 71,	
	Cambridge University Press, Cambridge.1999.	
Learning Outcomes	Taking this course students	
	(ii) can study some Engineering Mathematics.	
eferences/Readings	 integral for Γ(z), the Beta function, the value of Γ(z) Γ(1 - z), the factorial function, Legendre's duplication formulae, Gauss' multiplication theorem, a summation formula due to Euler. 3. The hypergeometric function:- The function F(a,b; c; z), a simple integral form, F(a,b,c,1) as a function of the parameters, evaluation of F(a,b,c,1), the contiguous function relations, the hypergeometric differential equation, F(a,b,c,z) as a function of its parameters, elementary series manipulations, simple transformations. 4. Series solution of differential equations. Method of Frobenius. 5. Legendre Polynomials and Functions. Legendre equation and its solution. Generating function. Legendre series. Associated legendre functions. Properties of associated Legendre functions. 6. Bessel function, Bessel's equation and its solutions. Generating function. Integral representation. Recurrence relations. Hankel functions. Equations reducible to Bessel's equation. Modified Bessels functions. Recurrence relations for modified Bessels functions. lectures/ tutorials/assignments/self-study. 1. E.D. Rainville, Special functions, Chelsa Publishing Company, New York, 1960. 2. W.W. Bell, Special Functions for scientists and engineers, Dover Publications, New York, 2004. 3. G.E. Andrews, R. Askey, R. Roy, Special .Functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge.1999. Taking this course students (i) get acquainted with Gamma, Beta functions. Also they study Legendre and Bessel Functions. 	8 hours

Course Code: MTO -210 Title of the Course: DIFFERENCE EQUATIONS

Number of Credits: 04

Prerequisites	Knowledge of basic Real Analysis, Linear Algebra and Differential equati	ons	
Objectives	This course helps in understanding basic concepts of discrete calculus. It		
3	develops the ability to solve difference equations by standard methods. It will		
	help students to take up further studies in discrete dynamical systems and		
	numerical modeling.		
Contents	1. Calculus of finite differences: Review of basic concepts.	8 hours	
	2. Nonlinear Difference Equations. Equilibrium Points and	8 hours	
	their dynamics. Logistic equation.		
	3. Linear difference equations. Basic theory. Method of	12 hours	
	Undetermined Coefficients and Variation of Parameters		
	Formula. Higher Order equations. Behaviour of Solutions.		
	Nonlinear equations transformable to linear equations		
	4. Systems of linear Difference Equations. Basic Theory.	12 hours	
	Linear Periodic systems. Stability theory of Linear		
	Systems.		
	5. Z-Transforms and its applications. Volterra Difference	8 hours	
	Equation of Convolution Type.		
Pedagogy	Lectures/ tutorials/assignments/self-study		
References	Main Texts:		
	1 . S.N .Elaydi, An Introduction to Difference Equations, Spring	ger Verlag.	
	Reference texts:		
	2. S.Goldberg, Introduction to Difference equations, Wiley Publ		
	3. V.Lakshmikantham and D.Trigiante, Theory of difference eq	uations,	
	Academic Press.		
	4. K.Miller, Linear Difference equations, W.A.Benjam.		
Learning	1. Learn to solve difference equations.		
Outcomes	2. Analyses the properties of solution.		
	3. Learns about discrete models and their stability		

Course Code: MTO -301 Title of the Course: ADVANCED ALGEBRA

Number of Credits: 04

Prerequisites	Knowledge of basic s in linear algebra and linear maps, group theory, ring	
110104010100	theory including the polynomial rings over fields.	
Objectives	This course will prepare a student to take up research in Field Theorem	rv.
J	Number theory, Cryptography, etc.	
Contents	1.Extension of Fields : Field extensions, Field of rational	12 hours
	functions, Finite extension and Product rule of degrees,	
	Simple extension, Algebraic extension, Transcendental	
	extension, Construction by straight edge and compass,	
	Constructible numbers.	
	2.Splitting Field : Roots of polynomial, Splitting field,	10 hours
	Existence and uniqueness of splitting field, Isomorphism	
	extension theorem, Algebraic closure, Existence and	
	uniqueness of Algebraic closure, Finite fields, Existence and	
	uniqueness of finite fields, Derivative and multiple roots,	
	Simple extension, primitive roots of unity, Cyclotomic	
	extensions.	
	3.Automorphism group : Automorphisms of fields, Galois	8 hours
	groups, Galois groups of finite fields, Galois group of	
	Cyclotomic extensions. Galois group of a polynomial.	
	4.Galois Theory : Symmetric rational functions, Galois group	10 hours
	of field of rational function in <i>n</i> variable, Normal Extension,	
	Fundamental Theorem of Galois theory.	
	5.Solvability : Solvable groups, Insolvability of A ₅ ,	8 hours
	Solvability of polynomials, Insolvability of quintics,	
	Examples of insolvable quintics over Q.	
Pedagogy	Class room lectures and tutorials, assignments and library reference.	
References	1.I N Herstein, Topics in Algebra, Wiley Students Edition, 2006	
	2.David S. Dummit and Richard M. Foote, Abstract Algebra, II	Edition,
	John Wiley Sons Inc., 1999.	
	3.Thomas Gallian, Abstract Algebra,	
Learning	Students will be prepared to take up research in Algebra in general and Filed	
Outcomes	theory, Algebraic number theory and Cryptology in particular.	

Course Code: MTO-302 Title of the Course: COMBINATORICS

Effective Holli A	11. 2010 17	
Prerequisites	Basics of - Set Theory , Algebra, Linear Algebra	
Objective	Starting from the basic principles of counting, this course aims to give an introductory exposition to different aspects of Combinatorics. The course will emphasise on the importance of enumeration tools and techniques in diverse branches of Mathematics and Applied fields.	
Content	1.Basic Counting Principles and Techniques Review of basic Counting Principles-Addition Principle, Multiplication Principle, Method of two-way Counting, Method of Bijections, Permutations and Combinations, Circular Permutations, Counting Objects with Repetitions, Binomial and Multinomial Theorems (Combinatorial Proofs), Binomial and Multinomial Coefficients and Identities. 2.The Fundamental Counting Problem	12 Hours
	Statement of the Problem-The Sxteen Cases, Partition Numbers P(n,k) and P(n), Stirling Numbers S(n,k) and s(n,k), Bell numbers B(n). 3.Recurrence Relations and Explicit Formulas The Inclusion-Exclusion Principle, Derangements and D(n), Recurrence	2 Hours
	Relations and Explicit Formulas for P(n,k),P(n), S(n,k), s(n,k), B(n), and D(n). Idea of Generating Functions, Method of solving Linear Recurrence Relations Using Generating Functions, Generating Functions for P(n,k), P(n), S(n,k), s(n,k), B(n) and D(n). 4.Pigeonhole Principle (PHP)	12 Hours
	The Pigeonhoe Principle - its different formulations and examples, Applications of PHP to some standard Problems in Geometry, Number Theory , Graph Theory and Colouring of Plane. 5.Sequnces and Partial Orders Applications of PHP to Sequences and Partial Orders- The Erdös-Szekeres	6 Hours
	Theorem, Dilworth's Lemma, Dilworth's Theorem, Sperner's Theorem. 6.Ramsey Theory Ramsey's Theorem –First version (for 2 colours), Second version (for r colours), and Infinitary version, Ramsey Numbers and bounds, Computations	6 Hours
	of small Ramsey Numbers, Schur's Theorem, van der Waerden's Theorem (Statement and Discussion).	10 Hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/ Readings	 Introduction to Combinatorics, Martin J. Erickson, John Wiley,1996. Cominatorial Techniques, Sharad S. Sane, Hindustan Book Agency, 2013. Introducion to Combinatorics, W.D. Wallis and J.C. George, 2011. A Walk Through Combinatorics, M. Bona, World Scientific Publishing Company, 2002. Combinatorics, V.K. Balakrishnan, Schaum Series, McGraw-Hill, 	
Learning Outcomes	Students ,on completion of this course, Will be able to appreciate the importance of combinatorial techniques in diverse branches of Mathematics and Applied fields. This course will teach the students how to understand and deal with enumerative problems and to apply combinatorial techniques to solve a range of application problems in Optimization, Graph Theory and Networking.	

Course Code: MTO -303 Title of the Course: DIFFERENTIAL GEOMETRY

Number of Credits: 04

D ::		7 1
Prerequisites		
	Variables, Linear Algebra and Vector calculus. Knowledge of metric	c space
	theory, topology and Partial differential equations are desirable.	
Objectives	To prepare students to take up a research career in modern	
	Geometry/Topology.	
Contents	1.Curves : Regular curves in space, arc-length,	6 hours
	parameterization, arc-length parameterization.	
	2.Curvature : Curvature and torsion of space curves, Serret-	8 hours
	Frenet formula, Signed curvature of plane curves, Periodic	
	curves, Simple closed curves, Isoperimetric inequality and	
	Four-vertex theorem.	
	3.Surfaces in 3-dimention : Regular surfaces in 3-dimension,	7 hours
	Tangents space, Normal and Orientation, Quadric surfaces.	
	4.First Fundamental Form : The First fundamental form of	9 hours
	a regular surface, Length of arcs on surfaces, Area of	
	surfaces, isometries and conformal mappings of surfaces.	
	5.Second Fundamental Form : Second fundamental for of a	10 hours
	surface, normal curvature of a surface and principal	
	curvatures of a surface.	
	6.Gaussian Curvature: Mean and Gaussian curvatures of a	8 hours
	surface, Surfaces of constant curvatures, pseudo sphere,	0 110 61 5
	Gauss map.	
Pedagogy	Class room lectures and tutorials, assignments and library reference.	
References	1. Andrew Pressley, Differential Geometry, Springer Verlag,	
Learning	Prepare the students to take up research in mathematics, in particular	· in
Outcomes	Geometry and Topology.	
Outcomes	Geometry and Topology.	

Course Code: MTO -304 Title of the Course: Mathematical Modeling

Number of Credits: 04

Duana auriaita a	Vacculades of hasis Deal Analysis Advanced Calculus Outlinens	and Dontiel	
Prerequisites	Knowledge of basic Real Analysis, Advanced Calculus, Ordinary and Partial		
	Differential equations, Difference equation.		
Objectives	This course develops the understanding of purpose and importance of		
	mathematical modeling.		
Contents	1. Introduction, Classification, Techniques and Examples of	16 hours	
	mathematical modeling. Modeling process with		
	proportionality and geometric similarity.		
	2.Mathematical Modeling through ordinary differential	16 hours	
	equations of first order and of second order. First order		
	systems of ordinary differential equations.		
	3. Modeling with discrete dynamical systems.	16 hours	
	4. Modeling through Partial differential equations.	16 hours	
Dadagagy	Lastymas/tytomials/assignments/solf study		
Pedagogy	Lectures/ tutorials/assignments/self-study		
References	Main Texts:		
	1. J.N.Kapur, A Mathematical Modelling, Wiley Eastern ltd.		
	2. F.R.Giordano, M.D.Weir, W.P.Fox, A first course in Mathematical		
	modeling, Thomson Publications.		
	Reference texts:		
	3. D.N.Burghes, Modelling with Differential Equations, Ellis F	Horwood	
	and John Wiley.		
	4. J. Sandefur, Elementary Mathematical Modeling, Thomson		
	Publications.	_	
	5. F.Chorlten, Differential and difference equations., Von Nosi	tqand.	
Learning	Students will learn to build up models using differential and difference		
Outcomes equations and to analyse the behaviour of the given system analyticall		cally and	
	numerically.		

Course Code MTO -305 Title of the Course: INTEGRAL EQUATIONS

Number of Credits: 04 Effective from: June, 2018.

Prerequisites	Knowledge of Real Analysis, Linear Algebra, Differential equations, Several	
	variable calculus.	
Objectives	This course helps in understanding basic concepts of Integral Equations. It	
	develops the ability to solve integral equations by standard methods	S.
Contents	1. Basic concepts of Integral equations. Classification. Integral Equations with Separable Kernels. Method of Successive Approximations. Resolvent Kernel and its Properties. Decomposition methods. 2. Applications to Ordinary Differential Equations, Initial Value Problems and Boundary Value Problems, Green's functions.	16 hours 10 hours
	3. Classical Fredholm Theory. Symmetric Kernels, Hilbert-Schmidt Theory.	12 hours
	4. Singular Integral Equations, Abel and Cauchy Type and Hilbert Kernel. Integral Transform Methods (Laplace, Fourier and Hilbert).	10 hours
Pedagogy	Lectures/ tutorials/assignments/self-study	<u>'</u>
References	Main Texts: 1 . Ram P Kanwal, Linear Integral Equations, Theory and applications. Springer. Reference texts: 2. Courant and Hilbertt, Methods of Mathematical Physics, Vol. I. 3. S.G.Mikhilin, Integral Equations. 4. I.G.Petrovsky, Lectures on the theory of Integral equations. 5. K.Yoshida, Lectures on Differential and Integral Equations	
Learning Outcomes	Students will learn to solve Integral equations by different methods .	S.

Course Code: MTO -306 Title of the Course: STURM LIOUVILLE PROBLEMS

Number of Credits: 04

Prerequisites	Knowledge of Real Analysis, Calculus of Several Variables, Complex			
	analysis, Ordinary differential equations, Methods of Applied Mathematics			
Objectives	This course develops the ability to solve Sturm Liouville problems. These			
	problems are encountered in mathematical Physics.			
Contents	1.Review of ordinary differential equations. Principle of	16 hours		
	Superposition, Boundary Conditions. Adjoint Equation.			
	Green"s Formulae. Vibrating String.			
	2.Sturm Liouville problems. Singular Boundary Points.	14 hours		
	Asymptotic Behaviour.			
	3. Eigen value problems with continuous spectra.	10 hours		
	4.Suspended Rope and Associated Integral equation.	8hours		
Pedagogy	Lectures/ tutorials/assignments/self-study			
References	Main Texts:			
References	1. M.P.S. Estham, Theory of differential equations, Van Nostrand,			
1. M.15. Estitatif, Theory of differential equations, Vali Nostralid, 19				
	Reference texts:			
	Actor circo toxto :			
	1.R.Courant, D.Hilbert. Methods of Mathematical Physics, Vol. I Wilay			
	Eastern, New Delhi, 1975.			
	2 Coddington E. and Levinson, Theory of ordinary differential equations,			
	TMH.			
Learning	Learns to form and solve SLP			
Outcomes	Deaths to form and solve DEL			

Course Code: MTO -307 Title of the Course: MATHEMATICS FOR FINANCE

Number of Credits: 04 Effective from: June, 2018.

	<u></u>			
Prerequisites	Knowledge of basic Real Analysis, Differential equations, Elementary			
	Probability theory.			
Objectives	This course helps in understanding basic concepts of Financial mathematics			
	and in understanding financial models.			
Contents	1.Introduction. A simple market model. Rates of interests.	12 hours		
	Present value. No Arbitrage Principle. Risk and Returns.			
	Risk free assets.			
	2. Time value of money and money market. Risk assets.	12 hours		
	Dynamics of stock prices. Tree and other models.			
	Binomial tree model. Discrete time market model.			
	3. Portfolio Management. Securities.	10 hours		
	4. Contracts. Options. Types and bounds.	14 hours		
	Forward options. Call and put options.			
	Variable interest rates.			
Pedagogy	Lectures/ tutorials/assignments/self-study.			
References Main Texts:				
	 Marek Capinski and T.Zastawnik , Mathematics For Finance, Springer Verlag, 2003. (Chap. 1-7; 1 <u>Reference texts :</u> Damiano Brigo, Fabio Mercurio Interest rates models Theory a 			
	Practice, Springer.			
	3. Alexander Melinkov Risk Analysis in Finance and Insurance,			
	Chapman \& Hall.			
	4. An elementary introduction to Mathematical Finance, S	Sheldon		
	Ross			
Learning	Learns the basics of Financial computations			
Outcomes	2. Understands the working of financial market.			

Course Code: MTO-401 Title of the Course: ADVANCED LINEAR

ALGEBRA

Number of Credits: 04

Prerequisites	Linear spaces, dimension, Linear maps, eigenvalue problem, Algebraically closed		
	fields, Fundamental theorem of Algebra, Multivariable Calculus, Reimann Integration		
	of multivariable functions.		
Objectives	To prepare students to handle solving problems involving linear equations and tal	ke	
	up research in such areas.		
Contents	1.Elementary Decomposition : Characteristic values, Annihilating 14 hou	irs	
 	polynomials, Invariant subspaces, Simultaneous triangulation and		
	diagonalization, Invariant Decompositions, Primary		
	Decomposition.		
	2.Rational and Jordan forms: Cyclic subspaces and Annihilators, 16 hou	ırs	
	Cyclic decomposition and Rational forms, Jordan forms,		
	Computation of Invariant factors.		
	3.Multi-linear Algebra : Multi-linear functions and forms and 18 hou	ırs	
	tensors, Alternating forms and alternating products, Determinant		
	function, Permutations and uniqueness of determinant, Properties		
	of determinant, Differential Forms, Integration on Chains, Poincare		
	lemma and Stoke's theorem.		
Pedagogy	Class room lectures and tutorials, assignments and library reference.		
References	4.Kenneth Hoffman, Linear Algebra, PHI, 1997.		
	5. James Munkres, Calculus on Manifolds,		
	6. Spivak, Calculus on Manifolds,		
Learning	Students will be equipped to study Differential geometry, Differential Topology,		
Outcomes	Representation theory of groups and also to take up research in various areas of		
	mathematics and Statistics.		

Course Code: MTO-402 Course Title: COMMUTATIVE ALGEBRA

Number of Credits: 4

Prerequisites	A first course in Algebra with Groups, Rings and Fields	
Objective	To introduce students to Commutative algebra and develop concepts in higher algebra with adequate examples and counter examples.	
Content	1.Modules Definition, Direct Sums, Free Modules and Vector Spaces, Quotient modules, Homomorphisms, Simple Modules, Modules over PID's. 2.Modules with Chain Conditions	16 Hours
	Artinian Modules and Rings, Noetherian Rings and Modules, Modules of Finite Length, Nil Radicals and Jacobson Radicals, Radical of an Artinian Ring. 3.Homological Algebra Chain Complexes, Exact Sequences, Five Lemma and Snake	20 Hours
	Lemma, homology Group of a Chain Complex, Long Exact Sequence associated with Exact Sequences of Chain Complexes	12 Hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/ Readings	 Introduction to Rings and Modules, C. Musili, Narosa Publishing House, 1992. Algebra, S. Lang, Addison Wesley, 1985. Commutative Algebra, N. S. Gopalakrishnan, Universities Press, 2015. A First Course in Abstract algebra, J.B.Fraleigh, Pearson, 2002. 	
Learning Outcomes	 A student completing this course will have Basic knowledge and understanding of Module Theory and Homological algebra Ability to solve problems related to the content of the course Foundation to take up further studies in Commutative Algebra and Algebraic Geometry 	