

गोंय विद्यापीठ ताळगांव पठार गोंय - ४०३ २०६ फोन: +९१-८६६९६०९०४८

(Accredited by NAAC)

Goa University

Taleigao Plateau, Goa - 403 206 Tel : +91-8669609048 Email : registrar@unigoa.ac.in Website: www.unigoa.ac.in

GU/Acad -PG/BoS -NEP/2023/56/3

Date:18.05.2023

Ref: GU/Acad –PG/BoS -NEP/2022/339/7 dated 18.08.2022

CIRCULAR

In supersession to the above referred Circular, the updated approved Syllabus with revised Course Codes of the **Master of Science in Mathematics** Programme is enclosed.

The Dean/ Vice-Deans of the School of Physical and Applied Sciences/ Principals of Affiliated Colleges offering the **Master of Science in Mathematics** Programme are requested to take note of the above and bring the contents of this Circular to the notice of all concerned.

(Ashwin Lawande) Assistant Registrar – Academic-PG

Τo,

- 1. The Dean, School of Physical and Applied Sciences, Goa University.
- 2. The Vice-Deans, School of Physical and Applied Sciences, Goa University.
- 3. The Principal of Affiliated Colleges offering the Master in Sciences in Mathematics Programme.

Copy to:

- 1. The Chairperson, Board of Studies in Mathematics.
- 2. The Programme Director, M. Sc. Mathematics, Goa University.
- 3. The Controller of Examinations, Goa University.
- 4. The Assistant Registrar, PG Examinations, Goa University.
- 5. Directorate of Internal Quality Assurance, Goa University for uploading the Syllabus on the University website.

Goa University

School of Physical and Applied Sciences

Syllabus for the MSc Mathematics

New Syllabus from Academic year 2022-23 onwards

Semester 1	
Paper Code	Paper Title
<u>MAT-500</u>	Real Analysis (4 Credit)
<u>MAT-501</u>	Advanced Linear Algebra (4 Credit)
<u>MAT-502</u>	Algebra (4 Credit)
<u>MAT-503</u>	Advanced Complex Analysis (4 Credit)
MAT-521-530	Discipline Specific Elective Courses (4 Credit)
Semester 2	
Paper Code	Paper Title
<u>MAT-504</u>	Topology (4 Credit)
<u>MAT-505</u> *	Differential Equations (4 Credit)
<u>MAT-506</u>	Several variable calculus (4 Credit)
<u>MAT-507</u>	Functional Analysis (4 Credit)
MAT-521-530	Discipline Specific Elective Courses (4 Credit)
*Syllabus of this paper is revised in June 2023	
Semester 3	
Paper Code	Paper Title
MAT-600-609	Research Specific Elective Course (4 Credit)
	Research Specific Elective Course (4 Credit)
MAT-621-626	Generic Elective Course (4 Credit)
	Generic Elective Course (4 Credit)
	Generic Elective Course (4 Credit)
Semester 4	
Paper Code	Paper Title
MAT-600-609	Research Specific Elective Course (4 Credit)
MAT-651	Discipline Specific Dissertation (16 Credit)

List of Elective Courses:

(1) Discipline Specific Elective Courses

Semester 1 and 2	
<u>MAT-521</u>	Mathematical Methods (4 credits)
<u>MAT-522</u>	Difference Equations (4 credits)
<u>MAT-523</u>	Special Functions (4 credits)
<u>MAT-524</u>	Partial Differential Equations (4 credits)
<u>MAT-525</u>	Integral Equations (4 credits)
<u>MAT-526</u>	Finite Element Method (4 Credits)
<u>MAT-527</u>	Combinatorics (4 Credits)
MAT-528	Computational Mathematics using Python (2
	Credits)
<u>MAT-529</u>	Elementary Number Theory (2 Credits)
<u>MAT-530</u>	Discrete Mathematical Structures (4 Credits)

(2) Research Specific Optional Courses

Semester 3 and 4	
<u>MAT-600</u>	Mathematical Modelling (4 Credits)
<u>MAT-601</u>	Algebraic Topology (4 Credits)
<u>MAT-602</u>	Number Theory (4 Credits)
<u>MAT-603</u>	Lie Algebra (4 Credits)
<u>MAT-604</u>	Graphs and Networks (4 Credits)
<u>MAT-605</u>	Advanced Graph Theory (4 Credits)
<u>MAT-606</u>	Measure Theory-I (4 Credits)
<u>MAT-607</u>	Measure Theory-II (4 Credits)
<u>MAT-608</u>	Functional Analysis-II (4 Credits)
<u>MAT-609</u>	Symmetry Methods for Differential
	Equations (4 Credits)

(3)	Optional Generic Courses
-----	---------------------------------

Semester 3	
MAT-621	Basic Mathematics for Social Science (4
	Credits)
MAT-622	Operations Research (4 Credits)
MAT-623	Mathematics for Financial Management and
	Insurance (4 Credits)
<u>MAT-624</u>	Mathematics for Financial Market (4 Credits)
MAT-625	Latex for Mathematics (2 Credits)
<u>MAT-626</u>	Probability and Statistics (4 Credits)

Programme: M. Sc. (Mathematics)Course Code: MAT-500Title of the Course: REAL ANALYSISNumber of Credits: 4Effective from AY: 2022 June

Prerequisitesf	Basic Mathematical Analysis	
-	Dasic Mathematical Analysis	
or the course:		
0	This as the final of a description of the second state of the seco	
Course	This course will develop fundamental concepts in Real Analysis	
Objective:	and make the student acquainted with tools of analysis which is	
	essential for the study and appreciation of many related branches	
	of mathematics and applications.	
Content	1.Real Number System	18 Hours
	Peano's Axioms for Natural Numbers and Induction Principle,	
	equivalence of induction, strong induction and the well-ordering	
	principle, Finite sets, cardinality of finite sets, Subset of finite sets	
	, a proper subset of a finite set has cardinality strictly less that the	
	super set, Integers and Rational numbers (Discussion), Ordered	
	sets and LUB Property, Ordered Field Axioms, Field of Real	
	Numbers and Completeness, Archimedean property, integral part	
	of a real number, density of rationals, and irrationals in the reals,	
	Existence of n^{th} roots of nonnegative reals, proof of existence of	
	decimal representation of reals, Countable sets – definition and	
	equivalent reformulations of countability, Countability of unions	
	and Cartesian products of sets, Uncountable sets, Countabilty of	
	Rationals, Uncountability of Reals, Extended Real Number	
	System.	
	2.Elements of Point Set Toplogy	14 Hours
	Metric Spaces, Euclidean Spaces, Open balls and Open sets in \mathbb{R}^n ,	
	Structure of open sets in \mathbb{R}^1 , Adherent points and Accumulation	
	points, Closed sets, Perfect sets, Every non-empty perfect set of	
	\mathbb{R}^n is uncountable, Bolzano- Weierstrass Theorem, Cantor	
	Intersection Theorem, Lindelöf Covering Theorem, The Heine-	
	Borel Covering Theorem, Compactness in \mathbb{R}^n , Compactness in	
	metric spaces, Connected sets in metric spaces, Connected	
	subsets of \mathbb{R}^- , Cantor set-constrction and basic properties,	
	Cantor set and ternary expansion.	
	, .	14 Hours
	3.Limits and Continuity	17110013
	Convergent sequences in a Metric space , Cauchy sequences and	
	Complete metric spaces, Limit inferior and Limit superior of a	
	sequence, Limit of a Function- (Real valued, complex valued,	
	vector valued functions), Continuous Functions, Continuity and	
	Compactness, Continuity and Connectedness, Bolzano's Theorem	
	and Intermediate value Theorem, Uniform Continuity, Uniform	
	Continuity and Compactness, Discontinuities of Real valued	
	Functions, Monotonic Functions, Infinite limits and Limits at	

	infinity.	
	4.Derivatives Derivatives and Continuity, Algebra of Derivatives and Chain rule (Statements only),One sided derivatives and Infinite Derivatives, Functions with non-zero derivatives, Zero derivatives and Local extrema, Rolle's Theorem, Mean value Theorems and consequences, Intermediate value Theorem for Derivatives, Taylor's Formula with Remainder, Derivatives of Vector valued Functions and Complex valued Functions, Derivatives of Higher Order, L'Hospital's Rules with proof.	14 Hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/ Readings	 Mathematical Analysis, Tom M. Apostol, Narosa Publishing House, 1996. Principles of Mathematical Analysis, Walter Rudin, McGraw-Hill International Editions,1976. A Foundation Course in Mathematics, Ajith Kumar, S.Kumaresan, B.K. Sarma, Narosa Publishing House, 2018. A Basic Course in Real Analysis, Kumar and Kumaresan, CRC Press, 2015. Real Analysis, N.L. Carothers, Cambridge University Press, 2000. Calculus with Applications, Peter D. Lax, Maria Shea Terrel, Springer, 2014. 	
Course Outcomes	 Student will be able to Describe the difference between rational numbers and real numbers. Understand LUB property and apply it to proofs and solutions of problems. Calculate limit inferior and limit superior Understand and use concepts related to metric spaces such as continuity, compactness and connectedness Apply mean value theorem to problems in the context of Real Analysis 	

Programme: M. Sc. (Mathematics) Course Code: MAT-501 Number of Credits: 4 Effective from: June 2022 onwards

Title of the Course: LINEAR ALGEBRA

Prerequisites for the	Should have passed B.Sc. with Linear Algebra as subject and familiar with the notions of vector spaces, basis, dimension,	
course	Linear maps, matrix representation and their algebra, and Rank- Nullity theorem	
Course Objective	To prepare students to handle solving problems involving linear equations and determining the qualitative properties of the solution set.	
Content	 Review: System of linear equations, Vector spaces, Basis and Dimension, Linear Transformations, Matrix of a Linear Transformation. 	10 Hours
	 Linear Functionals: Linear Functional on Vector Spaces, Dual of Vector Spaces and Properties, Double Dual, Annihilator, The Transpose of a Linear Transformation and the Matrix, Row Rank equal to Column Rank. 	12 Hours
	 Algebra of Polynomials: Polynomial Algebra, Polynomial Ideals, Greatest Common Divisors of Polynomials and Prime Factorization of Polynomials. (Quick review) 	4 Hours
	4. Elementary Canonical Forms: Characteristic Values and Characteristic Vectors, Characteristic Spaces, Annihilating Polynomials, Invariant Subspaces, Simultaneous Triangulation; Simultaneous Diagonalization, Direct Sum Decompositions, Invariant Direct Sums, The Primary Decomposition Theorem.	
	 The Rational and Jordan Forms: Cyclic Subspaces and Annihilators, Cyclic Decompositions and the Rational Form, The Jordan Form, Computation of Invariant Factors. Summary; Semi-Simple Operators. 	18 Hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/ Readings	 Kenneth Hoffmann and Ray Kunze, Linear Algebra, PHI, 1997. S. Kumaresan, Linear Algebra, PHI, 2000. I.R.Shafarevich and A. O. Remiz Linear Algebra and Geometry, Springer Verlag., 2012 Y.I. Manim, Linear Algebra and Geometry, CRC Press., 1997 	
Course Outcomes	 Student will be able to 1 understand basic Functional analysis, 2 understand Several Variable Calculus, 3 understand Advanced Algebra, 4 understand Differential Equations 	

Title of the Course: ALGEBRA

Prerequisite	Basic Group Theory	
s for the	Basic Group Theory	
course:		
Course	This course develops concepts in advanced Group Theory, Basics	
Objectives	of Ring Theory and their applications., This course will also be a	
Objectives	prerequisite for courses such as Field Theory and Galois Theory	
	and Commutative Algebra.	
Content	1. Permutation Group Symmetric groups, Permutations;	4 Hours
content	Alternating groups; Group actions, Orbits and stabilizers; Caley's	4 Hours
	Theorem;	
	2, Series of groups Subnormal Normal series. Jordan Holder	8 Hours
	Theorem.	
	3. Sylow Theorems	8 Hours
	Conjugacy Classes. The Class Equation, Cauchy's Theorem, p-	0110013
	groups. The Sylow Theorems. Applications of Sylow Theorems.	
	Finite Simple Groups \cdot Non simplicity Tests. The simplicity of A_5	
	4. Rings and Fields	8 Hours
	Rings. Fields. Integral Domains-definitions and Examples.	0
	Characteristic of Rings. Ideals and Factor Rings. Prime ideals and	
	Maximal ideals. Ring Homomorphisms. Field of Quotients of an	
	Integral Domain.	
	5. Polynomial Rings and Factorization of Polynomials	16 Hours
	Polynomial Rings-Notations and Terminologies, The Division	
	algorithm and Consequences, Mod p Test for irreducibility over	
	UFD. Gauss Lemma over UFD, Eienstein Criterion, g.c.d., l.c.m., in	
	UFD. In UFD R, $f(x)$ in $R[x]$ is irreducible iff $f(x)$ is irreduclible over	
	the field of quotients of R, R is a UFD implies R[x] is a UFD.	
	6. Divisibility in Integral Domains	16 Hours
	Irreducibles. Primes. Unique Factorization Domains. Principal Ideal	
	Domains. PID implies UFD. Euclidean Domains. Euclidian Domain	
	implies PID. Gaussian Integers and Fermat's $p = a^2 + b^2$ Theorem.	
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/	1. Contemporary Abstract Algebra, Joseph A. Gallian, Narosa	
Readings	Publishing House, 1999.	
	 A First Course in Absract Algebra, John B. Fraleigh, Pearson (India), 2014. 	
	3. Topics in Algebra, I.N.Herstein, Wiley India Edition, 2006.	
	4. Abstract Algebra, David S.Dummit and Richard M. Foote,	
	Second Edition, John Wiley & Sons, 1999.	
		1

Course	Student will be able to	
Outcomes	 Explain Concepts in Algebra regarding Groups, Rings and related structures, Develop the ability to work with various algebraic structures. Lay foundation for research topics in Algebra, Number Theory, Lay foundation for research topics in Algebraic Geometry 	

Programme: M. Sc. Mathematics Course Code: MAT-503 Title of the Course: COMPLEX ANALYSIS Number of Credits: 04 Effective from AY: June 2022.

Prerequisites for the course:	Should have studied a basic course in Complex Analysis familiarising the students with the notions of Analytic Functions, Cauchy's Integral Formula, convergence series, Taylor/Laurent series.	
Course Objectives:	This course will further enhance the knowledge of the student in the fundamental concepts in complex analysis and prepare them to apply it to problems involving complex analysis and also gives the foundation for advanced courses in complex analysis.	
Content	Introduction to the Concept of Analytic Function: (Limits and Continuity, Analytic Functions, Polynomials, Rational Functions), Elementary Theory of Power Series: (Sequences, Series, Uniform Convergence, Power Series, Abel's Limit Theorem), The Exponential and Trigonometric Functions, Periodicity & Logarithm.	12 Hours
	Analytic Functions : Conformality, Arcs and Closed Curves, Analytic Functions in Regions, Conformal Mapping, Linear Transformations, Oriented Circles, Families of Circles, Elementary Conformal Mappings, A Survey of Elementary Mappings.	16 Hours
	Complex Integration: Line Integrals, Rectifiable Arcs, Line Integrals as Functions of Arcs, Cauchy's Theorem for a Rectangle, Cauchy's Theorem in a Disk. Cauchy's Integral Formula, Higher Derivatives. Local Properties of Analytical Functions: Removable Singularities. Taylor's Theorem, Laurents Theorem, Zeros, and Poles, Local Mapping, Maximum Principle.	19 Hours
	The General Form of Cauchy's Theorem: Chains and Cycles, Simple Connectivity. The Calculus of Residues: The Residue Theorem, The Argument Principle, Evaluation of Definite Integrals.	13 Hours
Pedagogy	Classroom lectures, tutorials, assignments, and library references.	
References/ Readings	 Ahlfors, L. V. (1979). COMPLEX ANALYSIS. McGraw-Hill Book (2). J B Conway, Functions of a Complex Variable, Narosa. 1995 S Kumaresan. A Pathway to COMPLEX ANALYSIS. Techno Workolkata. 2021 James Ward Brown and Ruel V. Churchill, Complex Variables a Applications, Sixth Edition, McGraw-Hill International, 1996. 	ld,

	 A.R. Shastri, <i>Complex Analysis</i>. MacMillan, 2011 S. Ponnusamy, Foundations of Complex Analysis, Narosa Publisher, 2011
Course Outcomes	 Student will be able to: Analyze limit, continuity and differentiation of functions of complex variables. Apprehend elementary theory of Power Series. Understand analytic functions, conformal mapping and their various properties. Understand Cauchy theorem and Cauchy integral formulas and apply these to evaluate complex contour integrals. Represent functions as Taylor and Laurent series; classify singularities and poles; find residues and evaluate complex integrals using the residue theorem.

Programme: M.Sc. Mathematics Course Code: MAT-504 Number of Credits: 04 Effective from: June, 2022

Title of the Course: TOPOLOGY

Prerequisites for the course:	Should have undergone a basic course in Real Analysis. Should be familiar with the notions of set theory. It is desirable to have familiarity with the metric topology.	
Course Objectives:	To prepare students to handle courses involving topology and geometry including complex analysis, functional analysis and several variable calculus.	
Contents	1. Topological Spaces and Continuous Functions :32 hoursTopological spaces, Basis for a Topology, The Order7000000000000000000000000000000000000	
	2. Connectedness : Connected Spaces, Connected8 hoursSubspaces of \mathbb{R} , Components and Local Connectedness.	
	3. Compactnes s: Compact Topological Spaces, Compact Subspaces of \mathbb{R} , Limit Point Compactness, Local 12 hours Compactness,	
	4. Countability and Separation Axioms : Countability Axioms, Separation Axioms, Hausdorff Spaces, Regular Spaces, Normal Spaces.	
Pedagogy	Class room lectures and tutorials, assignments and library reference.	
References/ Readings:	 James Munkres, Topology and Introduction, Pearson Education, 2002. Stephen Willard, General Topology, Dover, 1941 M AAmstrong, Basic Topology, Springer Verlag, 1983. J. Dugunji, Topology, Allyn and Bcon, 1966 	
Course	Students will be able to	
Outcomes	 Comprehend basic courses in Complex Analysis, Understand basic courses in Functional Analysis, Several Variable Calculus, Explore basic courses in Measure Theory etc. and 	
	4 Understand advanced courses in Topology and Geometry.	

Programme: M.Sc. Mathematics Course Code: MAT-505 Title of the Course: DIFFERENTIAL EQUATIONS Number of Credits: 04 Effective from: June, 2023.

Prerequisites for the course:	Knowledge of basic Real Analysis, Linear Algebra and Differential e	equations.
Course Objectives;	This course develops the ability to understand the qualitative theo some properties of solution of differential equations.	ory and
Contents	1.Review of linear differential equations of the first and higher order. Linear differential equations with constant and variable coefficients. Exact equations, Wronskian, Separable equations, Euler's equation, reduction of order of equation, variation of parameters, Abel's Formula.	10 hours
	3. Existence and uniqueness of solutions of first order differential equation. Lipschitz condition, Picard's successive approximation method, Gronwall's type integral inequality. Continuation of Solution and dependence on initial conditions. Non local existence of solution.	16 hours
	4. Systems of Linear differential equations. Existence and Uniqueness of solutions. Vector matrix form. Linear system with Constant and variable coefficients. Fundamental matrix, matrix exp, and repeated eigenvalue. Non homogeneous linear systems and variation of parameters. Conversion of nth order equation to system of first order.	22 hours
	5. Self-adjoint second order differential equation. Sturm Liouville Problem. Greens functions. Picard's theorem. Zeros of solutions. Comparison Theorems. Linear oscillations. Oscillations of $x''(t) + a(t)x(t) = 0$.	12 hours
Pedagogy	Lectures/ tutorials/assignments/self-study	JJ
References/ Readings:	 Deo S.G.; Raghvendra V.; RasmitaKar, Lakshmikantham V. : Text book of Ordinary Differential equations, 3rd edition, Tata McGraw Hill, New Delhi 2015. E.A. Coddington; An introduction to Ordinary Differential Equations, Prentice Hall,India,2003. Kelly W. Patterson A.C. : Theory of Differential Equations, Springer, 2010 Simmons G.F.; Differential Equations with Historical Notes, Tata Mcgraw Hill, 2017 	
Course Outcomes:	 Students will able to 1 Solve system of ordinary differential equations 2 Analyse the properties of solution. 3 Distinguish between linear, nonlinear, partial and ordinary d equations 4 Solve basic application problems described by second order differential eq. with constant coefficients 	

5 Find approximate solutions to differential equations using numerical
techniques

Programme: M.Sc. Mathematics

Course Code: MAT-506Title of the Course: SEVERAL VARIABLE CALCULUSNumber of Credits: 04

Effective from: June 2022

	Knowledge of basic Real Analysis and Linear Algebra. K	(nowledge o	
for the	Integration		
course:	of real-valued functions on a subset of R is desirable.		
Course	This course develops the ability to understand concepts of functions of		
Objectives:	severable variables.		
Contents	1.Derivative of Function of more than one Variable: Partial Derivative. Total derivative of a function of more than one Variable. Jacobian. Sufficient Condition for differentiability. Mean Value Theorem. Higher-order derivatives. Condition for Equality of Mixed Partial Derivatives. Taylor's Theorem.	12 hours	
	2.Maximum Minimum: Critical Point, Maximum Minimum, Second Derivative Condition for Maximum/minimum, Conditional Optimum, and Lagrange Multipliers.	12 hours	
	3.Inverse Function Theorem: Regular and Singular Points, Open Mapping Theorem, Inverse Function Theorem, Implicit Function Theorem.	10 hours	
	4.Riemann Integration: Rectangles in IRn and Riemann sums over Rectangles. Upper and Lower Riemann Sums. Riemann Integral of a bounded Function. Algebra of Riemann Integrals. Sets of Jordan Measure Zero. Oscillation of a Function at a point, Integrability versus points of discontinuity of a Function.	16 hours	
	5. Fubini's Theorem. Mean value theorem for multiple integrals. Partitions of unity (Statement only). Change of variable formula	10 hours	
Pedagogy	Classroom lectures, tutorials, assignments, and library refere	ences.	
References/ Readings:			

Course	Student will be able to:	
Outcomes:		
	 Apprehend derivatives of a multivariable function. 	
	2. Evaluate maximum-minimum for a multivariable function.	
	3. Understand the Inverse function theorem, Implicit function	
	theorem.	
	4. Understand Riemann Integration, MVT for Multiple integrals, and	
	Change of Variable formula.	
	 Develop a clear understanding of the fundamental concepts of multivariable calculus and a range of skills allowing them to work effectively with the concepts. 	

Prerequisites for	A first course in Real Analysis, Linear Algebra and Metric	
the course:	Toplogy. Basic understanding of Lebesgue Integral Theory is	
the tourse.	desirable.	
Course	Starting with the basics this course will cover the	
Objectives:	foundations of Functional Analysis such as normed spaces,	
	inner product spaces, Banach spaces, Hilbert spaces,	
	bounded linear operators and bounded functional, and the	
	four fundamental theorems-Hahn-Banach Theorem.	
	Uniform Boundedness Principle, Open Mapping Theorem	
	and Closed Graph Theorem.	
Content	1.Preliminaries from Metric Spaces	12Hours
	Definition of the standard sequence spaces	
	<i>s</i> , <i>c</i> , c_0, c_{00}, l^p ; $1 \le p \le \infty$, and standard function spaces	
	C[a, b]and B[a, b]. Idea of completion of a metric space,	
	completeness and separability properties of these standard	
	spaces	
	2.Normed Spaces, Banach Spaces	16 Hours
	Normed spaces- Properties and Banach spaces, Standard	
	normed spaces –Sequence spaces, Function spaces and	
	subspaces, Finite dimensional normed spaces and	
	subspaces, Equivalence of norms, Compactness and finite	
	dimension, Linear Operators-Boundedness and Continuity.	
	Linear functional. Normed spaces of Operators, Dual space-	
	Algebraic and Topological duals.	
	3.Inner Product Spaces, Hilbert Spaces	16 Hours
	Inner Product Spaces- Properties and Hilbert spaces,	
	Orthogonal Complement and Direct Sums, Orthonormal	
	Sets and Sequences, Total Orthonormal Sets and	
	Sequences, Representation of Functional on Hilbert Spaces,	
	Hilbert -Adjoint Operator, Self Adjoint, Unitary and Normal	
	Operators.	
	4.Fundamental Theorems for Normed and Banach Spaces	16 Hours
	Hahn-Banach Theorem (Statements and idea of proof for	
	the case of vector spaces, statement and proof for normed	
	spaces), Applications to Existence of Functionals, Adjoint	
	Operators, Reflexivity of Spaces, Baire Category Theorem	
	(Statement only), Uniform Boundedness Theorem, Open	
	Mapping Theorem, Closed Graph Theorem.	
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	

Defense	A characteristic de la contracta de la contractica de la contracti
References/	1. Introductory Functional Analysis with Applications,
Readings:	Ervin Kreyszig, John Wiley & Sons, 1978.
	2. Functional Analysis, Balmohan V. Limaye, III edition.
	1996
	3. Functional Analysis, A First Course, S.Kumaresan and
	D.Sukumar, Narosa, 2020
	4. Functional Analysis, George Bachman and Lawrence
	Narici, DoverPublishing House, 2000
	5. Basic Operator Theory, IsrayelGohberg and Seymour
	Goldberg, Birkhäuser, 1981.
	6. Linear Real analysis for Scientists and Engineers,
	B.V.Limaye, Springer. 2016
Course	Student will be able to
Outcomes:	1. Understand the basic concepts and fundamental
	theorems of Functional Analysis
	2. Appreciate Functional Analysis as an important field
	for application oriented Mathematics.
	3. Relate and apply the concepts learnt in the course to
	problems.
	4. Develop foundation for higher courses in Functional
	analysis, Operator Theory, PDE etc.

Programme: M.Sc. Mathematics Course Code: MAT-521 Number of Credits: 04 Effective from: June, 2022.

Title of the Course: Mathematical Methods

Duono autoiteo	Kanudadan of hasis Dool Anghain Lingan Algebra, Differential	
Prerequisites	Knowledge of basic Real Analysis, Linear Algebra, Differential	
for the	Equations.	
course:		
Course	This course develops the ability to apply mathematics to some of t	he
Objectives:	problems of Mathematics and Physics.	
Contents	1. Improper Integrals . Review , Properties and L ² convergence.	08
		hours
	2. Fourier series : Generalized Fourier series, Fourier sine/cosine	08
	series. Point wise and uniform convergence. Differentiation and	hours
	integration of Fourier series.	
	3. Fourier Transforms and its properties: : Fourier Transform	14
	of L ¹ (IR)—functions. Basic properties related to translation,	hours
	dilation and linearity. Computation of Fourier transform of	
	simple functions. Fourier Inversion. Statement of Fourier	
	inversion Theorem. Convolution. Convolution Theorem.	
	Examples. Parsevaal's Identity. Fourier Integral Formula. An	
	Integration Formula and Lemmas. Fourier Integral Theorem.	
	The Cosine and Sine Integrals.	
	4. Variational problems: Variational problems with fixed	30
	boundaries. Euler-Lagrange equations and Brachistochrone	hours
	problem, Elementary variational problems with moving	
	boundaries. One-side variation, Isoperimetric problem,	
	Canonical forms of Euler equations. Sufficient conditions for	
	extremum.	
Pedagogy	Lectures/ tutorials/assignments/self-study	
References/	Main Texts:	
Readings:	1. J.W.Brown and R.V.Churchill, Fourier series and Boundary Valu	e
	Problems, McGraw Hill. (2012) [Chapters 2 and 6]	•
	2. K.SankaraRao, Introduction to Partial Differential	
	Equations, Prentice Hall of India, 1995.	
	3. Lev Elsgolts, Introduction to the Calculus of Variations, MIR Pul	olications
	2003	Silcations.
	4. T. Apostal Mathematical analysis, Narosa Publishers. 1973	
	Reference texts :	
	1. G.B.Arfken and H. Weber, Mathematical methods for Physicis	ts Flsoviar
	Publications. 2012	
	 R. Weinstock, Calculus of Variations, Dover Publication. 1952 	
		ication
	3. I.M.Gelfand and S.V.Fomin, Calculus of Variations. Dover Publ	

	1963
Course Outcomes:	 Student will be able to 1. Learn Theory and applications of Fourier Series 2. Comprehend techniques of applying Fourier Transform. 3. Understands basic concepts of variational problems
	4. Understand Fourier Transform

Programme: M.Sc. MathematicsCourse Code: MAT-522Title of the Course: DIFFERENCE EQUATIONSNumber of Credits: 04Effective from: June, 2022.

Prerequisites for the course:	Knowledge of basic Real Analysis, Linear Algebra and Differential e	equations.
Course	This course helps in understanding basic concepts of discrete calculus. It	
Objectives:	develops the ability to solve difference equations by standard methods. It	
	will help students to take up further studies in discrete dynamical systems	
	and numerical modeling.	-
Contents:	1. Calculus of finite differences: Review of basic concepts.	10
		hours
	2. Nonlinear Difference Equations. Equilibrium Points and	12
	their dynamics. Logistic equation.	hours
	3. Linear difference equations. Basic theory. Method of	16
	Undetermined Coefficients and Variation of Parameters	hours
	Formula. Higher Order equations. Behaviour of	
	Solutions.	
	Nonlinear equations transformable to linear equations	
	4. Systems of linear Difference Equations. Basic Theory.	12
	Linear Periodic systems. Stability theory of Linear	hours
	Systems.	
	5. Z-Transforms and its applications. Volterra Difference	10
	Equation of Convolution Type.	hours
Pedagogy	Lectures/ tutorials/assignments/self-study	
References/	Main Texts:	
Readings:	1. S. N. Elaydi, An Introduction to Difference Equations, Springer Verlag.	
	1996	
	Reference texts:	
	2. S. Goldberg , Introduction to Difference equations, Wiley	
	Publication.1987	
	3. V. Lakshmikantham and D. Trigiante, Theory of difference equ	ations,
	Academic Press. 1988	
	4. K. Miller, Linear Difference equations, W. A. Benjam. 1968	
Course	Student will be able to	
Outcomes:	1. Learn to solve difference equations.	
	2. Analyse the properties of solution.	
	3. Learn about discrete models and their stability	
	4. Find Z-Transform of various difference equation	

Programme: M. Sc. (Mathematics)Course Code: MAT-523Title ofNumber of Credits: 4Effective from: June 2022

Title of the Course: SPECIAL FUNCTIONS

Prerequisites for the	Some basic Complex Analysis and Differential Equations.	
course:		
Course Objectives:	This course develops concepts in Gamma, Beta functions and also studies Legendre polynomials and Bessels functions.	
Content:	 Infinite products:- Introduction, definition of an infinite product, a necessary condition for convergence, the associated series of logarithms, absolute convergence, uniform convergence. 	6 hours
	2. The Gamma and Beta functions:- The Euler and Mascheroni constant, the Gamma function, a series for $\Gamma'(z)/\Gamma(z)$, evaluation of $\Gamma(1)$ and $\Gamma'(1)$, the Euler product for $\Gamma(z)$, the difference equation $\Gamma(z + 1) = z\Gamma(z)$, evaluation of certain infinite products, Euler's integral for $\Gamma(z)$, the Beta function, the value of $\Gamma(z) \Gamma(1 - z)$, the factorial function, Legendre's duplication formulae, Gauss' multiplication theorem, a summation formula due to Euler.	12 hours
	 The hypergeometric function:- The function F(a,b; c; z), a simple integral form, F(a,b,c,1) as a function of the parameters, evaluation of F(a,b,c,1), the contiguous function relations, the hypergeometric differential equation, F(a,b,c,z) as a function of its parameters, elementary series manipulations, simple transformations. 	10 hours
	 Series solution of differential equations. Method of Frobenius. Legendre Polynomials and Functions. Legendre equation and its solution. Generating function. Legendre series. Associated legendre functions. Properties of associated Legendre functions. 	8 hours 8 hours
	 Bessel function, Bessel's equation and its solutions. Generating function. Integral representation. Recurrence relations. Hankel functions. Equations reducible to Bessel's equation. Modified Bessels functions. Recurrence relations for modified Bessels functions. Hermite Polynomials, Lauerre Polynomials 	8 hours
Pedagogy:	lectures/ tutorials/assignments/self-study.	
References/Readings	 E.D. Rainville, Special functions, Chelsa Publishing Company, New York, 1960. 	

	 W.W. Bell, Special Functions for scientists and engineers, Dover Publications, New York, 2004. G.E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge.1999.
Course Outcomes	Student will be able to
	1 Get acquainted with Gamma, Beta functions.
	2 Understand Legendre and Bessel Functions.
	3 Apply the knowledge to Engineering Mathematics.
	4 Learn Hypergeometric functions

Programme: M.Sc. Mathematics Course Code: MAT-524 Title of the Course: PARTIAL DIFFERENTIAL EQUATIONS Number of Credits: 04 Effective from: June, 2022

Prerequisites	Knowledge of Real Analysis, Calculus of Several Variables, Ordinar	у
for the	differential equations, Methods of Applied Mathematics.	
course;		
Course	This course develops the ability to solve partial differential equat	ions of first
Objectives:	and second order by standard methods.	
Contents	1.Simultaneous differential equations of the first and first	6 hours
	degree in three variables: Methods of solutions of dx/P =	
	dy/Q = dz/R. Pfaffian differential forms and equations. Solution	
	ofPfaffian differential equations in three variables.	
	2. First order PDE's: Origin and classifications. Solution of	14
	Linear and Nonlinear First order PDE's. Methods of	hours
	characteristics. Charpit's Methods. Jacobi's method.	
	3. Second Order Linear Partial Differential Equations: Origin.	8 hours
	Linear equations with constant coefficients in two	
	independence Variables. Linear equations with variable	
	coefficients. Classification.Reduction to Canonical Form. (only	
	for the case of two independent variables).	
	4. Methods of solving PDE :	10
	Method of Separation of variables. Use of Integral transforms	hours
	(Laplace and Fourier).	liouis
	5. Wave Equation. One dimensional Wave equation.D'	22
	Alembert' solution, Wave equation-Infinite string case.	hours
	Laplace Equation :Harmonic function. Basic properties of	
	harmonic functions. Laplace equation. Translational and	
	rotational invariance of Laplace equation. Boundary value	
	problems. Uniqueness of solutions of Dirichlet and Neumann	
	problems. Mean value theorem for harmonic functions.	
	Maximum and minimum principle for harmonic functions.	
	Uniqueness and stability for Dirichlet problem.	
	Heat equation- Infinite rod case. Non homogeneous equation.	
Pedagogy	Lectures/ tutorials/assignments/self-study	
1 Cuagogy		
References/	Main Texts:	
Readings:	1. I. Sneddon, Elements of Partial Differential Equations, McGrov	v Hill 1957
neadings.	2. T. Amarnath, An elementary course in Partial Differential Equations, Meerow	
	Narosa Publishing company, 1997.	
	Reference texts:	
	1. K. Sankara Rao, Introduction to Partial Differential Equations,	Prentice
	Hall of India, 1995.	
	2. F. John, Partial Differential equations, Springer Verlag Ltd. 195	2
	3. C. R. Chester, Techniques of Partial Differential Equations. Mc	
	1970	
4	1970	

	 R. Dennemeyer, Introduction to Partial Differential Equations and Boundary Value Problems, McGraw Hill. 1968 T. M. Hu, L. Debnath, Linear Partial differential equations for scientists and Engineers, Birkhauser. 2007
Course	Students will be able to
Outcomes	1. Solve partial differential equations of first and second order.
	Model initial and boundary value problems.
	3. Analyse the properties of solution.
	Interpret solutions in a physical contest
	5. Understand analogies between mathematical descriptions of
	different (wave) phenomena in physics and engineering.

Programme: M.Sc. Mathematics

Course Code MAT-525Title of the Course: INTEGRAL EQUATIONSNumber of Credits: 04

Effective from: June, 2022

LITECTIVE ITON		
Prerequisites	Knowledge of Real Analysis, Linear Algebra, Differential equations	, Several
for the	variable calculus.	
course:		
Course	This course helps in understanding basic concepts of Integral Equa	itions. It
Objectives:	develops the ability to solve integral equations by standard methods.	
Content	1. Basic concepts of Integral equations. Classification. Integral	18
	Equations with Separable Kernels. Method of Successive	hours
	Approximations. Resolvent Kernel and its Properties.	
	Decomposition methods.	
	2. Applications to Ordinary Differential Equations, Initial Value	14
	Problems and Boundary Value Problems, Green's functions.	hours
	3. Classical Fredholm Theory. Symmetric Kernels, Hilbert-	12
	Schmidt Theory.	hours
	4. Singular Integral Equations, Abel and Cauchy Type and	16
	Hilbert Kernel. Integral Transform Methods (Laplace, Fourier	hours
	and Hilbert).	nours
Dedegegy		
Pedagogy	Lectures/ tutorials/assignments/self-study	
References/	Main Texts:	
Readings:	1. Ram P Kanwal, Linear Integral Equations, Theory and applicati	ons.
	Springer. 1971	
	Reference texts :	
	2. Courant and Hilbertt, Methods of Mathematical Physics, Vol.	
	3. S.G.Mikhilin, Integral Equations. Courier Dover Publisher, 2020	
	4. I. G. Petrovsky, Lectures on the theory of Integral equations.	Mir
	Publisher, 1971	
	5. K.Yoshida, Lectures on Differential and Integral Equations Integrations	erscience
	Publisher, 1960	
Course	Student will be able to:	
Outcomes:	1. Understand Basic concepts of Integral equations, Classify them	study and
	solve Integral Equations with Separable Kernels, Use Method o	•
	Successive Approximations, Study resolvent Kernel and its Prop	
	Understand decomposition methods.	jerties,
		al Value
	Problems and Boundary Value Problems and use Green's funct	
	 Understand Classical Fredholm Theory, Symmetric Kernels, Hill Schmidt Theory. 	Jert-
	Schmidt Theory.	
	A Annuahand Cincular Integral Foundations, Abeland Co. at T. at	سيمطل الممر
	4. Apprehend Singular Integral Equations, Abel and Cauchy Type a	and Hilbert
	 Apprehend Singular Integral Equations, Abel and Cauchy Type a Kernel. Use Integral Transform Methods (Laplace, Fourier and Hilbert). 	

Tittle of the Course: FINITE ELEMENT METHODS

Programme: M.Sc.(Mathematics) Course Code: MAT-526 Number of Credits: 4 Effective from AY:2022 June

Prerequisits for	Basic knowledge of Algebra, Differential Equations, Linear Alg	ebra
the course: Course	The course sime to provide the fundamental concerts of the	lomont
Objectives:	The course aims to provide the fundamental concepts of the e method mainly including shape functions and general linear a order elements up to 3 dimensions. The course objective is to the students about application of finite element methods for s various boundary value problems	nd higher acquaint
Contents:		
	Unit I: General theory of finite element methods, difference between finite element and finite difference methods, review of some integral formulae, concept of discretization, different coordinates, one dimensional finite elements,	15hours
	Unit II: Numerical integration, construction of shape functions: linear elements (one dimensional bar element, two dimensional-triangular element)	15hours
	Unit III: Higher order elements: one dimensional quadratic element, two dimensional triangular element, rectangular element.	15hours
	Unit IV: Weighted residual and variational approaches (Galerkin method, collocation method, Rayleigh Ritz method etc.), solving one-dimensional problems. Application of finite element methods for solving various boundary value problems.	15hours
Pedagogy	Lectures/Tutorials/Self study	
References/ Readings:	 Rao, S. S. The Finite Element Method in Engineering. 5 th edition, Butterworth-Heinemann, 2017. Hughes, T. J. R. The Finite Element Method (Linear Static and Dynamic Finite Element Analysis). Courier Corporation, 2007. Zienkiewicz, O. C. and Taylor, R. L. The Finite Element Method: The Basis. Butterworth-Heinemann, 2000. Smith, G. D. Numerical solution of Partial Differential Equations: Finite difference methods. Oxford Applied Mathematics and Computing Science Series, 1985. 	
Course Outcome:	 Student will be able to 1. Understand the general theory of Finite Element method and its difference with finite difference method 2. Use the role and significance of shape functions in finite element formulations and use of linear, quadratic, and cubic shape functions for interpolation 3. Formulate some important 1, 2 and 3 dimensional 	

elements 4. Apply the weighted residual and variational approaches in solving some boundary value problems	
---	--

Programme: M. Sc. (Mathematics) Course Code: MAT-527 Title of the Course: COMBINATORICS Number of Credits: 4 Effective from AY: 2022-23 Prerequisites for the Basics of - Set Theory, Algebra, Linear Algebra

for the Course:		
Course Objectives:	Starting from the basic principles of counting, this course aims to give an introductory exposition to different aspects of Combinatorics. The course will emphasise on the importance of enumeration tools and techniques in diverse branches of Mathematics and applied fields.	
Content	1.Basic Counting Principles and Techniques Review of basic Counting Principles-Addition Principle, Multiplication Principle, Method of two-way Counting, Method of Bijections, Permutations and Combinations, Circular Permutations, Counting Objects with Repetitions, Binomial and Multinomial Theorems (Combinatorial Proofs), Binomial and Multinomial Coefficients and Identities.	12hours
	2.The Fundamental Counting Problem Statement of the Problem-The Sxteen Cases, Partition Numbers P(n,k) and P(n), Stirling Numbers S(n,k) and s(n,k), Bell numbers B(n).	2hours
	3.Recurrence Relations and Explicit Formulas The Inclusion-Exclusion Principle, Derangements and D(n), Recurrence Relations and Explicit Formulas for P(n,k),P(n), S(n,k), s(n,k), B(n), and D(n). Idea of Generating Functions , Method of solving Linear Recurrence Relations Using Generating Functions, Generating Functions for P(n,k), P(n), S(n,k), s(n,k), B(n) and D(n).	12hours
	4.Pigeonhole Principle (PHP) The Pigeonhoe Principle - its different formulations and examples, Applications of PHP to some standard Problems in Geometry, Number Theory , Graph Theory and Colouring of Plane.	6hours
	5.Sequnces and Partial Orders Applications of PHP to Sequences and Partial Orders- The Erdös-Szekeres Theorem, Dilworth's Lemma, Dilworth's Theorem, Sperner's Theorem.	6hours

	6.Ramsey Theory	10hours
	Ramsey's Theorem –First version (for 2 colours), Second version (for r colours), and Infinitary version, Ramsey Numbers and bounds, Computations of small Ramsey Numbers, Schur's Theorem, van der Waerden's Theorem (Statement and Discussion).	
	7. Polya's Theory of Counting	12hours
	Group actions on sets, Burside's Lemma, Labelings, Cycle indexes, computation of cycle indexes of standard groups, Polya's theorem and examples.	
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/ Readings:	 Introduction to Combinatorics, Martin J. Erickson, John Wiley, 1996. Cominatorial Techniques, Sharad S. Sane, Hindustan Book Agency, 2013. Introducion to Combinatorics, W.D. Wallis and J.C. George, 2011. A Walk Through Combinatorics, M. Bona, World Scientific Publishing Company, 2002. Combinatorics, V.K. Balakrishnan, Schaum Series, McGraw-Hill, 	
Course Outcomes:	 Student will be able to 1 Appreciate the importance of combinatorial techniques in division of Mathematics and Applied fields. 2 understand and deal with enumerative problems 3 Apply combinatorial techniques to solve a range of application problems in Optimization, 4 Apply combinatorial techniques to Graph Theory and Networe 	n

Programme: M. Sc. (Mathematics)

Course Code: MAT-528Title of the Course: COMPUTATIONAL MATHEMATICS USINGPYTHON

Number of Credits: 2P

Effective from AY: 2022 June

Effective from /		
Prerequisites	This course assumes that the student has done an undergraduate	
for the	course of Numerical Methods and Matrix Algebra using Python	
Course:	Programming.	
	Basic Number Theory, Algebra, Linear Algebra, Graph Theory and	
	Differential equations.	
Course	To equip students with the skills of python programming which	
Objectives:	aid the study and understanding of Mathematics.	
Content	1. Introduction to Python (Review)	4 hours
	IDLE (Installation in Windows/Linux), Python strings,	
	Relational Operators, Logical Operators, Precedence of	
	Operators, Variables and assignment statements, Keywords,	
	Script mode.	
	2. Functions (Review)	6 hours
	Built-in functions; input, eval, composition, print, type, round, min, max, pow	
	Type conversion, Random number generation; <i>randint</i>	
	Functions from <i>math</i> module, complete list of Built-in	
	functions using help and dir	
	Function Definition and call, fruitful and void functions,	
	function help, default parameter values, keyword arguments	
	Importing User-defined modules, Assert statement.	
	importang oser defined modules, rissert statement.	
	3. Control Structures (Review)	4 hours
	General form of <i>if</i> , <i>if-else</i> , <i>if-elif-else</i> conditional statement	
	Nested <i>if-elif-else</i> conditional statement.	
	For and While statements and their comparison, Nested	
	loops,	
	Break, Continue, Pass statements	
	<i>Else statement</i> associated with a For/While statement	
	Testing, Debugging	
	4. Scope of Variables/Names	2 hours
	Objects and Object ids, Namespaces; Global and Local	
	variables, LEGB Rule	
	5. Strings	2 hours
	Slicing, membership, basic functions and methods on strings.	
	6. Mutable and Immutable Objects	8 hours
	Lists, functions and methods on lists, List comprehension,	_
	copying lists, Sets, functions and methods on sets, Tuples,	
		<u>I</u>

	functions and methods on tuples, Dictionary, dictionary operations, functions.	
	7. Recursion	4 hours
	Iterative Approach and recursive approach,	_
	Program to find Minors and Determinant of a matrix.	
	8. Files and Exceptions	4 hours
	File handling, writing structures to a file, exceptions	4 110013
	The handling, writing structures to a me, exceptions	
	9. Classes and Objects	8 hours
	Class attributes, class variables, destructor, Person, Graphs: as	
	an example of a class, Highest degree and least degree,	
	operator overloading, instance method, static method,	
	composition and inheritance.	
	10. Graphics	4 hours
	2D graphics, mathplotlib, matplotlib installation, points, lines.	
	11. Algorithms to be implemented in Python**	14 hours
	i. Expressing the elements of the Symmetric group as a	
	product of disjoint cycles.	
	ii. Characteristic Equation of a nxn matrix.	
	Synthetic Division to find rational roots of a polynomial	
	when rational roots exist.	
	iii. Row Reduction to (Reduced)Row Echelon form.	
	Generating nxn Identity Matrix	
	Inverse of a matrix using row reduction	
	iv. Finding Basis for the Row Space, Column Space of a matrix	
	A and solution space of AX=B.	
	v. Single step and multi-step Methods	
	vi. Dijkstra's Algorithm to find shortest path.	
	vii. Kruskal's Algorithm to find minimum spanning tree	
	viii. Havel and Hakimi's Algorithm for degree sequences.	
	ix. Welsh and Powell algorithm for graph coloring	
	x. Fitting of straight line and quadratic curve to given data	
	xi. Solutions of linear Diaphontine Equations	
	** Any 7 of those algorithms should be implemented	
Pedagogy	**Any 7 of these algorithms should be implemented.Laboratory Sessions/Assignments/Self-study	
References/	1. Python Programming: A modular approach by Sheetal	
Readings:	Taneja and Naveen Kumar, Pearson Education, 2020.	
	2. Python Programming: Beginner to Pro by Michael Urban,	
	Mike Murach Publishing, 2016.	
Course	Student will be able to	
Outcomes:	1. Create programs to implement computational	
<u> </u>		

mathematical algorithms.	
2. Create classes of mathematical objects and be able to	
randomly generate instances for testing formulas.	
3. Create simple 2D graphics in python	
4. Learn to handle files	

Programme: M. Sc. (Mathematics) Course Code: MAT-529 Number of Credits: 2 Effective from AY: 2022-23

Title of the Course: ELEMENTARY NUMBER THEORY

Dronomicitor	A basis source in Number Theory]
Prerequisites	A basic course in Number Theory	
for the		
course:		
Course	At the end of this course the student will gain basic knowledge of	
Objectives:	primitive roots, quadratic reciprocity and continued fractions	4.11.0
Content	1. PRIMITIVE ROOTS AND INDICES: The order of an integer	4 Hours
	modulo n, Primitive Roots for Primes, Composite	
	numbers having primitive roots, The theory of indices	
	2. THE QUADRATIC RECIPROCITY LAW: Euler's criterion, the	6 Hours
	Legendre symbol and its properties, Quadratic reciprocity,	onours
	Quadratic congruences with composite moduli	
		4.11.0.110
	3. NUMBERS OF SPECIAL FORM: Marine Mersenne, Perfect	4 Hours
	numbers, Mersenne primes and amicable numbers, Fermat	
	numbers	
	4. REPRESENTATION OF INTEGERS AS SUMS OF SQUARES: Sums	4 Hours
	of two squares, Sums of more	
	than two squares	
	5. CONTINUED FRACTIONS: Finite continued	12 Hours
	fractions, Infinite continued fractions, Farey fractions, Pell's equa-	
	tion	
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
Deferences/	1. David M. Durton, Flomenton, Number Theory, McCrow 199	
References/	1. David M. Burton, Elementary Number Theory, Mc Graw Hill,	
Readings:	2017	
	2. Kenneth H Rosen, Elementary Number Theory, Pearson, 2015	
Course	Students will be able to	
Outcomes:	1. Recollect the various definitions and theorems in Primitive	
	Roots	
	2. Learn Quadratic Reciprocity and Continued Fractions.	
	3. Apply the results in the course to solve problems.	
	4. Learn about various numbers like Mersenne and Fermat	
L		

Programme: M. Sc. (Mathematics)Course Code: MAT-530Title of the Course: DISCRETE MATHEMATICAL STRUCTURESNumber of Credits: 4Effective from AY: 2023-24

Prerequisites for the course:	Sets and functions	
Course	To equip students with the skills and techniques of discrete	
Objective:	structures like graphs and trees	
Content	 Recurrence relations, linear recurrence relations with constant co-efficients, homogeneous solutions, particular solutions, total solution, solution by method of generating functions. 	6 hours
	 Graphs, isomorphism, complement, multipartite, degree sequences, distance, eccentricity, centre, periphery, eulerian and hamiltonian graphs, algorithm for shortest path in a graph, planar graphs. 	20 hours
	3. Cut-vertices, bridges, blocks, non-seperable, trees, forests, $\kappa(G)$, $\kappa_1(G)$, branch, chord, fundamental cycle,	14 hours
	fundamental edge cut, minimum spanning tree, kruskal's algorithm.	
	 Transport Networks, capacity, flow, cut, Maximum flow and finding maximum flow 	4 hours
	5. Vertex and edge coloring, domination number, independent domination number	16 hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/ Readings:	 Elements of Discrete Mathematics, C L Liu, Tata McGraw Hill, Special Indian Edition 2008 	
Reaulings.	 Graphs and Digraphs, Chartrand and Lesniak, Chapman & Hall/CRC Fourth edition, 2005 	
Course	Student will be able to	
Outcomes:	1 Solve linear recurrence relations.	
	2 Apply results of graph theory to solve problems modeled	
	using graphs	
	3 Compile a logical argument to prove simple results	
	involving graphs.	
	4 Learn about vertex and edge coloring	

Programme: M.Sc.(Mathematics) Course Code: MAT-600 Number of Credits: 4 Effective from AY:2023-24

Tittle of the Course: MATHEMATICAL MODELLING

Prerequisits for the Course:	Basic knowledge of Algebra, Differential Equations, Linear Algebra, FEM	
Course Objectives:	 The objectives of this course are to: Enable students understand how mathematical models are formulated, solved and interpreted. Make students appreciate the power and limitations of mathematics in solving practical real-life problems. Equip students with the basic mathematical modelling skills. 	
<u>Content:</u>	 Unit I: Simple situations requiring mathematical modelling, techniques of mathematical modelling, classifications, characteristics and limitations of mathematical models, some simple illustrations, mathematical modelling in population dynamics, mathematical modelling of epidemics through systems of ordinary differential equations of first order mathematical models in medicine in terms of systems of ordinary differential equations. Unit II: Mathematical modelling through difference equations, linear growth and decay models 	15hours 30hours
	Population dynamics and genetic and their applications with examples.	451
	Unit III: Mathematical Modelling with Graph Theoretical Approach.	15hours
Pedagogy References/ Readings:	Lectures/Tutorials/Self study1. Kapur J. N. Mathematical Modelling, 2ndedition, New Age International, 2015.2. Meerschaert, M. M. Mathematical Modelling.Academic Press, 2013.3. Rutherford, A. Mathematical ModellingTechniques. Courier Corporation, 2012.4. Clive,L. D. Principles of MathematicalModelling. Elsevier, 2004.5. Bender, E. A. An Introduction toMathematical Modelling. Courier Corporation, 2000.	
Course Outcome:	Student will be able to	

	 Understand concept of mathematical model and explain the series of steps involved in a mathematical modeling
	process.
2	 Apply mathematical modeling through difference equations.
	B. Understand and apply the concept of mathematical modeling through difference equations in population dynamics, genetics and probability theory.
	 Apply the concept of mathematical modeling through graph theory

Programme: M. Sc. (Mathematics) Course Code: MAT-601 Number of Credits: 4 Effective from AY: 2023-24

Title of the Course: ALGEBRAIC TOPOLOGY

Prerequisites for the course:	Point Set Topology, Basic Group Theory	
Course Objectives:	To equip students with the skills to study Manifolds using Homotopy and to lay the foundation for a study of Homology Groups.	
Content	1 The Fundamental group Homotopy of paths, nulhomotopic, the fundamental group, covering spaces, path lifting, the fundamental group of the circle, retractions and fixed points, Brouwer fixed point theorem for the disc, Fundamental theorem of Algebra, antipode of a point in S ⁿ , Borshuk Ulam theorem, Area Bisection Theorem, Deformation Retracts and homotopy type, Homotopy equivalences and homotopy inverse, Fundamental group of S ⁿ , Fundamental groups of torus, projective plane, fundamental group of double torus is not abelian.	20 hours
	2 The Seifert-van Kampen Theorem Direct Sums of abelian groups, extension condition, free product of groups, free groups, commutator, commutator subgroup, generators, relations, presentation of groups, finitely presented groups, Seifret-van kampen theorem, fundamental group of a wedge of circles, adjoining a 2- cell, fundamental group of dunce cap.	16 hours
	3 Classification of Covering Spaces Equivalence of Covering Spaces, General lifting lemma The Universal covering space, Semi-locally simply connected, Existence of Covering Spaces.	12 hours
	 4 Classification of Surfaces Polygonal Region, labeling, Fundamental Groups of Surfaces Applications to group theory Covering Spaces of a graph, The fundamental group of a graph. 	12 hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/	1 Topology second Edition by James Munkres, Pearson	

Readings	Education
	2 Algebraic Topology by Allen Hatcher, Cambridge
	University Press
Course	Student will be able to
Outcomes	 Compute the fundamental groups of manifolds using multiple approaches.
	 Distinguish between surfaces and other manifolds using the fundamental group.
	 Formulate and appreciate the general approach of associating commutable Algebraic structures to topological objects so as distinguish between them.
	4. Understand covering spaces

Programme: M. Sc. (Mathematics)Course Code: MAT-602Title of the Course: NUMBER THEORYNumber of Credits: 4Effective from AY: 2023-24 onwards

Prerequisites for the	Some basic Complex Analysis. Elementary number	
course:	theory. Congruences.	
Course Objectives:	This course will serve as Prerequisites to an advanced	
Contonto	Course in Analytical Number Theory.	10 h a
Content:	1. Fundamental Theorem of Arithmetic. Divisibility.	10 hours
	Greatest common divisor. Prime numbers. The	
	Fundamental Theorem of Arithmetic. The series of	
	reciprocals of primes. The Euclidean algorithm.	
	2. Arithmetical functions and Dirichlet	12 hours
	multiplication. Mobius function μ . Euler totient	
	function $oldsymbol{\phi}$. Relation connecting μ and $oldsymbol{\phi}$. Product	
	formula for $oldsymbol{\phi}$ (n). Dirichlet product of arithmetical	
	functions. Dirichlet inverse and Mobius inversion	
	formula. Mangoldt function. Multiplicative	
	functions. Liouville function. Divisor functions.	
	Generalized convolutions. Formal power series.	
	Bell series. Derivative of arithmetical functions.	
	3. Averages of arithmetical functions. Big oh	12 hours
	notation. Euler summation formula. Some	
	elementary asymptotic formulas. Average order of	
	d(n). Average order of σ_{lpha} (n). Average order of $oldsymbol{\phi}$	
	(n). Average order of $\mu(n)$ and $\Lambda(n)$.	
	4. Some elementary theorems on distribution of	7 hours
	prime numbers. Chebyshev's functions $\vartheta(x)$ and	
	$\psi(x)$. Relations connecting functions $\vartheta(x)$ and	
	$\psi(x)$.	
	5. Characters of finite abelian groups. Characters of	7 hours
	finite abelian groups. The character group. The	
	orthogonality relations of characters. Dirichlet	
	character.	
	6. Partition Theory. Partitions of numbers.	10 hours
	Generating function of p(n). Other generating	
	functions. Theorems of Euler. Theorem of Jacobi.	
	Special cases of Jacobi's identity.	
	7. Basic Cryptology. Caesar Cipher. Shift Cipher.	2 hours
	Affine cipher. Hill cipher.	2 110013
Pedagogy:	lectures/ tutorials/assignments/self-study.	
References/Readings	1. T. M Apostol, Introduction to Analytic Number	
	Theory, Narosa Publishing House, 1998.	
	2. Thomas Koshy, Elementary Number Theroy with	
	Applications, Second Edition, Elsevier India	
	reproducino, occorra cardon, ciocarci mara	1

	 Pvt. Ltd., 2005. (Chapter 9) 3. G.H. Hardy and E.M. Wright, Introduction to theory of numbers. (Chapter XIX), Oxford University Press, sixth edition, 2008. 4. Heng Huat Chan, Analytic Number Theory for Undergraduates, (Monographs in Number Theory), World Scientific, 2009. 5. I. Niven, H.S. Zuckerman and H.L. Montgomery, An Introduction to the Theory of Numbers, 5th edition, Wiley-India. 6. David Burton, Elementary Number Theory, Sixth edition, Tata McGraw-Hill Edition, 2008. 7. A. Baker, A concise introduction to theory of numbers, Cambridge University Press, 2015. 	
Course Outcomes	Students will be able to1. Learn advanced number theory, Cryptography2. Comprehend more advanced Analytic Number Theory books.3. Understand arithmetical functions 4. Understand partition theory	

Programme: M. Sc. (Mathematics) Course Code: MAT-603 Number of Credits: 4 Effective from AY: 2023-24 onwards

Prerequisites for the course:	Basic Linear Algebra, basic group theory, basic analysis.	
Course Objective:	This course develops concepts in Matrix Groups and Lie algebras. It helps in understanding other concepts like Manifold, Lie groups etc.	
Content:	 Matrix Groups. Matrices. Real and Complex Matrix Groups. Orthogonal Groups. Topology of Matrix Groups. Tangent space. 	12 hours
	 Lie algebras. Definition, Some Examples, subalgebras and Ideals. Homomorphisms. Algebras. Derivations. Structure Constants. Ideals and Homomorphisms. Constructions with Ideals. Quotient Algebras. Correspondence between Ideals. Low-Dimensional Lie Algebras. 	10 hours
	 Solvable Lie Algebras. Nilpotent Lie Algebras. Subalgebras of gl(V). Nilpotent Maps. Weights. The Invariance Lemma. An Application of the Invariance Lemma. 	8 hours
	4. Engel's and Lie's Theorems.	6 hours
	 5. Some Representation Theory. Modules for Lie Algebras. Submodules and Factor Modules. Irreducible and Indecomposable Modules. Homomorphisms. Schur's Lemma. Representations of sl(2,C). The Modules V_d. Classifying the Irreducible sl(2,C)-Modules. 	8 hours
	 Cartan's Criteria. Testing for Solvability. The Killing Form. Testing for Semisimplicity. Derivations of Semisimple Lie Algebras. The Root Space Decomposition. Cartan Subalgebras. Definition of the Root Space. Decomposition. Cartan Subalgebras as Inner-Product Spaces. Root Systems. Bases for Root Systems. Cartan Matrices and Dynkin Diagrams. 	16 hours
Pedagogy:	lectures/ tutorials/assignments/self-study.	
References/Readings	 Kristopher Tapp, Matrix Groups for Undergraduates, American Mathematical Society, 2005. Karin Erdmann and Mark J. Wildon, Introduction to Lie Algebras, Springer Undergraduate Mathematics Series, Springer-Verlag. 2006. 	
	3. J.E. Humphreys, <i>Introduction to Lie algebras and representation theory</i> , Graduate Text in	

	Mathematics, Springer-Verlag, 1972. 4. N. Jacobson, <i>Lie Algebras</i> , Dover Publications, 1962.	
Course Outcomes	 Students will be able to get acquainted with Lie algebras and Matrix groups theory. Comprehend Lie groups theory. Understand classification of Lie algebras Understand representation of finite dimensional Lie algebras 	

Title of the Course: GRAPHS AND NETWORKS

Prerequisites	Basic set theory	
for the course:		
Course	Course deals with the basics of graph theory, basic definition of	
Objectives:	simple graphs, types of graphs, matrix representation of graphs, isomorphism in graphs, Euler & Hamiltonian graphs, trees & their properties, spanning trees, colouring of graphs, independence number and chromatic number of simple graphs, connectivity, cut-set, directed graphs, shortest paths & maximal flows in a network.	
Content:	1. Introduction to graphs	19 hours
	Graphs, subgraphs, operations on graphs, degree sequences, graphic sequences, distance in graphs, walks, trails, paths, circuits, cycles, matrices and isomorphism, complement of graph, bipartite graphs, distance in graphs, digraphs and multidigraphs, Cut-vertices bridges and blocks, classes of graphs, Petersen graphs, regular graphs, Harary graphs.	
	2. Trees and connectivity	8 hours
	Elementary properties of trees, minimal spanning trees, Prim's algorithm, Kruskal's algorithm, connectivity and edge- connectivity, connectedness of digraphs, Prüfer sequence.	
	3. Eulerian and Hamiltonian graphs	7 hours
	Eulerian graphs and digraphs, Hamiltonian graphs and digraphs, Fleury's algorithm and Hierholzer's algorithm.	
	4. Planar graphs Euler's formula, characterizations of planar graphs, crossing number and thickness.	7 hours
	 Graph colorings Vertex colorings, edge colorings, map colourings, Five Color theorem. 	6 hours
	 6. Matchings and domination in graphs Matchings and independence in graphs, vertex cover, edge cover, domination number of a graph, independence domination number of a graph. 	6 hours
	 7. Networks Relevance of maximum flow, Ford Fulkerson algorithm, Dijkstra's algorithm to find the shortest route. 	7 hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/Re adings:	 D. B. West, Introduction to Graph Theory, Prentice Hall of India, 2006. G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman & Hall/CRC, Third edition, 1996. G. Agnarsson and R. Greenlaw, Graph Theory: Modeling, 	

	Applications and algorithms, Pearson, 2011.
	4. Gary Chartrand and Ping Zhang, Introduction to Graph Theory,
	Tata Mc-Graw-Hill Edition, 2006.
	5. F. Harary, Graph Theory, Narosa Publishing House, 2001.
	6. Gary Chartrand and O.R. Oellermann, Applied Algorithmic
	Graph Theory, McGraw-Hill Inc. 1993.
Course	Student will be able to
Outcomes:	1. understand relevance of graphs in different context, ranging from
	puzzles & games to social science/engineering/computer science.
	2. solve problems
	3. learn algorithms is also an essential part of graph theory.
	4. know applications of Graph Theory

Programme: M.Sc. (Mathematics)

Course Code: MAT-605

Title of the Course: ADVANCED GRAPH THEORY

Number of Credits: 4

Effective from AY:2023-24

Prerequisites	Basic Graph Theory	
for the course:		
Course Objectives:	This course will give a deeper insight into basic concepts in Graph Theory, so as to be able to embark into research in the field.	
Content:	1. Review of Basic Concepts: Graphs, Trees, minimal spanning trees, connectivity and edge-connectivity, Eulerian graphs, Hamiltonian graphs, Euler's formula, Planar graphs, Colourings, Matchings, Independence and Domination in a graph.	7 hours
	 Independent Sets and Cliques: Independent Sets, Cliques, Ramsey Number and Turan's Theorem. 	7 hours
	3. Matchings, Factors and Decompositions: Matchings & Covers, Maximum Matchings, Matchings in bipartite Graphs, Hall's Matching Condition, Min-Max Theorems, Perfect Matching, Factorizations and Decompositions.	16 hours
	4. Labelings of Graphs: Graceful Labeling, Harmonious Labeling, Bandwidth Labeling.	8 hours
	5. Colourability: Chromatic Number and Chromatic index, Brook's Theorem, Vizing's Theorem, Chromatic Polynomials.	7 hours
	6. Connectivity and Paths: <i>k</i> -Connected Graphs, <i>k</i> -Edge Connected Graphs, Menger's Theorem.	7 hours
	7. Domination in Graphs: Dominating Queens, Dominating Sets in Graphs, Applications of Dominating Sets, Bounds on the Domination Number (in terms of order, in terms of order and size).	8 hours
Pedagogy:	Lectures/ Tutorials/Assignments/Self-study	
References/Re adings:	 G. Chartrand and P. Zhang, Chromatic Graph Theory, CRC Press, 2009. D. B. West, Introduction to Graph Theory, Prentice Hall of India, 2006. T.W. Haynes, S.T. Hedetniemi & P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998. G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman & Hall/CRC, Third edition, 1996. 	
Course	Student will be able to	
Outcomes:	 understand the concepts required to pursue research in Graph Theory. learn labelling graphs learn coloring of graphs learn about domination of graphs 	

Droroquisitos	A first source in Real Analysis	
Prerequisites for the	A first course in Real Analysis	
Course:		
Course	This course gives a thorough introduction to the Lebesgue theor	av of
Objectives:	integration on \mathbb{R} and prepares the students to understand the c	•
Objectives:	abstract measure theory, a fundamental tool of advanced math	-
	analysis, probability theory and applications.	ematical
Contents	1.Reimann-Stieltjes Integral	14 hours
contents	Weights and measures, The Riemann-Steiltjes integral, Space	14 110013
	of integrable functions, Integrators of bounded variation, The	
	Riemann integral. Shortcomings of Riemann integration.	10 hours
	2.Lebesgue Measure on \mathbb{R}	10 hours
	The length function and Lebesgue outer measure, Measurable	
	sets, Sigma algebra of measurable sets, Structure of	
	measurable sets, non-measurable sets, idea of abstract	
	measure spaces. 3.Measurable Functions	8 hours
		8 nours
	Measurable functions, Extended real valued functions and measurability, Sequence of measurable functions, Egorov's	
	theorem, Approximation of measurable functions	16 hours
	4.The Lebesgue Integral	16 hours
	Lebesgue integral of simple functions, non-negative functions	
	and the general case. Chebyshev's inequality, monotone convergence theorem, Fatou's Lemma, Lebesgue dominated	
	convergence theorem, Integral of infinite series of functions. Lebesgue integrability of Riemann integrable functions.	
	Approximation of Lebesgue integrable functions by simple	
	functions, continuous function and step functions.	12 hours
	5. The Lp spaces	12 nours
	The L_p -spaces for $1 \le p \le \infty$, and their completeness.	
	Approximation of L_p -functions by simple fuctions, continuous	
	functions, step functions	
Pedagogy	Class room lectures and tutorials, assignments and library refere	
References/	1. Real Analysis, N L Carothers, Cambridge University Press, 200	
Readings:	2. Lebesgue Measure and Integration, Murray R. Spiegel Ph.D., S	schaum
	Outline Series, McGraw Hill Inc., 1990	
	3.An Introduction to Measure and Integration, Inder K Rana, National Publishing Hause, 2005	rosa,
	Publishing House, 2005	
	4. Real Analysis, H.L. Royden, Pearson Education India, 2015	- 1 ¹
	5. Measure Theory and Integration, G. de Barra, New Age Intern	ational,
	Pvt.Ltd., 2013	

Course	Student will be able to
Outcomes	1. Understand Lebesgue outer measure and Lebesgue measure,
	existence of non-measurable sets
	 Understand the Fundamental results; the monotone convergence theorem, Dominated convergence theorem and Fatou's lemma.
	 Understand Lebesgue integral as generalization of the Riemann integral and its behaviour with respect to sequence of functions
	4. Understand Basic structure of the L_p -spaces

Programme: M.Sc. Mathematics Course Code: MAT-607 Number of Credits: 04

Title of the Course: MEASURE THEORY-II

Effective from AY:2023-24

Prerequisites	A first course in Real Analysis, Complex Analysis and Topology. A	course in
for the	Lebesgue measure and integration is desirable	
Course:		
Course	This course gives a foundation in essential abstract measure the	eory
Objectives:	required in varied aspects of mathematical analysis and its diverse	
	applications	
Contents	1.Abstract Measure and Integration	14 hours
	The concept of measurability, Borel sets , Measurable	
	functions, Simple functions, Elementary properties of	
	measures, Integration of positive functions, Monotone	
	convergence theorem, Fatou's lemma, Integration of Complex	
	functions, Dominated convergence Theorem, The role played	
	by sets of measure zero, completeness of measure	
	2.Positive Borel measures	14 hours
	Topological Preliminaries -Review of topological notions	
	(without proof) from the theory of locally compact Hausdorff	
	topological spaces-The Urisohn's Lemma. The Riesz	
	representation theorem for $C_c(X)$ where X is locally compact	
	Hausdorff, Regularity properties of Borel measures, the	
	Lebesgue measure on \mathbb{R}^k , Continuity properties of measurable	
	functions.	
	3. L^p -spaces	10 hours
	Convex functions and inequalities, Jensen's inequality, The L^p	
	-spaces and their completeness, Approximation by continuous	
	functions- the density of $C_c(X)$ in $L^p(\mu)$.	
	4.Complex Measures	12 hours
	Complex measures, total variation, positive and negative	
	variation, Absolute continuity of measures, The theorem of	
	Lebesgue-Radon-Nikodym, Consequences of the Radon-	
	Nikodym theorem- the polar decomposition and the Hahn	
	decomposition.	
	5. Integration on Product spaces	10 hours
	Measurabilty on Cartesian products, product measures, The	
	Fubini's theorem, Completion of product measures.	
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	-
References/	1. Real and Complex Analysis, Walter Rudin, Third Edition,	
Readings:	McGrow-Hill Company, 1987	
	2.Measure Theory and Integration, G.de Barra, Wiley Eastern	
	Limited, 1987	
	3. Real Analysis, H.L. Royden, Pearson Education India, 2015	
	4.An Introduction to Measure and Integration, Inder K Rana,	
	Narosa Publishing House, 2013	
	5.Real Analysis, Gerald B. Folland, John Wiley & Sons, 1984	

Course	Student will be able to
Outcomes	 understand and apply the concepts in Abstract measure spaces, measurable sets and measurable functions
	 understand and apply the concepts in Integrals with respect to a measure and their behaviour w.r.t. sequences of functions
	3. understand and apply the concepts in Positive Borel measures, Lebesgue measure on \mathbb{R}^k and regularity properties of Borel measure
	4. understand and apply the concepts in Abstract L^p -spaces
	 understand and apply the concepts in Complex measures, Radon- Nikodym theorem
	understand and apply the concepts in Product measure and integration on product spaces.

Programme: M.Sc. Mathematics Course Code: MAT-608 Number of Credits: 4

Title of the Course: FUNCTIONAL ANALYSIS-II

Effective from AY:2023-24

Prerequisite s	A First Course in Real Analysis, Complex Analysis, Topology and Functional	
for the	Analysis	
Course:		
Course	Having done a first course in Functional Analysis this course develops mor	
Objectives:	advanced concepts in Functional Analysis which introduces the stude	
	some important tools for the applications of Functional Analysis. F	urther
	the topics covered in the course form foundations for further reac	lings in
	Functional Analysis leading to research in diverse branches of Fun	-
	Analysis and Operator Theory.	
Content:	1.Weak and Weak* Topologies	10
content.	Definitions and properties of weak topology and, weak	hours
		nours
	convergence, Comparison of strong and weak convergences,	
	Definitions and properties of weak* topology and weak*-	
	convergence, comparison of weak and weak* convergences, The	
	Banach- Alaoglu Theorem, Convergence of sequence of	
	Operators -Uniform operator convergence, strong operator	
	convergence, weak operator convergence-basic properties and	
	the comparison of these convergences.	
	2.Spectral Theory of linear operators in normed spaces	12
	Spectral theory in finite dimensional normed spaces, matrix	hours
	operators and their spectrum, Spectral theory -Basic concepts-	
	Regular value, resolvent set, spectrum and classification of	
	spectrum.	
	Spectral properties of bounded linear operators-spectrum	
	closed, non-empty, spectral radius, resolvent equation,	
	commutativity, spectral mapping theorem for polynomials,	
	linear independence of eigen vectors, Use of complex analysis in	
	spectral theory	
		12
	3.Compact linear operators on normed spaces	
	Compact operators- definition and basic properties such as	hours
	continuity, compactness criterion, operators with finite	
	dimensional domain or range, sequence of compact operators,	
	compact operators and weak convergence, separability of the	
	range, adjoint of compact operators, compactness of a product	
	of two compact operators.	
	4.Spectral properties of compact operators	10
	Eigen values countable, characteristic properties of the eigen	hours
	spaces leading to the direct sum representations of the normed	
	space as a sum of two closed subspaces in terms of a compact	
	operator.	
	5.Operator equations involving compact linear operators	10
	Fredolhm type theorems, Fredolhm alternative, Fredolhm	hours
	alternative for integral equations	

	6 hours 6 hours	
	spectrum	
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/	1. Introductory Functional Analysis with Applications, Ervin Kreyszig,	
Readings:	John Wiley & Sons, 1978.	
	 Functional Analysis (Second Edition), S.Kesavan, Hindustan Book Agency, 2022 	
	 Functional Analysis, George Bachman and Lawrence Narici, Dover Publications,2000. 	
	4. Functional Analysis, S.Kumaresan and D.Sukumar, Narosa Publishing House, 2020	
	 Basic Operator Theory, Israyel Gohberg and Seymour Goldberg, Birkhäuser, 1981. 	
Course	Student will be able to	
Outcomes;	 apply the concepts of the weak topology and weak*-topology respectively on a normed space and its dual space and their comparisons with the respective norm topologies, weak and weak*- convergences of operators 	
	apply the concepts of the Banaach-Aloglu theorm and the characterization of normed spaces	
	apply the concepts of basics of spectral notions of spectral theory of operators on normed spaces	
	 apply the concepts of Spectral properties of compact operators apply the concepts of the Fredplhm alternative 	

Programme: M. Sc. (Mathematics)

Course Code: MAT-609Title of the Course: SYMMETRY METHODS FOR DIFFERENTIALEQUATIONSNumber of Credits: 4

Effective from AY: 2023-24

Prerequisites for the Course:	Group theory, Basics of Lie Algebra, Differential equations, Partial Differential equations.	
Course Objectives:	The study of ordinary differential equations (ODEs) and partial differential equations (PDEs) is a fundamental subject area of mathematics. Differential equations (DEs) are present in almost all applications of mathematics where they provide a natural mathematical description of phenomena in the physical, natural and social sciences. Symmetry methods systematically extend well known ad-hoc techniques to construct explicit solutions for differential equations, especially for nonlinear DEs. This course is about symmetry methods (group theoretic methods) for solving DEs which is one of the most powerful methods in order to determine particular solutions to DEs.	
Content	 Dimensional Analysis, Modeling, and Invariance: Introduction, Dimensional Analysis, Buckingham Pi Theorem, Application of Dimensional Analysis to DEs. 	5 Hours
	2. Lie Groups of Transformations and Infinitesimal Transformations: Lie Group of Transformations, Infinitesimal Transformations, First Fundamental Theorem of Lie, Infinitesimal Generators, Invariant Functions, Canonical Coordinates, Invariant Surfaces, Invariant Curves, Extended Transformations (Prolongations), Multi- Parameter Lie Groups of Transformations, Lie Algebras, Solvable Lie Algebras.	10 Hours
	3. Ordinary Differential Equations: Invariance of an ODE, Reduction of Order Via Lie Group of Transformation and Integrating Factors, Mapping of Solutions to Other Solutions, First Order ODEs, Second and Higher Order ODEs, Invariance of ODEs Under Multi-parameter Groups, Applications to Boundary Value Problems	25 Hours
	4. Partial Differential Equations: Infinitesimal Criterion for the Invariance of PDEs, Invariance of Scalar PDEs, Invariant Solutions, Mapping of Solutions, Invariance of System of PDEs, Application to Boundary Value Problems.	20 Hours
Pedagogy:	Lectures/ Tutorials/Assignments/Self-study	

References/	1. George W. Bluman and Sukeyuki Kumei, Symmetries and	
Readings:	Differential Equations, Springer-Verlag New York,	
	Heidelberg, Berlin, 1989.	
	2. G. W. Bluman and S. Anco, Symmetries and Integration	
	Methods for Differential Equations; Springer, New York,	
	2002.	
	3. G. W. Bluman and J. Cole, Similarity Methods for	
	Differential Equations, Springer-Verlag New York,	
	Heidelberg, Berlin, 1974.	
	4. Peter J. Olver, Applications of Lie Groups to Differential	
	Equations SpringerVerlag New York, Berlin, Heidelberg,	
	Tokyo, 1979.	
Course	Students will be able to	
Outcomes:	1 Understand the concept of modeling	
	2 Apply the Lie group transformations and reduce order of	
	ODEs and PDEs.	
	3 Solve ODE's of higher order using symmetry methods	
	4 Solve nonlinear PDEs using symmetry methods	

Programme: M.Sc. (Mathematics) Course Code: MAT-621 Tittle of the Course: Basic MATHEMATICS FOR SOCIAL SCIENCE Number of Credits: 4 Effective from AY:2023-24

Prerequisite for the Course:	This course is not recommended for students with Mathematics at UG level.	l
Course Objectives:	The main objective of this course is to encourage s to develop a working knowledge of the basic Math for social science and will present some of the idea form the foundation of quantitative work in the so sciences. In particular, topics from logarithm, set t matrix theory and calculus will be discussed with e on the understanding of concepts and the develop intuition	nematics as that ocial heory, emphasis
Content:		
	 Unit I ;Binary numbers, indices, logarithm and antilogarithm, laws and properties of logarithms, simple applications of logarithm and antilogarithm, numerical problems on averages, calendar, clock, time, work and distance, mensuration, seating arrangement, sets, types of sets, Venn diagram, De Morgan's laws, problem solving using Venn diagram, relations and types of relations. Unit II ;Introduction of sequences, series, AP, GP and HP, relationship between AM, GM and HM. Permutations and combinations. Functions 	15hours 15hours
	and relations. Types of functions (Polynomial function; Rational function; Logarithm function, Exponential function; Modulus function; Greatest Integer function), Graphical representation of functions.	
	Unit III ; Limit and continuity, derivative as rate measure, differentiation, derivatives of implicit functions using Chain rule. Basic mathematical logic with conditional statements, tautology and contradiction.	10hours
	Unit IV ;Random experiment, sample space, events, mutually exclusive events. Independent and dependent Events, law of total probability, Bayes' Theorem. Data on various scales (nominal, ordinal, interval and ratio scale), data representation and visualization, data	20hours

	interpretation (dispersion, deviation, variance,
	skewness and kurtosis), percentile rank and
	quartile rank, correlation (Pearson and
	Spearman method of correlation), linear
	regression, applications of descriptive statistics
	using real time data.
Pedagogy	Lectures/Tutorials/Self study
References/ Readings:	Gill J. Essential Mathematics for Political and
	Social Research, Cambridge University Press,
	2016.
	2. Haeussler E., Paul R. and Wood R.
	Introductory Mathematical Analysis for
	Business, Economics, and the Life and Social
	Sciences, 15th edition. Prentice-Hall, 2015.
	3. Goldstein L., Lay D., and Schneider D. Calculus
	and Its Applications, 14th Edition. Prentice Hall,
	2014.
	4. Hagle T. Basic Math for Social Scientists:
	Problems and Solutions, 1996.
	5. Hagle T. Basic Math for Social Scientists:
	Concepts, 1996.
	6. Kleppner D. and Ramsey N. Quick Calculus.
	Wiley, 1995.
	7. Namboodiri K. Matrix Algebra: An
	Introduction. Sage Publications # 38, 1994.
Course Outcome:	Student will be able to
	1. Explain the fundamental concepts of
	indices, logarithm and antilogarithm and
	their role in basic Mathematics for social
	science.
	2. Demonstrate accurate and efficient use
	of set theory and Venn diagram.
	3. Understand and use the terms: function,
	relation, series arithmetic, geometric
	progression, Permutations and
	Combinations.
	4. Understand the concepts and properties
	of limits, continuity and differentiation of
	a function, logical reasoning, probability
	and descriptive statistics

Tittle of the Course: OPERATIONS RESEARCH

Programme: M.Sc.(Mathematics) Course Code: MAT-622 Number of Credits: 4 Effective from AY:2023-24

Prerequisite for the	Not recommended for mathematics students	
course:	Not recommended for mathematics students	
Course Objectives:	This course is designed to introduce basic optimizatio techniques in order to get best results from a set of se possible solutions of different problems viz. linear programming problems, transportation problem, assig problem and unconstrained and constrained problem	everal gnment
Content:		
	Unit I : Linear programming: formulation and solution of linear programming problems by graphical, simplex methods, Big-M, degeneracy, duality in linear programming, sensitivity analysis	15hours
	 Unit II : Transportation problems: basic feasible solutions, optimum solution by stepping stone and modified distribution methods, unbalanced and degenerate problems, transhipment problem. Assignment problems: solution by Hungarian method, unbalanced problem, case of maximization, travelling salesman and crew assignment problems. 	15hours
	Unit III : Queuing theory: basic components of a queuing system, general birth-death equations, steady-state solution of Markovian queuing models with single and multiple servers (M/M/1. M/M/C, M/M/1/k, M/M/C/k)	15hours
	Unit IV : Game theory: two persons zero sum game, game with saddle points, rule of dominance; algebraic, graphical and linear programming, concept of mixed strategy. sequencing problems: processing of n jobs through 2 machines, n jobs through 3 machines, 2 jobs through m machines, n jobs through m machines.	15hours
Pedagogy	Lectures/Tutorials/Self study	
References/ Readings:	 Sharma, S. D. Operation Research, Kedar Nath Ram Nath Publications, 2012. Swarup, K. and Gupta, P.K. Operations Research. S. Chand publisher, 2010. Taha, H. A. Operation Research: An Introduction.9th edition, Pearson, 2010. Gupta, P.K. and Hira, D.S. Introduction to Operations Research, S. Chand & Co. 2008. Sharma, J. K., Mathematical Model in Operation Research, Tata McGraw Hill, 1989. Hagle T. Basic Math for Social Scientists: Problems 	

	and Solutions, 1996.	
Course Outcomes:	Student will be able to	
	1. Understand linear programming	
	problems and to find their solutions by	
	using different method.	
	2. Find optimal solution of transportation	
	problems and assignment problems	
	3. Understand and solve different queuing	
	models.	
	Find optimal solution of linear	
	programming model using Game Theory.	
	Also learn about sequencing problems.	

Programme: M.Sc.(Mathematics) Course Code: MAT-623 Tittle of the Course: MATHEMATICS FOR FINANCIAL MANAGEMENT AND INSURANCE Number of Credits: 4 Effective from AY: 2023-24

Prerequisites for the Course:	Basic knowledge of, Differential Equations, Linear A Numerical Methods	Algebra,
Course Ohiostiuseu		-:-1
Course Objectives:	This course introduces the basic concepts of Finance	
	Management such as Insurance and Measurement	
	returns under uncertainty situations. The philosop	•
	course is that Time value of Money - Interest rate a	
	discount rate play a fundamental role in Life Insura	nce
	Mathematics – Construction of Morality Tables.	I
Content:		
	Unit I : Financial Management –overview. Nature	15hours
	and scope of financial management. Goals and	
	main decisions of financial management.	
	Difference between risk, Speculation and	
	gambling. Time value of Money - Interest rate	
	and discount rate. Present value and future value	
	discrete case as well as continuous compounding	
	case. Annuities and its kinds.	
	Unit II : Meaning of return. Return as Internal	15hours
	Rate of Return (IRR). Numerical methods like	
	Newton Raphson method to calculate IRR.	
	Measurement of returns under uncertainty	
	situations. Meaning of risk. Difference between	
	risk and uncertainty. Types of risks.	
	Measurements of risk. Calculation of security and	
	Portfolio Risk and Return-Markowitz Model.	
	Sharpe Single Index ModelSystematic Risk and	
	Unsystematic Risk.	15hours
	Unit III : Taylor series and Bond Valuation.	ISHOULS
	Calculation of Duration and Convexity of bonds.	
	Insurance Fundamentals – Insurance defined.	
	Meaning of loss. Chances of loss, Peril, Hazard,	
	proximate cause in insurance. Costs and benefits	
	of insurance to the society and branches of	
	insurance-life insurance and various types of	
	general insurance. Insurable loss exposures-	
	feature of a loss that is ideal for insurance.	
	Unit IV : Life Insurance Mathematics –	15hours
	Construction of Morality Tables. Computation of	
	Premium of Life Insurance for a fixed duration	
	and for the whole life. Determination of claims	
	for General Insurance – Using Poisson	

	Distribution and Negative Binomial Distribution –	
	the Polya Case. Determination of the amount of	
	Claims of General Insurance – Compound	
	Aggregate claim model and its properties, Claims	
	of reinsurance. Calculation of a compound claim	
	density function F, Recursive and approximate	
	formulae for F	
Pedagogy:	Lectures/Tutorials/Self study	
References/ Readings:	1. Ross, S. M. An Introduction to	
	Mathematical Finance. Cambridge	
	University Press, 2019.	
	2. Elliott, R. J. and Kopp, P. E. Mathematics	
	of Financial Markets. Sprigner Verlag,	
	New York Inc, 2018.	
	3. Damodaran, A. Corporate Finance -	
	Theory and Practice. John Wiley & Sons,	
	Inc, 2012.	
	4. Hull, J. C. Options, Futures, and Other	
	Derivatives. Prentice-Hall of India Private	
	Ltd, 2010.	
	5. Daykin, C. D., Pentikainen, T. and	
	Pesonen, M. Practical Risk Theory for	
	Actuaries. Chapman & Hall, 2008.	
	6. Dorfman, M. S. Introduction to Risk	
	Management and Insurance. Prentice	
	Hall, Englwood Cliffs, New Jersey, 1999.	
	7. Neftci, S. N. An Introduction to the	
	Mathematics of Financial Derivatives.	
	Academic Press, Inc, 1991	
Course Outcomes:	Student will be able to	
	1. Demonstrate knowledge of the	
	terminology related to nature, scope,	
	goals, risks and decisions of financial	
	management.	
	2. Predict various types of returns and risks	
	in investments and take necessary	
	protective measures for minimizing the	
	risk.	
	3. Develop ability to understand, analyze	
	and solve problems in bonds, finance and	
	insurance.	
	4. Build skills for computation of premium	
	of life insurance and claims for general	
	insurance using probability distributions.	

Programme: M. Sc. (Mathematics)

Course Code: MAT-624 Title of the Course: MATHEMATICS FOR FINANCIAL MARKET Number of Credits: 4

Effective from AY: 2023-24

	AY: 2023-24	1 1
Prerequisites	Elementary Calculus, Basic Probability Theory	
for the		
course:		
Course	At the end of this course the student will gain knowledge of basic	
Objectives:	concepts in financial mathematics	
Content	 Introduction: A Simple Market Model :Basic Notions and Assumptions, No-Arbitrage Principle, One-Step Binomial Model, Risk and Return, Forward Contracts, Call and Put Options, Managing Risk with Options 	6 Hours
	2. Risk-Free Assets : Time Value of Money, Money Market	6 Hours
	 Risky Assets : Dynamics of Stock Prices, Binomial Tree Model 	6 Hours
	 Discrete Time Market Models : Stock and Money Market Models, Extended Models 	6 Hours
	 Portfolio Management : Risk, Two Securities, Several Securities, Capital Asset Pricing Model 	12 Hours
	 Forward and Futures Contracts : Forward Contracts, Futures 	6 Hours
	 7. Options: General Properties : Definitions, Put-Call Parity, Bounds on Option Prices, Variables Determining Option Prices, Time Value of Options 	10 Hours
	8. Option Pricing : European Options in the Binomial Tree Model, American Options in the Binomial Tree Model, Black-Scholes Formula	8 Hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-Study	
References/ Readings:	 Marek Capinski and Tomasz Zastawniak, Mathematics for Finance, An Introduction to Financial Engineering, Springer, 2003 	
	 Sheldon M. Ross, An Elementary Introduction to Mathematical Finance, Cambridge University Press, 2011 	
Course	Student will be able to	
Outcomes:	 Recall and explain concepts in simple market models, risk free assets, risky assets, dynamics of stock prices, 	
	 Recall portfolio management, forward contracts, futures contracts and options. 	
	3 Prove important theorems related to topics studied.	
	4 Apply knowledge gained to solve basic mathematical problems in finance.	

Programme: M. Sc. (Mathematics) Course Code: MAT-625 Number of Credits: 2P

Title of the Course: LATEX FOR MATHEMATICS

Effective from AY: 2023-24

Prerequisites for the Course:	Basic ability to type, Comfort with mathematical symbols and notations.	
Course Objectives:	At the end of this course the student will develop the required skill set to typeset mathematical research and produce profes- sional mathematical documents with vector graphics. The student will also be able to effectively use macros in LATEX	
Content:	1. LATEX Basics: A Bit of History, Basics, LATEX input files, Input File Structure, A Typical Command Line Session, Logical Structure of your Document, Packages, The Structure of Text and Language, Files you might Encounter	8 Hours
	2. Real World LATEX: Line Breaking and PageBreaking, Ready- Made Strings, Dashes and Hyphens, Slash, Ellipsis, Ligatures, Abstract, Simple Commands, The Space Between Words, Titles, Chapters, and Sections, Cross References, Footnotes, Lists, Non-Justified Text, Quotations, Code Listings, Tables, Including Graphics and Images, Floating Bodies, Big Projects	8 Hours
	3. Typesetting Mathematical Formulae: Modern Mathematics, Single Equations, Building Blocks for Mathemati- cal Formulae, Multiline Equations, Units, Matrices and the Like, Spacing in Math mode, Theorems and Proofs, Fiddling with math styles, Dots, More about Fractions	8 Hours
	4. Bibliographies: the bibliography environment, biblatex with biber Database files,Using biblatex,Controlling the bibliography,Citing commands, More about entries.	4 Hours
	5. Specialities: Indexing, Installing Extra Packages, LATEXand PDF, Creating Presentations	4 Hours
	6. Graphics in Your Document: Overview, Basic Usage, Curves and Shapes, Customizing Paths and Nodes, Coordinates, Reusing Pictures, Libraries	12 Hours
	7. Customising LATEX: New Commands, Environments and Packages, Fonts and Sizes, Custom Fonts with fontspec, Colours, Lengths and Spacing, The Layout of the Document, Fancy Headers	16 Hours
Pedagogy:	Practical, Hands on training, Self-study	
References/ Readings:	 Tobias Oetiker, Marcin Serwin, Hubert Partl, Irene Hyna and Elisabeth Schlegl, The Not So Short Introduction to LATEX, 2022 George Gratzer, More Math Into LATEX, Springer, 2016 Leslie Lamport, A Documentation Preparation System LATEX User's Guide and Reference Manual, Pearson, 2006 	

Course	Student will be able to
Outcomes:	1. Gain the required knowledge to type professional mathematical
	documents
	2. prepare presentations.
	3. Apply graphics packages to create produce vector graphics in
	mathematical documents.
	4. Design customized mathematical documents to suit individual
	needs with effective use of Fonts, Colours etc.

Programme: MSc Mathematics

Title of the Course: PROBABILITY AND STATISTICS

Course Code: MAT-626 Number of Credits: 4

Effective from AY: 2023-24						
Prerequisites for the	Basic N	Nathematics				
course:						
Course Objectives:	The ai	m of course is to familiarize students with the				
	fundamental concepts & techniques in Probability theory					
	and Sta	atistical analysis.				
Content:	1.	Data Handling:	03 hours			
		Tabulation and frequency distribution, relative				
		frequency distribution, cumulative frequency				
		distribution,	a= 1			
	2.	Measures of central tendency & dispersion:	07 hours			
		Arithmetic mean, Median, Mode for raw data,				
		grouped data, relationship between mean,				
		median and mode, quartiles deciles, percentiles. Variability, range, mean deviation, coefficient of				
		mean deviation, standard deviation, variance,				
		coefficient of variance, skewness, Karl Pearson's				
		coefficient, Bowley's coefficient.				
	3.	Various Concepts in Probability Theory:	05 hours			
		Sample spaces, events, permutations and				
		combinations, axioms of probability, conditional				
		probability, independence and multiplication rule,				
		Baye's Theorem.				
	4.	Discrete Distributions:	09 hours			
		Random variables, discrete probability densities,				
		cumulative distribution, expectation, variance and				
		standard deviation. Binomial, Geometric and				
	_	Poisson distributions.				
	5.	Continuous Distributions:	10 hours			
		Continuous densities, cumulative distribution and				
		distribution parameters, uniform, normal,				
		standard normal, Gamma, exponential and Chi- squared distributions. Normal approximation to				
		binomial distribution.				
	6	Descriptive Statistics and Estimation:	04 hours			
	0.	Random sampling, sample statistics, point	04 110013			
		estimation, sampling distribution of a statistic,				
		distribution of the sample mean and the Central				
		Limit Theorem.				
	7.	Statistical Inference:	08 hours			
		determining sample size, estimation of mean and				
		proportions, Student-t distribution, confidence				
		interval, hypothesis testing on the mean and				
		proportion, type I, type II errors, power of the				

	 test, Z-test, t-test, F-test. 8. Simple linear regression and correlation: Linear regression analysis, model and parameter estimation by least-squares method, Properties of least square estimators, confidence interval estimation and hypothesis testing, Pearson's correlation coefficient, covariance, coefficient of determination. 9. Other tests: ANOVA, non-parametric tests, Chi-square tests. 	08 hours 06 hours
Pedagogy:	Lectures/Tutorials/Assignments/Self-study	
References/Readings	 Devore, J. L.: Probability & Statistics for Engineering and the Sciences, 8th edition, Cengage Learning, 2012. Milton, J. S. and Arnold J. C.: Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 4th edition, Tata McGraw-Hill, 2007. Prem S. Mann: Introductory Statistics, eighth edition, John Wiley & Sons, 2012. Joseph K. Blitzstein and Jessica Hwang: Introduction to Probability, CRC Press 2014. R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences, Wiley, 1989. F. James, Statistical Methods in Experimental Physics, 2nd ed., World Scientific, 2006. Probability and Statistics in Experimental Physics, Byron P. Roe, 2nd ed., Springer, 2001. Fundamentals of Statistical and Thermal Physics, F. Reif, McGraw Hill, Inc. 1965 	
Course Outcomes:	 Student will be able to get familiarized with basic properties of random variables, probability distributions. understand basic concepts in Statistics, understand how to collect, arrange, present, summarize and analyze statistical data, understand to arrive at statistical inferences, apply appropriate statistical tests and interpret its results. 	