

गोंय विद्यापीठ ताळगांव पठार गोंय - ४०३ २०६ फोन: +९१-८६६९६०९०४८

Goa University

Taleigao Plateau, Goa - 403 206 Tel : +91-8669609048 Email : registrar@unigoa.ac.in Website: www.unigoa.ac.in

(Accredited by NAAC)

GU/Acad -PG/BoS -NEP/2023/78/4

Date:24.05.2023

Ref: GU/Acad –PG/BoS -NEP/2022/339/11 dated 19.08.22

CIRCULAR

In supersession to the above referred Circular, the updated approved Syllabus with revised Course Codes of the **Master of Science in Chemistry Programme** is enclosed.

The approved Syllabus of the **Master of Science in Chemistry** Programme (Organic, Inorganic, Analytical and Physical, Pharmaceutical Chemistry) is attached.

The Dean/ Vice-Deans of the School of Chemical Sciences/ Principals of Affiliated Colleges offering the **Master of Science in Chemistry** Programme are requested to take note of the above and bring the contents of the Circular to the notice of all concerned.

ASHWIN Digitally signed by ASHWIN VYAS VYAS LAWANDE LAWANDE Date: 2023.05.24 17:31:44 +05'30'

(Ashwin Lawande) Assistant Registrar – Academic-PG

Τo,

- 1. The Dean, School of Chemical Sciences, Goa University.
- 2. The Vice-Deans, School of Chemical Sciences, Goa University.
- 3. The Principals of Affiliated Colleges offering the Master in Sciences in Chemistry Programme.

Copy to:

- 1. The Chairperson, Board of Studies in Chemistry PG.
- 2. The Programme Director, M. Sc. Chemistry, Goa University.
- 3. The Controller of Examinations, Goa University.
- 4. The Assistant Registrar, PG Examinations, Goa University.
- 5. Directorate of Internal Quality Assurance, Goa University for uploading the Syllabus on the University website.

ANNEXURE-I

M.Sc. Chemistry (SEM I & II) Syllabus (80 Credit course) as per NEP 2020 for AY 2022-23

SEM I			
Sr. No.	Subject code	Paper title	Credits
1.	<u>CHO-500</u>	Fundamentals of Organic Chemistry	4
2.	<u>CHI-500</u>	Fundamentals of Inorganic Chemistry	4
3.	<u>CHP-500</u>	General Physical Chemistry	4
4.	<u>CHA-500</u>	Techniques in Analytical Chemistry-I	4
5.	<u>CHO-521</u>	Practical Course in Organic Chemistry-I	2
6.	<u>CHO-522</u>	Practical Course in Organic Chemistry-II	2
7.	<u>CHI-521</u>	Practical Course in Inorganic Chemistry-I	2
8.	<u>CHI-522</u>	Practical Course in Inorganic Chemistry-II	2
9.	<u>CHP-521</u>	Practical Course in Physical Chemistry-I	2
10.	<u>CHP-522</u>	Practical Course in Physical Chemistry-II	2
11.	<u>CHA-521</u>	Practical Course in Analytical Chemistry-I	2
12.	<u>CHA-522</u>	Practical Course in Analytical Chemistry-II	2
SEM II (Inorganic Chemistry)			
1.	<u>CHI-501</u>	Chemistry of Coordination & Organometallic Compounds	4
2.	<u>CHI-502</u>	Chemistry of Materials	4
3.	<u>CHI-503</u>	Concepts in Molecular Symmetry and Spectroscopy	4
4.	<u>CHI-504</u>	Concepts in Inorganic Chemistry	4

		SEM II (Analytical Chemistry)	
1.	<u>CHA-501</u>	Chemical Methods of Analysis	4
2.	<u>CHA-502</u>	Techniques in Analytical Chemistry-II	4
3.	<u>CHA-503</u>	Separation Techniques	4
4.	<u>CHA-504</u>	Instrumental Methods of Analysis	4
	1	SEM II (Organic Chemistry)	1
1.	<u>CHO-501</u>	Organic Spectroscopy	4
2.	<u>CHO-502</u>	Pericyclic and Organic Photochemical Reactions	4
3.	<u>CHO-503</u>	Synthetic Methodologies in Organic Chemistry	4
4.	<u>CHO-504</u>	Stereochemistry and Organic Transformations	4
	1	SEM II (Physical Chemistry)	
1.	<u>CHP-501</u>	Quantum Chemistry and Statistical Thermodynamics	4
2.	<u>CHP-502</u>	Group Theory and Molecular Spectroscopy	4
3.	<u>CHP-503</u>	Chemical Kinetics and Thermodynamics	4
4.	<u>CHP-504</u>	Electrochemistry and Surface Studies	4

Course Code: CHA-500 Title of the course: Techniques in Analytical Chemistry - I

Number of Credits: 04

Prerequisites	Students should have studied chemistry courses at graduate level of	or must
for the course:	have cleared change of discipline entrance test conducted k	oy Goa
	University.	
Course	1. Learning various methods of data handling in analysis.	
Objective:	2. Understanding the significance of sampling and calibration techniques.	
	3. Understanding principles and applications of various types of	
	techniques	
	4. Training the students to deduce structures based on IR, NN	/IR, MS
	combined data.	
Content:	1. Analytical Objectives and Data Handling	No. of
	Importance of analytical chemistry in research and industry;	Hours
	statistics and data handling in analytical chemistry, standard	5
	operating procedures, good laboratory practices: quality	
	assurance, method validation and quality control.	
	2. Sampling and Calibration Techniques	5
	Sampling and sample preparation, general steps in chemical	
	analysis, calibration of glass wares. Finding the best straight line-	
	least square regression, correlation coefficient; Calibration curves,	
	standard addition technique and internal standards. Chemical	
	concentrations.	
	3. Classical methods of Analysis	6
	Gravimetry and Titrimetric methods, Principle, methodology,	
	Advantages & Disadvantages over instrumental methods.	
	Conditions for identifying a given reaction as method of Analysis,	
	Classification of reactions in titrimetric analysis (Acid-Base, redox,	
	complexometric and precipitation), Standard solutions and their	
	preparation. Selection of Visual Indicators in titrimetric Analysis	
	4. Introduction to Electroanalytical techniques	4
	Introduction to electrochemical cell, electrode potential,	
	Classification of electroanalytical techniques, working principles,	
	and their applications	
	5. Introduction to Inermoanalytical techniques	5
	Analysis Differential Thermal Analysis and Differential Constitution	
	Analysis, Differential Inermal Analysis, and Differential Scanning	
	Calorimetry. Numericals based on TGA.	1 Г
	b. Introduction to Unromatographic Techniques	15
	a. Principles of chromatography, classification of	

chromotographic tachniques based on mechanism of	
chromatographic techniques based on mechanism of	
retention, configuration, mobile and stationary phase.	
Efficiency of separation- plate theory (theoretical plate	
concept) and rate theory (van Deemter equation).	
b. Principles and applications of Paper chromatography, thin	
laver chromatography, HPTLC, Size exclusion and Ion	
exchange chromatography. Counter-current chromatography	
for isolation of natural products	
c. Cas and Liquid Chromatography: Introduction: Instrumontal	
C. Gas and Elquid Chromatography. Introduction, instrumental	
wodules; The Separation System; Choice of Conditions of	
Analysis; Sample Inlet Systems; Detectors; Practical	
Considerations in Qualitative and Quantitative Analysis;	
Coupled Systems-introduction to GCMS, LCMS; Applicability-	
interpretation and numericals.	
7. Introduction to Spectroscopic Techniques	20
a. Interaction of Electromagnetic Radiation with Matter:	
Electromagnetic spectra, regions of spectrum, numericals.	
b. Ultraviolet and visible Spectroscopy: Electronic spectra and	
Molecular structure: types of electronic transition,	
Chromophore and auxochrome, absorption by isolated	
chromophore conjugated chromophores aromatic	
compounds inorganic cholatos Calculating) may for	
Conjugated Dianas Trianas relyance of Quantumeted	
Conjugated Dienes, Trienes, polyenes, α ,p-unsaturated	
carbonyl compounds, Numericals. Choices and effect of	
solvents on UV-Vis. Quantitative Calculations: Beer-Lambert	
Law; Mixtures of absorbing species-laws of additivity of	
absorbance; calibration curve for calculation of unknown;	
Spectrometric errors in measurement; Deviation from Beer-	
Lambert Law - chemical deviation, instrumental deviation;	
Numericals for quantitative analysis using UV-VIS	
spectroscony	
c Infrared Spectroscopy: Infrared absorption and molecular	
ctructures molecular vibrations turnes of vibrations ID	
structures, molecular vibrations, types of vibrations, IK	
spectra, overtones and bands-basis of NIR absorption.	
Spectra interpretation, Frequencies of functional group,	
Spectral Databases, Identification of unknown compounds.	
d. Spectrometric Instrumentation of UV-Vis and IR: Sources,	
monochromators, sample cells, detectors, instrumental	
wavelength and absorption calibration.	
e. Proton and Carbon NMR Spectroscopy: Theory of NMR.	
Instrumentation. Chemical shift. factors influencing chemical	
shift solvents used in NMR spin-spin splitting coupling	
constant calculation factors influencing coupling constant	
f Mass Sportromotry, Dringing, Instrumentation and various	
i. wass spectrometry: Principle, instrumentation and various	

	fragmentation patterns.
	g. Conjoint spectrometry problems: Structural elucidation of
	organic molecules using IR, UV, NMR and MS.
	h. Raman Spectroscopy: Theory, Basic instrumentation and
	Structural analysis using Raman Spectra.
	(Note: Assignment based on all above spectrometric methods
	should be given to student. More weightage of lectures shall be
	given for solving IR and NMR data problems for structure
	elucidation)
Pedagogy:	Mainly lectures and tutorials Seminars / term papers /assignments /
	presentations / self-study or a combination of some of these can also be
	used ICT mode should be preferred. Sessions should be interactive in
	nature to enable neer group learning
References /	1 G D Christian Analytical Chemistry 6 th Ed · Wiley 2004
Readings:	2 I H Kennedy Analytical Chemistry: Principles 2 nd Ed.: Saunders
neuungs.	College Publishing 1990
	3 G W Ewing Instrumental Methods of Chemical Analysis 5 th Ed
	McGraw- Hill Int 1985
	4 W Kemp Organic Spectroscopy 3 rd Ed : Palgrave 1991
	5 D A Skoog D M West E I Hollar S B Crouch Fundamentals of
	Analytical Chemistry 9 th Ed : Cengage learning 2014
	6 E I Holler D A Skoog S B Crouch Principles of Instrumental
	Analysis 6 th Ed : Thomson Books 2007
	7 H Willard I. I. Merritt I. A. Dean E. A. Settle Instrumental methods
	of Analysis 7 th Ed · HCBS Publishing 2004
	8 C N Banwell F M McCash Fundamentals of Molecular
	Spectroscopy 4 th Ed : Tata McGraw- Hill 2006
	9 B M Silverstein F X Webster Spectrometric identification of
	Organic Compounds 6 th Ed : Wiley 1998
	10 H Gunzler & Williams Handbook of Analytical Techniques 1 st Ed
	Wiley 2001
	11 P. S. Kalsi Spectroscopy of Organic Compounds 2 nd Ed : New Age
	International 2000
	12 F Pretsch P Buhlmann C Affolter Structural Determination of
	Organic Compounds 2 nd Ed : Springer 2005
	13. L. D. Field, S. Sternhell, L. R. Kalman: Organic Structures from
	Spectra, 4 th Ed.: Wiley, 2007.
	14. R. A. Day, A. L. Underwood, Quantitative Analysis, 6 th Ed.: Prentice
	Hall, 2001.
	15. B. K Sharma, Instrumental methods of chemical analysis, Goel
	Publishing House, Meerut, 2004.
	16. K. Nakamoto, Infrared and Raman Spectra of Inorganic and
	Coordination Compounds, 6 th Ed.; Wiley, 2009.
	17. P. J. Larkin, Infrared and Raman Spectroscopy: principles and

	spectral interpretation, 2 th Ed.; Elsevier, 2018.
	18. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, B. Sivasankar,
	Vogel's Text Book of Quantitative Chemical Analysis, 6 th Ed.; Pearson,
	2009.
Course	1. Students will be able to analyse the role of statistical tools for
outcomes:	determination of error and organised data management for systematic
	interpretation.
	2. Student will be able to apply the sampling and calibration methods for
	obtaining reliable results.
	3. Students will be able to understand basic principles and scope of
	different methods of Analysis
	4. Students will be able to solve problems based on IR, NMR, MS combined
	spectral data.

Course Code: CHA-521 Title of the course: Practical Course in Analytical Chemistry - I

Number of Credits: 02

Prerequisites for the course:	Students should have studied chemistry practical courses at graduate le must have cleared change of discipline entrance test conducted by Goa University.	evel or
Course	1. Introduction of various experimental techniques for analysis.	
Objectives:	2. Learning data analysis, handling and interpretation of spectra.	
Content:	This course consists of 7 units of experiments in various areas of	No of
	Analytical chemistry. Minimum 13 experiments which include at least	hours
	02 experiments from unit 1-6 and 01 experiment from unit 7 shall be	
	conducted.	
	Unit 1: Statistics	
	i. Calibration of selected Volumetric apparatus	9
	ii. Calibration of selected Laboratory instruments	
	Preparation of standard solutions and standardisation.	
	Unit 2: Colorimetry/ UV-Visible Spectrophotometry	8
	i. Estimation of Iron from Pharmaceutical sample (capsule) by	
	thiocyanate method	
	ii. Estimation of phosphoric acid in cola drinks by molybdenum blue method.	
	iii. Estimation of KNO ₃ by UV spectroscopy and K ₂ Cr ₂ O ₇ by Visible spectroscopy	
	iv. Simultaneous determination and Verification of law of	
	additivity of absorbances ($K_2Cr_2O_7$ and $KMnO_4$).	
	Unit 3: Flame Spectrophotometry and AFS/AAS/ICP Spectroscopy	9
	i. Estimation of Na and K in food supplements or cosmetic	5
	products.	
	ii. Estimation of Pb in water sample by AES/AAS/ICP.	
	iii. Estimation of Fe and Al in Iron ore sample by AES/AAS/ICP.	
	Unit 4: Ion Exchange Chromatography and High Pressure Liquid	10
	Chromatography	
	i. Separation and Estimation of chloride and bromide.	
	ii. Separation of Anthracene and Naphthalene using reverse	
	phase chromatography	
	iii. Separation of Benzaldehyde and Benzyl alcohol using normal	
	phase chromatography	

	Unit 5: Volumetric Titrations	10
	i. Estimation of Ca in pharmaceutical tablet.	
	ii. Estimation of Al and Mg in antacid tablet.	
	iii. Estimation of CaO in cement.	
	Unit 6: Solvent Extraction and spectrophotometry	10
	i. Extraction of Cu as copper dithiocarbamate (DTC) using	
	solvent extraction and estimation by spectrophotometry.	
	ii. Determination of Ni as Dimethylglyoxime complex by	
	spectrophotometry.	
	iii. Determination of Silver as ion association complex with 1,10-	
	Phenanthroline and Bromopyrogallol red.	
	Unit 7: Interpretation Exercises	4
	i. Thermal studies: TG/DTA and Isothermal weight loss studies	
	of various hydrated solids like CuSO ₄ ·5H ₂ O, Ca ₂ C ₂ O ₄ ·H ₂ O,	
	$Fe_2C_2O_4$ ·2H ₂ O.	
	ii. X-ray powder diffractometry: Calculation of lattice parameters	
	from X-ray powder pattern of cubic system such as NiMn ₂ O ₄ ,	
	$CoFe_2O_4$ etc.	
	iii. IR spectra of Urea, benzoic acid, Copper sulphate	
	pentahydrate etc.	
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-out or a com	oination
	of some of these. Sessions shall be interactive in nature to enable peer	group
	learning.	
References /	1. J. H. Kennedy, Analytical Chemistry Principles, Saunders College Pub	lishing,
Reaulings.	2 G. D. Christian Analytical chemistry 5 th Ed John Willey and Sons 19	QЛ
	3 Mendham R C Denney D Barnes M Thomas B Siyasankar Vo	ad's
	Textbook of Quantitative Chemical Analysis 6 th Ed. Pearson Education	Δsia
	2009	/ (510
	4. A. J. Elias, Collection of interesting chemistry experiments, University	v press.
	2002.	, 1,
	5. R.A. Day & A.L. Underwood, Quantitative Analysis, 6 th Ed., Prentice H	all,
	2001.	,
	6. J. Kenkel, Analytical Chemistry for Technicians, 3 rd Ed., Lewis publishe	ers,
	2002.	
Course	1. Students will be able to explain how to determine an unknown	
outcomes:	concentration of solution.	
	2. Students will use statistical methods to analyse data in laboratory.	
	3. Students will be able to use different techniques for qualitative and	
	quantitative estimation.	
	4. Students will be able to interpret TG/X-Ray/IR spectra.	

Course Code: CHA-522 Title of the course: Practical Course in Analytical Chemistry - II

Number of Credits: 02

Prerequisites	Students should have studied chemistry practical courses at graduate level or	
for the course:	must have cleared change of discipline entrance test conducted by Goa	
Course	University.	
Objectives:	2 Learning data analysis, handling and interpretation of spectra	
Content:	Z. Learning data analysis, nandning and interpretation of spectra.	Neef
Content:	This course consists of 7 units of experiments in various areas of	NO OF
	Analytical chemistry. Minimum 13 experiments which include at	nours
	Teast 02 experiments from unit 1-6 and 01 experiment from unit	
	7 shall be conducted.	
	Unit 1: Statistics	
	i. Calibration of selected Volumetric apparatus	9
	ii. Calibration of selected Laboratory instruments	
	iii. Preparation of standard solutions and standardisation.	
	Unit 2: Titrimetric Analysis	8
	i. Standardisation and estimation of Chloride using	
	precipitation titration (Mohr's method)	
	ii. Analysis of commercial caustic soda by neutralisation	
	titrimetric method	
	iii. Determination of sulphates by complexometric titrations	
	using EDTA.	
	Unit 3: Flame Spectrophotometry and AES/AAS/ICP	10
	Spectroscopy	
	i. Estimation of Na and K in food supplements or cosmetic	
	products using flame photometer.	
	ii. Estimation of chromium in water sample by AES/AAS/ICP.	
	iii. Estimation of nickel, molybdenum in Hastelloy C-22 using	
	AES/AAS/ICP.	
	Unit 4: Natural product isolation and Ion Exchange	9
	Chromatography	
	i. Isolation of cinnamaldehyde from cinnamon	
	II. Isolation of Catterne from tea powder	
	III. Separation and estimation of Cadmium and Zinc	
	Unit 5: UV-Visible Spectrophotometry and High-Pressure Liquid 10	
	Chromatography	
	1 I. Estimation of KNO ₃ and K ₂ Cr ₂ O ₇ using UV- Visible	

	spectroscopy	
	ii. Separation of Benzaldehyde and benzoic acid using reverse	
	phase HPLC.	
	iii. Quantification of naphthalene in a sample using reverse	
	phase HPLC.	
	Unit 6: Solvent Extraction and spectrophotometry	10
	i. Spectrophotometric determination of aspirin/phenacetin/	
	caffeine in APC tablet using solvent extraction	
	ii. Colorimetric determination of iron with salicylic acid.	
	iii. Determination of copper in brass sample by colorimetry.	
	Unit 7: Data Interpretation Exercises	4
	i. NMR/Mass spectra	
	ii. HPLC and GC chromatograph	
	iii. XRD powder pattern of cubic systems	
	iv. Thermogram of coordination compounds	
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-out or a	
	combination of some of these. Sessions shall be interactive in nature	to
	enable peer group learning.	
References /	1. J. H. Kennedy, Analytical Chemistry Principles, Saunders College	
Readings:	Publishing, 2 ¹¹⁴ Ed., 1990.	
	2. G. D. Christian, Analytical chemistry, 5 th Ed., John Willey and Son	s, 1994
	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B. Sivasankar	, Vogel's
	Textbook of Quantitative Chemical Analysis, 6 ¹¹ Ed., Pearson Edu	cation
	Asia 2009.	
	 J. Elias, Collection of interesting chemistry experiments, Universi 2002. 	ty press,
	5. R.A. Day & A.L. Underwood, Quantitative Analysis, 6 th Ed., Prenti	ce Hall,
	2001.	,
	6. J. Kenkel, Analytical Chemistry for Technicians, 3 rd Ed., Lewis pub	lishers,
	2002.	
Course	1. Students will be able to standardize a material to determine an unl	known
outcomes:	concentration.	
	2. Students will use statistical methods to analyse data in laboratory.	
	3. Students will be able to use different techniques for qualitative and	d
	quantitative estimation.	
	4. Students will be able to interpret TG/X-Ray/IR spectra.	

Course Code: CHI-500Title of the course: Fundamentals of Inorganic Chemistry

Number of Credits: 04

Prerequisit	Students should have studied chemistry courses at graduate level of	or must
es for the	have cleared change of discipline entrance test conducted by Goa Un	iversity
course:		
Course Objective:	 To introduce atomic structure, molecular structure, bonding, and symmetry. To provide fundamental knowledge of solid state chemistry, coordination chemistry, organometallic chemistry, and bioinorganic chemistry. To provide fundamental aspects of transition & inner transition elements & their compounds. To introduce air and water pollution, and its treatments, to follow directive of the Supreme Court in 1993 to introduce environmental education at all levels. 	
	1. Atomic structure, molecular structure and bonding	No of
	a. Atomic Structure: Structures of hydrogenic atoms: some	hours
Content	 principles of quantum mechanics, atomic orbitals. Many electron atoms: penetration & shielding, building up principle, classification of elements. Spectroscopic terms. Atomic properties: atomic radii, ionic radii, ionization energy, electron affinity, electronegativity, polarizability. b. Molecular Structure & bonding: Lewis structures: octet rule, resonance. VSEPR model: basic shapes, modification of the basic shapes. Valence bond theory: hydrogen molecule, homonuclear diatomic molecules, polyatomic molecules, promotion, hypervalence, hybridization. Molecular orbital theory: approximation, boding & antibonding orbitals. Homonuclear diatomic molecules & Heteronuclear diatomic 	10
	2. Molecular Symmetry	4
	 a. Symmetry elements and symmetry operations. b. Equivalent symmetry elements and equivalent atoms, symmetry point groups with examples, point groups of higher symmetry. c. Systematic procedure for symmetry classification of molecules and illustrative examples, dipole moment, optical activity and point groups 	
	3. Solid state chemistry	10
	a. Structures of solids: crystal structures, lattices and unit cells,	

fractional atomic coordinates and projections, close packing of	
spheres, holes in closed-packed structures.	
b. Structures of metals & alloys: polytypism, nonclosed-packed	
structures, polymorphism of metals, atomic radii of metals,	
allovs. substitutional and interstitial solid solutions.	
intermetallic compounds.	
c. Ionic solids: characteristic structures of ionic solids, binary	
nhases ternary nhases rationalization of structures ionic radii	
radius ratio structure mans energetics of ionic bonding lattice	
energy and the Born-Haber cycle. The calculation of lattice	
enthalpies (numerical expected)	
A Chamistry of transition 8 inner transition elements	10
4. Chemistry of transition & inner transition elements	10
a. Transition elements: IUPAC definition of transition elements,	
occurrence, physical and chemical properties, hobie character,	
metal halides, oxides & oxido complexes, examples of metal-	
metal bonded clusters, difference between 1° row and other	
two rows.	
b. Inner transition elements: Lanthanides, occurrence,	
properties, oxidation states, electronic structure, colour and	
spectra, magnetic properties, lanthanide contraction,	
compounds of lanthanides. Actinoid chemistry: general trends	
and properties, electronic spectra, thorium and uranium.	
5. Coordination and Organometallic Chemistry	12
a. Coordination chemistry: Introduction, representative ligands,	
nomenclature. Constitution and geometry: low coordination	
numbers, intermediate coordination numbers, higher	
coordination numbers, polymetallic compounds. Isomerism &	
chirality in square planar and octahedral complexes, ligand	
chirality. Thermodynamics of complex formation: formation	
constants, chelate and macrocyclic effects, steric effects and	
electron delocalization. Electronic properties of metal	
complexes: CFT applied to octahedral and tetrahedral	
complexes, magnetic moments, CFSE. Electronic spectroscopy:	
basic concepts, interpretation of spectra of d ¹ & d ⁹ ions (Orgel	
diagram for octahedral and tetrahedral complexes).	
b. Organometallic Chemistry: Introduction to organometallic	
chemistry, nomenclature, stability and inert gas rules (neutral	
atom and donor pair electron count methods). Ligands: CO &	
phosphines, homoleptic carbonyls its synthesis and properties,	
oxidation-reduction of carbonyls, metal carbonyl basicity,	
reactions of CO ligand, spectroscopic properties of metal	
carbonyls. Oxidative addition and reductive elimination.	
6. Basic Bioinorganic Chemistry	4
a Macronutrients/micronutrients Role of elements in hiology	

	Metal ion transport role.	
	b. Definition of metallobiomolecules, metalloporphyrins,	
	structure of porphine and heme group, examples of	
	metalloenzymes of Cu and Zn.	
	7. Environmental Chemistry	10
	a. Air Pollution: Classification of air pollutants and	
	photochemical reactions in the atmosphere. Common air	
	pollutants (e.g. CO, NOx, SO ₂ , hydrocarbons and particulates)	
	(a) sources (b) physiological and environmental effect (c)	
	monitoring, (d) various remedial & technological measures to	
	curb pollution. Air quality standards.	
	b. Water pollution: Importance of buffer & buffer index in	
	waste water treatments. Chemical, physical & biological	
	characteristics of water pollution, specific & non-specific	
	characterization of water. DO, BOD, COD, and chlorine demand,	
	typical water treatment & waste water treatment (Municipal).	
	Impact of plastic pollution and its effect.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignn	nents /
	presentations / self-study or a combination of some of these can	also be
	used. ICT mode should be preferred. Sessions should be interact	ctive in
	nature to enable peer group learning.	
References	1. P. W. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Sh	nriver &
/ Readings:	Atkins Inorganic Chemistry, 5 ^m Ed.; Oxford Publications, 2009.	
	2. J. E. Huheey, E. A. Kieter, R. L. Kieter, O. K. Medhi, Inorganic Che	emistry:
	Principles of Structure & Reactivity, 4 th Ed.; Pearson, 2011.	rd
	3. F. A. Cotton, G. Wilkinson, P. L. Gauss, Basic Inorganic Chemis	stry, 3 rd
	Ed.; Wiley, 2008 (reprint).	
	4. J. D. Lee, Concise Inorganic Chemistry, 5 th Ed.; Wiley, 2008.	
	5. F. A. Cotton, Chemical applications of group theory, 3 rd Ed.	; Wiley
	Eastern, 2012 (reprint).	
	6. L. Pauling, The Nature of The Chemical Bond, 3° Ed.; Cornell Ur	liversity
	7 M C Day I Selbin Theoretical Inorganic Chemistry 2 ^{ed} F	d•Van
	Nostrand-Reinhold 1969	a., van
	8. H. V. Keer, Principles of Solid state Chemistry, 1 st Ed.: New Age I	ntl. Ltd.
	1993. (reprint 2008).	,
	9. A. R. West, Solid State Chemistry and Its Applications, 1 st Ec	d.; John
	Wiley & Sons, Singapore, 1984 (reprint 2007).	,
	10. D. K. Chakrabarty, Solid State Chemistry, 2 ^{ed} Ed.; New A	ge Intl.
	Publishers, 2010.	-
	11. F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 3 rd Ed	.; Wiley
	Eastern, 2001.	2
	12. A. V. Salker, Environmental Chemistry: Pollution and Re	emedial
	Perspective, 1 st Ed.; Narosa Publication, 2017.	

	13. A.K. De, Environmental Chemistry, 3 rd Ed.; New Age Intl. Publishers,
	2005.
	14. A. C. Stern, R. W. Boubel, D. Bruce turner, D. L. Fox, Fundamentals of
	Air Pollution, 1 st Ed.; Academic Press, 1984.
	15. R. A. Horne, Chemistry of Our Environment, 1 st Ed.; John Wiley, 1978.
	16. R. S. Drago, Physical Methods in Inorganic Chemistry, Affiliated East
	West Press Pvt. Ltd., 2017
	17. G. C. Miessler, D. A. Tarr, Inorganic Chemistry, 3 rd Ed.; Pearson, 2004
Course	1. Students will be able to predict geometry and shape of different
outcomes:	molecules, and the point group symbols.
	2. Students will be able to explain the fundamentals of atomic and
	molecular structure, solid state chemistry, coordination chemistry,
	organometallic chemistry, and bioinorganic chemistry.
	3. Students should be able to describe and explain the properties and
	usefulness of transition & inner transition metals.
	4. Students will able to explain different air and water pollutants and will
	be in a position to apply knowledge to treat these pollutants.

Course Code: CHI-521Title of the course: Practical course in Inorganic Chemistry-I

Number of Credits: 02

Prerequisites for the course:	Students should have studied chemistry practical courses at graduor must have cleared change of discipline entrance test conducte University.	uate level d by Goa
Course Objective:	 Students shall acquire skills in synthetic inorganic chemistry. Students will learn to prepare coordination compounds. Students will learn to prepare useful potash alum from scrap alu Students will learn how to grow single crystals. Students will acquire skills in determination of chromium, oxa aluminum by redox titrations. Students will be trained to fix the formula of compounds and fit water molecules by complexometric, redox & iodometric titration. Students shall acquire skills in determination of metal content low concentrations (ppm) using colorimetry / spectrophotometric 	uminum. late, and nd lattice ons. t at very trv.
Content	Minimum 13 experiments from the list shall be conducted.	No of
	1 Prenarations / Synthesis of Inorganic Compounds: (Any Five)	hours
	 Preparations / Synthesis of Inorganic Compounds: (Any Five) Preparation of hexaamminenickel(II) chloride. Preparation of Trisethylenediaminecobalt(III) chloride. Preparation of potassium trioxalatoaluminate trihydrate. Preparation of potassium hexathiocyanato-κN-chromate tetrahydrate. Preparation of potassium trioxalatochromate trihydrate. Preparation of potassium trioxalatochromate trihydrate. 	25
	 2. Estimations / Determinations: (Any Eight) Estimation of nickel in [Ni(NH₃)₆]Cl₂by complexometry or Gravimetry. Estimation of cobalt in [Co(en)₃]Cl₃ by complexometry. Estimation of oxalate in K₃[Al(C₂O₄)₃]·xH₂O or K₃[Cr(C₂O₄)₃]·xH₂O Estimation of nitrite by redox titration. Estimation of calcium from calcite ore. Iodometric determination of Copper in gun metal alloy/Devarda's alloy. Determination of chromium in chrome alum and K₃[Cr(C₂O₄)₃]·xH₂O and to determine degree of hydration. 	35

	chromium.
	ix. Estimation of manganese by colorimetric /
	spectrophotometry method.
Pedagogy	Students will be given pre-lab and post-lab assignments on theoretical
	aspects of laboratory experiments prior to the conduct of each
	experiment. Exams will be in the form of ISA, SEA which will involve
	performing given experiments and conduct of viva, systematic reporting of
	experiments, results and observations in laboratory report. Sessions
	should be interactive in nature to enable peer group learning.
References /	1. G. Brauer, Handbook of Preparative Inorganic Chemistry, Vol. 1
Readings	& 2, 1963.
	2. G. Pass & H. Sutcliffe, Practical Inorganic Chemistry, Preparations,
	Reactions and Instrumental Methods, 2 nd Ed.; Chapman & Hall,
	1974.
	3. S. De Meo, J. Chem. Ed., Vol 80, Pg.No.796-798, 2003.
	4. W. L. JOIIY, The Synthesis & Characterization of Inorganic Compounds, Prontice-Hall INC 1970
	5. A. J. Elias. General Chemistry Experiments. Revised Ed.: University
	Press, 2008.
	6. J. Mendham, R.C. Denney, J.D. Barnes, M.J. K. Thomas, Vogel's Text
	Book of Quantitative Chemical Analysis,6 th Ed.; Pearson, 2002.
	7. G. Svehla, Vogel's Text Book of Qualitative Inorganic Analysis, 7 th Ed,
	Pearson, 2011.
	8. G. Marr, B. W. Rockett, Practical Inorganic Chemistry, Van Nostrnad
	Reinhold London, 1972.
Course	1. Students will be in a position to synthesis coordination compounds with
outcomes:	different metals and ligands.
	2. Students will be able to grow single crystal.
	3. Students will be able to prepare potash alum compound from waste
	scrap Al source.
	4. Students will be able to determine metal content in the synthesised
	inorganic compounds.
	5. Students will be able to fix the formula of compounds.
	6. Students will be able to use and explain the diverse methods available
	for estimation of the metals including colorimeters and spectrometers.

Course Code: CHI-522Title of the course: Practical course in Inorganic Chemistry-II

Number of Credits: 02

Prerequisit	Students should have studied chemistry practical courses at gradua	te level
es for the	or must have cleared change of discipline entrance test conducted	by Goa
course:	University.	
Course	1. Students shall acquire skills in synthetic inorganic chemistry.	
Objective:	2. Students will learn to prepare coordination compounds.	
	3. Students will learn how to grow single crystals.	
	4. Students will acquire skills in determination of metal pre-	sent by
	gravimetric and titrimetric method.	
	5. Students shall acquire skills in determining the metal content	at very
	low concentrations (ppm) using colorimetry / spectrophotometry	•
Content	Minimum 13 experiments from the list shall be conducted.	No of
		hours
	1. Preparations / Estimation of Inorganic Compounds: (Any Nine)	
	i. Preparation of hexaamminecobalt(III) nitrate.	40
	ii. Estimation of cobalt in hexaamminecobalt(III) nitrate by	
	volumetric titration.	
	iii. Preparation of Potassium Trioxalatoferrate(III) Trihydrate	
	iv. Estimation of iron and oxalate by redox titration	
	v. Synthesis of metal nanoparticles (Cu, Ag, Au, Ni) and	
	determining the absorption maxima by UV-visible	
	spectrophotometer.	
	vi. Estimation of amount of calcium in given sample by	
	gravimetric method.	
	vii. Estimation of amount of nickel in given sample by gravimetric method.	
	viii. Estimation amount of zinc present in given sample by	
	gravimetric method.	
	ix. Estimation of iron by colorimetric / spectrophotometry	
	method.	
	x. Estimation of barium by complexometric titration method.	
	xi. Estimation of manganese in presence of iron by	
	complexometric titration method.	
	2. Semi-micro qualitative analysis of cation and anion in a given	
	inorganic mixture: (Any four mixture)	
	Mixture containing total six cations and/or anions.	20
	Cations : $Pb^{2^{+}}$, $Cu^{2^{+}}$, $Cd^{2^{+}}$, $Sn^{2^{+}}$, $Fe^{2^{+}}$, $Fe^{3^{+}}$, $Al^{3^{+}}$, $Cr^{3^{+}}$, $Zn^{2^{+}}$,	

	<u> </u>	
	Mn^{-1} , Ni^{-1} , Co^{-1} , Ba^{-1} , Sr^{-1} , Ca^{-1} , Mg^{-1} , $(NH_4)^{-1}$, K^{-1}	
	Anions: Cl ⁻ , Br ⁻ , l ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , SO ₃ ⁻²⁻ , CO ₃ ⁻²⁻ , SO ₄ ⁻²⁻ , PO ₄ ⁻³⁻ , S ²⁻	
Pedagogy	Students will be given pre-lab and post-lab assignments on theoretical	
	aspects of laboratory experiments prior to the conduct of each experiment.	
	Exams will be in the form of ISA, SEA which will involve performing given	
	experiments and conduct of viva, systematic reporting of experiments,	
	results and observations in laboratory report. Sessions should be interactive	
	in nature to enable peer group learning.	
References	1. G. Brauer, Handbook of Preparative Inorganic Chemistry,	
/ Readings	Vol. 1 & 2, 1963.	
	2. G. Pass & H. Sutcliffe, Practical Inorganic Chemistry, Preparations,	
	Reactions and Instrumental Methods, 2 nd Ed.; Chapman & Hall,	
	1974.	
	3. S. De Meo, J. Chem. Ed., Vol 80, Pg.No.796-798, 2003.	
	4. W. L. Jolly, The Synthesis & Characterization of Inorganic	
	Compounds, Prentice-Hall, INC, 1970.	
	5. A. J. Elias, General Chemistry Experiments, Revised Ed.; University Press 2008	
	6. I. Mendham, R.C. Denney, J.D. Barnes, M.J. K. Thomas, Vogel's	
	Text Book of Quantitative Chemical Analysis 6 th Ed.: Pearson	
	2002.	
	7. G. Svehla, Vogel's Text Book of Qualitative Inorganic Analysis, 7 th	
	Ed. Pearson. 2011.	
	8. G. Marr & B. W. Rockett, Practical Inorganic Chemistry, Van Nostrand	
	Reinhold Company, London, 1972.	
Course	1. Students will be in a position to synthesize coordination compounds	
outcomes:	with different metals and ligands.	
	2. Students will be able to grow single crystal.	
	3. Students will be able to determine metal content in the given sample.	
	4. Students will be in position to apply diverse methods available for	
	estimation of the metals and can use colorimeters and	
	spectrometers.	
	5. Students will able to detect cations and anions in the given salt.	

Course Code: CHO-500 Title of the course: Fundamentals of Organic Chemistry

Number of Credits: 04

Prerequisites	Students should have studied chemistry courses at graduate level have cleared change of discipline entrance test conducted l	or must by Goa
for the course.	University.	
Course	1. To study the various concepts based on molecular orbital theory.	
Objective:	2. To understand the concepts of topicity, prostereoisomerism and	
	chemo-, regio- and stereoselectivity in organic reactions.	
	3. To understand the mechanistic aspects of various type of reactio	ns in
	organic synthesis.	
Content	1.Molecular orbitals and delocalized chemical bonding	No of
	a. Qualitative description of molecular orbitals of simple acyclic	hours
	and monocyclic systems, frontier molecular orbitals.	
	b.Conjugation, cross conjugation, resonance, hyperconjugation	08
	and tautomerism (types and examples).	
	c. Aromaticity: Origin of Huckel's rule, examples of aromatic,	
	non-aromatic and antiaromatic compounds; concept of wobius	
	2 Structure & Reactivity	08
	a Acidity basicity and pKa of organic compounds. Acid and	00
	hase strengths.	
	HSAB concept & Factors affecting it, effect of structure &	
	medium on acid and base strength.	
	b. Concept of superacids and superbases.	
	c. Electrophilicity&nucleophilicity, examples of ambident	
	nucleophiles & electrophiles. (Including revision of aromatic	
	electrophilic and nucleophilic substitution)	
	3. Stereochemistry	14
	a. Brief revision of configurational nomenclature: R & S; D & L; E	
	& Z; cis & trans and syn & anti nomenclature. Chirality in	
	molecules with two and more chiral centres.	
	b. Conformational analysis of open chain compounds (Butane,	
	2, 3-butane diol, 2,3-dibromobutane etc.). <i>Erythro</i> and	
	threonomenclature.	
	c. Topicity and Prostereoisomerism: Topicity of ligands and	
	taces-homotopic, enantiotopic and Cram's rule /diastereotopic	
	ligands and faces.	
	d. Introduction to chemoselective, regioselective and	

stereoselective reactions. e. Stereochemistry of <i>cis</i> - and <i>trans</i> -decalins, conformation and reactivity of cyclohexane and substituted cyclohexanes, cyclohexene / cyclohexanone. conformational isomerism and analysis in acyclic and simple cyclic systems –substituted ethanes, cyclopentane, cyclohexane cycloheptane, cyclooctane and decalins, f. optical isomerism - optical activity - molecular dissymmetry and chirality - elements of symmetry. optical isomerism in biphenyls, allenes and spirans - optical isomerism of nitrogenous compounds racemisation and resolution.	
 4.Reaction Mechanism a. Brief revision of carbocations, carbanions, free radicals, carbenes, Arynes and nitrenes with reference to generation, structure, stability and reactivity; b. Types of mechanisms, types of reactions, thermodynamic and kinetic control. c. The Hammond postulate and principle of microscopic reversibility, d. Methods of determining reaction mechanisms like- i. Identification of products, ii. Determination of the presence of intermediates (isolation, detection, trappingandaddition of suspected intermediate, iii. Isotopic labelling, iv. Stereochemical evidence, v. Kinetic evidence and vi. Isotope effect (at least two reactions to exemplify each method be studied) 	08
 5.Aliphatic Nucleophilic substitution a. Brief revision of nucleophilic substitutions with respect to Mechanism, various factors affecting such reactions; b. The Neighbouring Group Participation (NGP)/ Anchimeric assistance: General approach to various NGP processes; NGP by unshared/lone pair of electrons; NGP by π-electrons; NGP by aromatic rings (formation of phenonium ion intermediate); NGP by sigma bonds with special reference to bornyl and norbornyl system (formation of nonclassical carbocation) 	08
 6.Elimination reactions a. The E2, E1 and E1cB mechanisms. Orientation of the double bond, Saytzeff and Hofmann rule. b. Effects of changes in the substrate, base, leaving group and medium on 	08

	i. Overall reactivity,	
	ii. E1 vs. E2 vs. E1cB	
	iii. Elimination vs substitution, Mechanism and orientation in	
	pyrolytic syn elimination (various examples involving cyclic and	
	acyclic substrates to be studied).	
	7. Selective reagents for Organic transformation	06
	a. Oxidation of organic compounds, PCC, PDC and MnO ₂ ,	
	ozonolysis, peracids.	
	b. Reduction of organic compounds: NaBH ₄ , LAH, DIBAL	
	reduction and reduction with borane and dialkylboranes.	
	Clemmensen reduction, Birch reduction and Wolff-Kishner	
	reduction	
Pedagogy	Mainly lectures and tutorials. Semina	rs/term
	papers/assignments/presentations/ self-study or a combination of	of some
	of these can also be used. ICT mode should be preferred. Sessions	should
	be interactive in nature to enable peer group learning.	
References /	1. W. Caruthers, I. Coldham, Modern Methods of Organic Sy	nthesis,
Readings	Cambridge University Press, 4 th Ed., 2016.	
	2. M. B. Smith, Organic Synthesis, McGraw–HILL, New York, Interr	national
	Edition, 1994.	
	3. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Che	emistry,
	Oxford University Press, 2 nd Ed., 2012.	
	4. R. Bruckner, Advanced Organic Chemistry – Reaction Mechanis	ms, San
	Diego, CA: Harcourt /Academic Press, San Diego, 2002.	
	5. J. Fuhrhop, G. Penxlin, Organic Synthesis – Concepts, M	ethods,
	Starting Materials, VCH Publishers Inc., New York, 1994.	
	6. H. O. House, Modern Synthetic Reactions, W. A. Be	njamin,
	2 nd Ed.,1965	
	7. M. Nogradi, Stereoselective Synthesis, VCH Publishers, Inc.,	Revised
	and Enlarged Edition, 1994.	
	8. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Spring	er India
	Private Limited, 5 th Ed, 2007.	
	9. T. Laue, A. Plagens, Named Organic Reactions, John Wiley an	d Sons,
	Inc., 2005.	
Course	1. Students will be in a position to evaluate the effect of delocalizat	ion of
outcomes:	electrons & presence or absence of aromaticity in organic compour	ıds.
	2. Students will be able to apply various concepts in stereochemistr	y to
	understand stereochemical outcome in a reaction.	
	3. Students shall be in a position to understand/propose plausible	
	mechanism of organic reactions.	
	4. Students will understand and apply various reagents for desired	organic
	transformations.	

Course Code: CHO-521 Title of the course: Practical Course in Organic Chemistry-I

Number of Credits: 02

Prerequisites	Students should have studied chemistry practical courses at gradua	ate level
for the	or must have cleared change of discipline entrance test conducted	by Goa
course	University.	
Course	To translate certain theoretical concepts learnt earlier into expen	rimental
Objective:	knowledge by providing hands on experience of basic lab	poratory
	techniques required for organic syntheses.	
Content	Minimum 13 experiments from the list shall be conducted.	No of
		hours
	1. Introduction to laboratory equipments, apparatus and safety	
	a. Use of common laboratory equipments like fume hoods,	04
	vacuum pumps, weighing balance etc. to be explained to the	
	students.	
	b. Introduction to various types of quick fit joints and apparatus	
	to the students.	
	c. Discussion of Safety Techniques:	
	i Disposal of chemicals	
	ii Usage of protective equipment's	
	iii First aid	
	iv Fire extinguishers, types of fire	
	v Hazards of chemicals and risk assessment	
	2. Laboratory Techniques	24
	a. Simple distillation (any one):	
	i. Toluene-dichloromethane mixture using water condenser.	
	ii. Nitrobenzene and aniline using air condenser.	
	b. Steam distillation (anyone):	
	i. Separation of <i>o</i> - and <i>p</i> - nitrophenols.	
	ii. Naphthalene from its suspension in water,	
	iii. Clove oil from cloves.	
	c. Crystallisation: Concept of induction of crystallization (any one)	
	i. Crystallisation of phthalic acid from hot water using fluted filter	
	paper and stemless funnel.	
	ii. Acetanilide from boiling water	
	iii. Naphthalene from ethanol.	
	iv. Decolorisation and crystallization of brown sugar (sucrose)	
	with animal charcoal using gravity filtration.	
	d. Sublimation: Simple or vacuum sublimation of camphor,	
	naphthalene, anthracene or succinic acid (any one).	
	e. Vacuum distillation (any one): o-dichlorobenzene, diphenyl	

	ether. Also use of nomograph should be explained.	
	f. Thin layer Chromatography (any one):	
	i. Separation of <i>o</i> and <i>p</i> -nitroanilines.	
	ii. Separation of analgesic drugs	
	iii. Separation of <i>o</i> and <i>p</i> -nitrophenols,	
	3. Organic synthesis (Any Seven experiments)	24
	a. Aliphatic electrophilic substitution: Preparation of iodoform	
	from ethanol & acetone.	
	b. Aromatic electrophilic substitution (anyone):	
	i. Preparation of <i>p</i> -bromoacetanilide.	
	ii. Bromination of acetophenone to phenacyl bromide	
	iii. Nitration of napththalene to 1-nitronaphthalene	
	iv. Nitration of benzaldehyde to 3-nitrobenzaldehdye.	
	c. Oxidation (any one)	
	i. Benzoic acid from toluene.	
	ii. Cyclohexanone from cyclohexanol.	
	iii Isoborneol to camphor using Jones reagent.	
	d. Reduction (any one)	
	i. Reduction of o-nitroaniline to o-phenylenediamine using Sn/HCl	
	ii. Reduction of <i>p</i> -nitro benzaldehyde to <i>p</i> -nitrobenzyl alcohol	
	using NaBH ₄ .	
	e. Bromination of an alcohol using CBr ₄ / triphenylphosphine.	
	f. Grignard reaction: Triphenylmethanol from benzoic acid ester	
	or benzophenone.	
	g. Aldol condensation: Dibenzal acetone from benzaldehyde	
	h. Acetoacetic ester condensation: Preparation of ethyl n-	
	butylacetoacetate or ethyl acetoacetate.	
	i. Cannizzaro reaction using 4-chlorobenzaldehyde as substrate.	
	j. Friedel Craft's reaction (any one):	
	i. using toluene and succinic anhydride	
	ii. Resorcinol to resacetophenone, benzene and maleic anhydride	
	to <i>β</i> -benzoylacrylic acid	
	k. Solvent free preparation of coumarin by the Knoevenagel	
	condensation under MW irradiation.	
	I. Preparation of oxidizing agent (any one): Pyridinium	
	chlorochromate-silica, pyridinium chlorochromate-alumina,	
	MnO ₂ .	
	m. Preparation of cuprous chloride.	
	4. Isolation from natural sources (Any two)	8
	i. Caffeine from tea powder.	
	ii. Piperine from pepper.	
	iii. Cinnamaldehyde from cinnamon	
	iv. Lemongrass oil from lemongrass	
Pedagogy:	Students should be given suitable pre- and post-lab assignments	

	and explanation revising the theoretical aspects of laboratory
	experiments prior to the conduct of each experiment. Each of the
	experiments should be done individually by the students.
References /	1. A.I. Vogel, A., R. Tatchell, B. S. Furniss, A.J. Hannaford, Vogel's
Readings	Textbook of Practical Organic Chemistry, 5 th Ed., Prentice Hall;
	2011.
	2. D. Pasto, C. Johnson and M. Miller, Experiments and
	Techniques in Organic Chemistry, 1 st Ed., Prentice Hall, 1991.
	3. L.F. Fieser, K.L. Williamson, Organic Experiments, 7 th edition D.
	C. Heath, 1992.
	4. K.L. Williamson, K.M. Masters, Macroscale and Microscale
	Organic Experiments, 6 th Edition, Cengage Learning, 2010
	5. R.K. Bansal, Laboratory Manual in Organic Chemistry, New Age
	International, 5 th Edition, 2016.
	6. S. Delvin, Green Chemistry, Sarup& Sons, 2005.
	7. O.R. Rodig, C.E. Bell Jr. and A.K. Clark, Organic Chemistry
	Laboratory Standard and Microscale Experiments, Saunders
	College Publishing, 3 rd edition, 2009.
	8. J. Mohan, Organic Analytical Chemistry, Narosa Publishing
	House, 2014.
Course	1. Students will be in a position to understand stoichiometric requirements
outcomes	during organic syntheses.
	2. Students will be in a position to understand Safe and good laboratory
	practices, handling laboratory glassware, equipment and chemical
	reagents.
	3. Students will be in a position to apply the practical knowledge to
	perform
	experiments involving common laboratory techniques like reflux,
	distillation, steam distillation, vacuum distillation, aqueous extraction,
	thin layer chromatography (TLC) etc.
	4. Students will get hands-on experience on isolation of some important
	natural products.

Course Code: CHO-522 Title of the course: Practical Course in Organic Chemistry-II

Number of Credits: 02

Prerequisites	Students should have studied chemistry practical courses at graduate level	
for the	or must have cleared change of discipline entrance test conducted by Goa	
course	University.	
Course	To translate certain theoretical concepts learnt earlier into experi	mental
Objective:	knowledge by providing hands on experience of basic laboratory	
	techniques required for organic syntheses.	
Content	Minimum 13 experiments from the list shall be conducted.	No of
	1. Introduction to laboratory equipments, apparatus and	hours
	safety	
	a. Common Hazards in Chemical Laboratory, Risk assessment	04
	b. Accidents and Emergency procedures	
	2. Laboratory Techniques (Any Two)	08
	a. Simple distillation	
	i. Simple distillation of thionyl chloride under anhydrous	
	condition	
	ii. Simple distillation under Nitrogen atmosphere	
	b. Fractional distillation	
	i. Chloroform-dichloromethane mixture using water	
	condenser.	
	ii. Toluene and cyclohexane by fractionating column.	
	c. Vacuum distillation under inert atmosphere	
	Dry Distillation of DMF, o-dichlorobenzene, POCl ₃	
	d. Thin layer Chromatography	
	i. Purification and isolation of mixture of acids by using	
	Preparative TLC.	
	ii. Purification and isolation of mixture of phenols by using	
	Preparative TLC.	
	iii. Purification and isolation of pharmaceutical drugs using	
	Preparative TLC.	
	3. Organic Synthesis (Any Four)	16
	a. <i>p</i> -lodonitrobenzene by Sandmeyer reaction	
	b. Pinacol- Pinacolone rearrangement	
	c. Hydrogenation of Maleic acid (Hydrogen balloon)	
	d. Preparation of nitrostyrene from aldehyde	
	e. Preparation of $lpha,eta$ -dibromocinnamic acid	
	f. Reduction of nitro compounds	
	g. Synthesis of Urea from ammonium cyanate	

	4. Solvent Free Organic synthesis (Any Two)	08
	a. Reduction using ball milling technique	
	b. Oxidation of 2° alcohol using KMnO ₄ /Alumina by grinding	
	technique.	
	c. Synthesis of (±)-Binol from β -naphthol	
	d. Hunsdiecker reaction of cinnamic acid derivatives	
	e. Beckmann rearrangement of oxime derivatives	
	5. Two-step Organic Synthesis (Any Two)	16
	a. Benzamide-Benzoic acid-Ethyl Benzoate	
	b. Phthalic anhydride – Phthalimide – Anthranilic acid.	
	c. Methyl benzoate- <i>m</i> -nitrobenzoate- <i>m</i> -nitrobenzoic acid	
	d. Chlorobenzene – 2, 4 – dinitrochlorobenzene – 2,4-	
	dinitrophenol	
	e. Acetanilide – <i>p</i> –Bromo acetanilide – <i>p</i> –Bromoaniline	
	f. Acetophenone – Oxime – Acetanilide	
	6. Separation, Isolation and Identification of Organic	08
	compounds (Any One)	
	a. Separation, purification and identification of compounds	
	of binary mixture (Solid-Solid, Solid-liquid and Liquid-liquid)	
	using the TLC and column chromatography, chemical tests.	
	IR spectra to be used for functional group identification.	
Pedagogy	Students should be given suitable pre- and post-lab assignments a	ind
	explanation revising the theoretical aspects of laboratory experim	ents
	prior to the conduct of each experiment.	
References	1. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's	Textbook
/ Readings	of Practical Organic Chemistry, 5 th Ed., Prentice Hall; 2011.	
	2. K. Tanaka, Solvent-free Organic Synthesis, Wiley-VCH, 2 th Ed., 2	009
	3. L. F. Fleser, K. L. Williamson "Organic Experiments" / edit	ION D. C.
	Health, 1992.	Organia
	4. K. L. Williamson, K. W. Wasters, Macroscale and Microscale	Organic
	5 P. K. Bansal, Laboratory, Manual in Organic Chomistry, N	
	International 5 th Edition 2016	vew Age
	6 S Delvin Green Chemistry Sarun& Sons 2005	
	7 O B Rodig C F Bell Ir A K Clark Organic Chemistry La	horatory
	Standard and Microscale Experiments, Saunders College Pi	ublishing.
	3 rd edition, 2009.	
	8. J. Mohan, Organic Analytical Chemistry. Narosa Publishing Hous	se, 2014.
Course	1. Students will be in a position to adopt Safe and good la	boratorv
outcomes	practices, handling laboratory glassware, equipment and	chemical
	reagents.	
	2. Students will be in a position to understand and calculate stoic	niometric
	requirements during organic syntheses.	

3. Students will be in a position to perform common laboratory techniques
including reflux, distillation, vacuum distillation, aqueous extraction, thin
layer chromatography (TLC).
4. Students will get hands-on experience on isolation of some important
natural products.

Course Code: CHP-500 Title of the course: General Physical Chemistry

Number of Credits: 04

Prerequisites	Students should have studied chemistry courses at graduate level	or must
for the	have cleared change of discipline entrance test conducted by Goa Uni	versity.
course:		
Course	1. Introduction of various concepts on thermodynamics.	
Objective:	2. Introduction of electro chemistry and kinetics.	
	3. Learning quantum chemistry.	N C
Content	1. Mathematical Preparations	NO OT
	a. Introduction to various functions and function plotting	hours
	(exponential, logarithmic, trigonometric etc.), functions of many	12
	variables. Complex numbers and complex functions.	12
	b. Linear equations, vectors, matrices and determinants.	
	c. Basic rules of differentiation and integration, Partial	
	differentiation, location and characterization of critical points of	
	a function, Regression methods, curve fitting.	
	a. Introduction to series, convergence and divergence, power	
	series, Fourier series	
	e. Probability (permutations and combinations).	
	2. Quantum Chemistry	20
	a. Operators, Functions, Eigen value equations, Postulates.	
	b. Schrödinger equation, application to simple system viz. free	
	particle, particle in one dimensional, two dimensional and three-	
	dimensional box (quantization, separation of variables,	
	degenerate wave functions).	
	c. Hydrogen like atoms, Schrödinger equation and its solutions,	
	atomic orbital wave functions and interpretation.	
	d. Huckel MO theory, Secular equations, Secular determinant,	
	delocalization energy, charge density, π -bond order, free	
	valence, applications to C_2H_4 , C_3H_5 (radical), C_4H_6 , C_4H_4 , C_6H_6 ,	
		12
	3. Inermodynamics	12
	a. mermodynamic properties: Gas laws, Keal gasses, Boyle	
	Interpretature, Critical temperature, State and path properties.	
	differentiale Internal operation on the law entropy free energy and	
	their relations and significances. Manually relations	
	Thermodynamic equations of state	
	h louis Themson offect, louis Themson coefficient for yer der	
	b. Joule-Inomson effect. Joule-Inomson coefficient for van der	

Waals' gas. Joule-Thomson effect and production of low	
temperature, adiabatic demagnetization, Joule-Thompson	
coefficient, inversion temperature.	
c. The third law of thermodynamics. Need for the third law.	
Apparent exceptions to third law. Application of third law. Use	
of thermodynamic functions in predicting direction of chemical	
change. Entropy and third law of thermodynamics.	
d. Phase equilibria: Phase rule. Discussion of two component	
systems forming solid solutions with and without maximum or	
minimum in freezing point curve. Systems with partially miscible	
solid phases.	
e. Three component systems: Graphical representation. Three	
component liquid systems with one pair of partially miscible	
liquids Influence of temperature Systems with two pairs and	
three pairs of partially miscible liquids. The role of added salts	
4 Electrochemistry	<u>8</u>
a EME series. The cell notential: The Nernst equation. Cells at	0
equilibrium Determination of thermodynamic functions	
h Decomposition notential and overvoltage electronegativity	
hasic principles completeness of deposition. Separation with	
controlled notentials constant current electrolysis composition	
of electrolyte potential buffers, physical characteristics of metal	
denosits	
c Electroniating and electroless niating electrosynthesis	
d Concents of acid-base aqueous and non-aqueous solvents	
bard and soft acid base concept and applications	
5 Chemical Kinetics	Q
a General introduction to various types of order of reaction	0
a. General inforduction to various types of order of reaction including fractional order. Molecularity of the reaction	
h Introduction to reversible and irreversible reactions and	
b. Incloduction to reversible and inteversible reactions and	
analysis of Cibbs free energy of equilibrium reactions	
analysis of Gibbs free energy of equilibrium reactions.	
c. Comsion meory and Maxwell Boltzmann distribution of	
energies of colliginal grass section and repetite grass section and	
its significance	
its significance.	
d. Comparative study of transition state and collision state theory	
(derivation not required).	
e. Reaction intechanisms: elementary reactions, consecutive	
elementary reactions, steady state approximation, the rate	
determining step and pre-equilibria	
T. Free radical reactions, Complex reactions such as acetaldehyde	
decomposition and reaction between H_2 and Br_2 , Homogeneous	
reactions and acid-base catalysis.	

	g. Elementary enzyme reactions. Lineweaver-Burk plot and its analysis
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / presentations / self-study or a combination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning.
References /	1. P. W. Atkins and J. D. Paula, Physical Chemistry, 8 th Ed., Oxford University
Readings	Press, New Delhi. 2007
	2. G. M. Barrow, Physical Chemistry, 5 th Ed., Tata McGraw Hill, New Delhi. 2016
	3. J. E. House, Principles of Chemical Kinetics, 2 nd Ed., Academic Press, Elsevier Burlington, USA, 2007
	4. I. N. Levine, Quantum Chemistry, 7 th Ed., Prentice-Hall, New Delhi. 1999
Course outcomes:	1. Students should be in a position to understand and explain various concepts in physical chemistry.
	2. Students should be in a position to apply these concepts during the lab course in physical chemistry.
	3. Students will understand concepts of electrochemistry.
	4. Students will be able to apply fundamentals of chemical kinetics for
	understanding reaction mechanisms.

Course Code: CHP-521 Title of the course: Practical course in Physical Chemistry-I

Number of Credits: 02

Prerequisites	Students should have studied chemistry courses at graduate	level or
for the	must have cleared change of discipline entrance test conducte	d by Goa
course:	University.	
Course	1. To develop experimental skills on basic lab techniques in phys	ical
Objective:	chemistry	
	2. To acquire skills for data analysis and interpretation	
	3. To help the students to develop research skills	
Content	Minimum 13 Experiments to be performed per Semester	No of
	Non-instrumental Experiments (any 7)	hours
	1. To study the kinetics of hydrolysis of ethyl acetate and to	20
	determine a) Energy of activation b) Entropy of activation	50
	and c) Free energy change.	
	2. To determine the order of reaction between potassium	
	persulphate and potassium iodide by graphical, fractional	
	change and differential methods.	
	3 To study the three-component system such as acetic	
	acid chloroform: and water and obtain tio line	
	4. To determine the melecular unight of roluminal clockel	
	4. To determine the molecular weight of polyvinyl alcohol	
	by viscosity measurement.	
	5. To study the electro-kinetics of rapid reaction between	
	SO_4^2 and Γ in an aqueous solution.	
	6. To determine the buffer capacity of acidic buffer	
	solution.	
	7. To determine the partial molal volume of ethanol-water	
	mixture at a given temperature.	
	8. To measure energy content of various types of plastics	
	using bomb calorimetry	
	9. To determine number average molecular weight of a	
	polymer sample with an indirect titration method.	
	10. To investigate basic hydrolysis of ethyl acetate at four	
	different temperatures and find out energy of activation	
	Instrumental Experiments (any 6)	

	 To determine the degree of hydrolysis of salt of weak base and strong acid using conductometer. To determine the dissociation constants of a tribasic acid (Phosphoric acid obtain derivative plot to get equivalence point. To determine formal redox potential of Fe²⁺/Fe³⁺ and Ce³⁺/Ce⁴⁺ system obtain derivative plot to get equivalence point. To study spectrophotometric titration of ferrous ammonium sulphate with potassium permanganate (or dichromate vs permanganate) To determine the zeta potential of colloidal system and investigate the effect of different surfactants on stability of the colloids To verify the Kohlrausch's law for weak electrolyte by conductometry To determine the transport numbers of Cu²⁺ and SO₄²⁻ 	30
	ions in CuSO ₄ solution by Hittorf's method.	
Pedagogy	Mainly pre-laboratory exercises Seminars / term papers /assign presentations / lab hand-out /self-study or a combination of these can also be used. ICT mode should be preferred. Session be interactive in nature to enable peer group learning.	ments / some of s should
References /	1. A. Finlay & J.A. Kitchener, Practical Physical Chemistry, Longm	ian.
Readings	2. F. Daniels & J.H. Mathews, Experimental Physical Chemistry,	
	3. A. M. James, Practical Physical Chemistry, Longman.	
	4. D.P. Shoemaker & C.W. Garland, Experimental Physical Chem	istry,
Course	1 Students will able to explain various fundamental lab technique	es
outcomes:	2. Students should be in a position to apply the knowledge for th	eir
	dissertation and research work.	
	3. Students will be able to use spectrophotometric titrat	ions for
	appropriate analysis.	
	4. Students will be able to determine molecular weight of	of some
	polymers.	

Course Code: CHP-522 Title of the course: Practical course in Physical Chemistry-II

Number of Credits: 02

for the course:have cleared change of discipline entrance test.Course1. To develop experimental skills on basic lab techniques in physical chemistryObjective:1. To develop experimental skills on basic lab techniques in physical chemistry2. To acquire skills for data analysis and interpretation 3. To help the students to develop research skillsNo of hoursContentMinimum 13 experiments to be conducted per Semester Non-instrumental Experiments (any 8)No of hours1. To determine the radius of a molecule by viscosity measurements.352. To determine ΔG , ΔH and ΔS of silver benzoate by solubility product method35	Prerequisites	Students should have studied chemistry courses at graduate level	or must
course:Course1. To develop experimental skills on basic lab techniques in physical chemistryObjective:chemistry2. To acquire skills for data analysis and interpretation 3. To help the students to develop research skillsContentMinimum 13 experiments to be conducted per Semester No of hoursNo of non-instrumental Experiments (any 8)No of hours1. To determine the radius of a molecule by viscosity measurements.352. To determine ΔG, ΔH and ΔS of silver benzoate by solubility product method40	for the	have cleared change of discipline entrance test.	
Course Objective:1. To develop experimental skills on basic lab techniques in physical chemistry 2. To acquire skills for data analysis and interpretation 3. To help the students to develop research skillsContentMinimum 13 experiments to be conducted per Semester No of hoursNo of hoursI. To determine the radius of a molecule by viscosity measurements.352. To determine ΔG, ΔH and ΔS of silver benzoate by solubility product method41	course:		
Objective:chemistry2. To acquire skills for data analysis and interpretation 3. To help the students to develop research skillsContentMinimum 13 experiments to be conducted per Semester No of hoursNo of hoursNo of a molecule by viscosity measurements.1. To determine the radius of a molecule by viscosity measurements.352. To determine ΔG , ΔH and ΔS of silver benzoate by solubility product method4	Course	1. To develop experimental skills on basic lab techniques in physica	al
2. To acquire skills for data analysis and interpretation 3. To help the students to develop research skillsContentMinimum 13 experiments to be conducted per Semester No of hoursNo of Non-instrumental Experiments (any 8)No of hours1. To determine the radius of a molecule by viscosity measurements.352. To determine ΔG , ΔH and ΔS of silver benzoate by solubility product method4	Objective:	chemistry	
3. To help the students to develop research skillsContentMinimum 13 experiments to be conducted per SemesterNo of hoursNon-instrumental Experiments (any 8)No of a molecule by viscosity measurements.352. To determine ΔG, ΔH and ΔS of silver benzoate by solubility product method35		2. To acquire skills for data analysis and interpretation	
ContentMinimum 13 experiments to be conducted per SemesterNo of hoursNon-instrumental Experiments (any 8)1. To determine the radius of a molecule by viscosity measurements.352. To determine ΔG, ΔH and ΔS of silver benzoate by solubility product method35		3. To help the students to develop research skills	
Non-instrumental Experiments (any 8)hours1. To determine the radius of a molecule by viscosity measurements.352. To determine ΔG, ΔH and ΔS of silver benzoate by solubility product method4	Content	Minimum 13 experiments to be conducted per Semester	No of
 To determine the radius of a molecule by viscosity measurements. To determine ΔG, ΔH and ΔS of silver benzoate by solubility product method 		Non-instrumental Experiments (any 8)	hours
 measurements. 2. To determine ΔG, ΔH and ΔS of silver benzoate by solubility product method 		1. To determine the radius of a molecule by viscosity	
2. To determine ΔG , ΔH and ΔS of silver benzoate by solubility product method		measurements.	35
product method		2. To determine ΔG , ΔH and ΔS of silver benzoate by solubility	
		product method	
3. To investigate the adsorption of oxalic acid by activated		3. To investigate the adsorption of oxalic acid by activated	
charcoal and test the validity of Freundlich and Langmuir's		charcoal and test the validity of Freundlich and Langmuir's	
isotherms.		isotherms.	
4. To determine the molecular weight of a given polymer by		4. To determine the molecular weight of a given polymer by	
turbidimetry		turbidimetry	
5. To study the rate of reaction between ethyl bromoacetate		5. To study the rate of reaction between ethyl bromoacetate	
and sodium thiosulphate kinetically.		and sodium thiosulphate kinetically.	
6. To determine the percentage composition of a given mixture		6. To determine the percentage composition of a given mixture	
of two liquids by stalagmometer method.		of two liquids by stalagmometer method.	
7. To study the kinetics of hydrolysis of methyl acetate and to		7. To study the kinetics of hydrolysis of methyl acetate and to	
determine a) Energy of activation b) Entropy of activation		determine a) Energy of activation b) Entropy of activation	
and c) Free energy change.		and c) Free energy change.	
8. To study the kinetics of the reaction between Potassium per		8. To study the kinetics of the reaction between Potassium per	
sulphate $(K_2S_2O_8)$, and Potassium iodide (KI), and to		sulphate ($K_2S_2O_8$), and Potassium iodide (KI), and to	
determine a) Energy of activation b) Entropy of activation		determine a) Energy of activation b) Entropy of activation	
and c) Free energy change.		and c) Free energy change.	
9. To determine the order of reaction for hydrolysis of ethyl		9. To determine the order of reaction for hydrolysis of ethyl	
acetate by graphical, fractional change and differential		acetate by graphical, fractional change and differential	
methods.		methods.	
10. To determine the molecular weight of polystyrene by		10. To determine the molecular weight of polystyrene by	

	viscosity measurement.	
	Instrumental Experiments (any 5)	
	11. To determine the relative strength of chloroacetic acid and	
	acetic acid by conductometry.	25
	12. To determine the degree of hydrolysis of salt of weak base	25
	and strong acid using conductometry.	
	13. To determine the composition of a mixture of acetic acid,	
	dichloroacetic acid and hydrochloric acid by conductometric	
	titration.	
	14. To determine the dissociation constants of monobasic acid	
	and dibasic acid and obtain derivative plot to get	
	equivalence point.	
	15. To determine the redox potential of Fe^{2+}/Fe^{3+} system by	
	titrating it with standard K ₂ Cr ₂ O ₇ solution.	
	16. To study the electrodeposition of metal.	
Pedagogy	Mainly pre-laboratory exercises Seminars / term papers /assign	ments /
	presentations / lab hand-out /self-study or a combination of a	some of
	these can also be used. ICT mode should be preferred. Sessions si	noula be
References /	1. A. Finlay & J.A. Kitchener, Practical Physical Chemistry, Longma	n.
Readings	2. F. Daniels & J.H. Mathews, Experimental Physical Chemistry, Lo	ngman.
	3. A. M. James, F. E. Prichard, Practical Physical Chemistry, Longm	an. trv
	McGraw-Hill.	u y,
Course	1. Students will gain knowledge of various fundamental lab technic	ques.
outcomes:	2. Students should be in a position to apply the knowledge for their	r
	dissertation and research work.	
	3. Students will be able to use spectrophotometric titrati	ons for
	4. Students will be able to determine molecular weight of some po	lymers

Course Code: CHI-501Title of the course: Chemistry of Coordination & Organometallic

Compounds

Number of Credits: 04

Prerequisites	Students should have studied Inorganic chemistry courses a	t M.Sc.
for the course:	Chemistry in semester I	
Course Objective:	 To make understand fundamentals of coordination organometallic chemistry. To gain the knowledge on structural aspects of compound To make understand bonding using various models. To correlate spectroscopic and magnetic properties with b models. To develop a skill of interpretation of magnetic and spectro properties. To understand fundamental concepts of inorganic che reaction mechanisms. To provide knowledge on applications of organom compounds in homogenous catalysis. 	and nds. onding oscopic mistry ietallic
Content:	1. Electronic structure of coordination compounds	No of
	Basic introduction to bonding theories:	hours
	a. Valence Bond theory & its utility, limitations of VBT.	12
	b. Crystal field theory and its uses in: i) Octahedral	
	compounds; II) tetranedral compounds; III) square-	
	planar compounds and other geometries; iv)	
	octabedral vs. tetrabedral: vi) Evidences showing	
	covalency to the M-L bonds	
	c. Molecular orbital theory (MOT): $\sigma \& \pi$ -bonding in	
	octahedral, tetrahedral, square planar compounds.	
	2. Spectra and magnetic studies of coordination	12
	compounds	
	a.(i) Electronic spectra of atoms, (ii) Electronic spectra of	
	complexes; Orgel diagrams, correlation diagrams, T-S	
	diagrams examples and problem solving, (iii) Charge-	
	transfer bands; (iv) Selection rules and intensities, (v)	
	Lummescence.	
	c. Magnetic studies: cooperative magneticm basic concents	
	of magnetic properties: diamagnetism, paramagnetism.	
ferromagnetism, antiferromagnetism, temperature		
--	----	
dependent magnetism. Curie Jaw. Curie Weiss Law: spin		
cross over phenomenon		
3 Inorganic reaction mechanisms	12	
a The thermodynamics of complex formation: Formation	12	
constants: Trends in successive formation constants: The		
cholate and macroscyclic offects: Storic offects and electron		
delegalization		
delocalization.		
D. Ligand substitution reactions and mechanisms:		
Rates of ligand substitution; The classification of		
mechanisms; Ligand substitution in square-planar		
complexes: The nucleophilicity of the entering group; The		
shape of the transition state. Ligand substitution in		
octahedral complexes: Rate laws and their interpretation;		
The activation of octahedral complexes; Base hydrolysis;		
Stereochemistry; Isomerization reactions.		
C. Redox reactions: The classification of redox reactions; The		
inner-sphere mechanism; The outer-sphere mechanism.		
d. Photochemical reactions: Prompt and delayed reactions; d–		
d and charge-transfer reactions; Transitions in metal-metal		
bonded systems.		
4. Organometallic chemistry of d-block elements	24	
a. Stable electron configurations; Electron count preference;		
Electron counting and oxidation states.		
b. Ligands: Carbon monoxide, Phosphines, Hydrides and		
dihydrogen complexes, η^1 -Alkyl, -alkenyl, -alkynyl, and -aryl		
ligands, η ² -Alkene and -alkyne ligands, Nonconjugated		
diene and polyene ligands, Butadiene, cyclobutadiene, and		
cyclooctatetraene, Benzene and other arenes, The allyl		
ligand, Cyclopentadiene and cycloheptatriene, Carbenes,		
Alkanes, agostic hydrogens, and noble gases, Dinitrogen		
and nitrogen monoxide.		
c. Compounds: <i>d</i> -Block carbonyls, Metallocenes, Metal–metal		
bonding and metal clusters.		
d. Reactions: Ligand substitution, Oxidative addition and		
reductive elimination, σ -Bond metathesis, 1,1-Migratory		
insertion reactions. 1.2-Insertions and B-hydride		
elimination. α β - and δ -Hydride eliminations and		
cyclometallations.		
e Catalysis: general concents, catalytic cycle for isomerization		
of nron-2-en-l-ol to nron-1-en-l-ol Alkene metathesis		
hydrogenation of alkanes hydroformulation Wasker		
ovidation of alkenes Asymmetric ovidations Palladium		
oxidation of alkenes, Asymmetric oxidations, Palladium		

	catalyzed C-C bond forming reactions methanol			
	carbonylation (Monsanto acetic acid process)			
Pedagogy:	Mainly lectures and tutorials Seminars / term papers /assignments /			
1 54450531	presentations / self-study or a combination of some of these can also be			
	used ICT mode should be preferred. Sessions should be interactive in			
	nature to enable neer group learning			
References /	1 P.W. Atkins, T. J. Overton, J. P. Rourke, M. T. Weller & F. A.			
Readings:	Armstrong 2010 Shriver & Atkins' Inorganic Chemistry 5 th Ed			
Reduings.	Oxford University Press 2010			
	2 E Hubber E A Keiter R Keiter Inorganic			
	Chemistry: Principles of structure and reactivity 4 th Ed : Pearson			
	2 L.D. Loo. Concise Inorganic Chemistry 5 th Ed. Chanman and Hall			
	A E A Cotton G Wilkinson & P. L. Gaus Basic Inorganic Chemistry			
	3 rd Ed : John Wiley 1995			
	5 E A Cotton & G Wilkinson Advanced Inorganic Chemistry 3 rd			
	Ed (1 th & 5 th Eds, preferred):Wiley Eastern, New-Delbi 1981			
	6 D Baneriee Coordination Chemistry 1 st Ed :Tata McGraw-Hill			
	New Delhi, 1994.			
	7 N N Greenwood & A Farnshaw Chemistry of the Elements			
	Pergamon Press Exeter 1984			
	8 G Rodgers Introduction to coordination solid state and			
	descriptiveInorganic chemistry 1 st Ed : McGraw-Hill 1994			
	9 R S Drago Physical Methods in Inorganic Chemistry Affiliated East			
	West Press Pvt 1td 2017			
	10 G C Miessler D A Tarr Inorganic Chemistry 3 rd Ed · Pearson 2004			
Course	1 Students will be able to understand the electronic structure of			
outcomes:	coordination and organometallic compounds.			
	2. Students will be well equipped with knowledge of CFT and MOT			
	3. Students will be in position to understand the magnetic and			
	electronic properties.			
	4. Students will be able to acquire skill on interpretation of			
	electronic and IR spectra of inorganic compounds			
	5. Students will be able understand concepts of inorganic reactions			
	& mechanisms.			
	6. Students will be aware of applications of organometallic			
	compounds in industrial processes.			

Course Code: CHI-502Title of the course: Chemistry of Materials

Number of Credits: 04

Prerequisites for the course:	Students should have studied Inorganic chemistry courses a Chemistry in semester I	t M.Sc.		
Course Objective:	 1.To provide information about different types of materials. 2.To provide knowledge about different types of synthesis. 3.To be familiar with different solid state properties of materials. 			
Content:	 Introduction to Materials Chemistry Basic knowledge about properties, structure and applications of materials. 	No of hours 1		
	2. Structure and bonding in solid materials Crystal lattice; unit cell; Miller indices and planes; X-Ray diffraction method; Molecular, Metallic, Covalent and Ionic solids, Hydrogen bonding; Structural classification of binary and tertiary compounds; Spinel and Perovskite structures	6		
	 3. Crystal defects & Non-stoichiometry in Solids a. Types of defects: Point defects, Dislocations: Line defects and Plane defects. b. Oxygen deficient oxides; Metal deficient oxides and classification of non-stoichiometry. 	6		
	 4. Materials preparation techniques a. Broad Classification of methods: Ceramic method, and Different wet chemical methods. b.Types of Materials: Powdered bulk materials, Single crystal and Thin films, Amorphous materials, and Nanomaterials. c. Preparation methods for different materials with their advantages and disadvantages: i. Powder materials: Co-precipitation method, Precursor method, Combustion method: Solid state and solution method, Precursor-combustion method, Sol-gel method, Spray roasting method, Freeze drying method. ii. Single crystals: (a) Growth from melt (b) from solution (c) using Flux method (d) Epitaxial growth of single crystal thin films: Using Chemical and Physical methods (e) Chemical vapour transport (f) Hydrothermal method (g) Dry high pressure method, electrochemical reduction method. 	16		

Nanomaterials: Synthesis, properties: structural, optical and magnetic and applications.	
5 Reactivity of Solid Materials	4
Tarnish reactions decomposition reaction solid-solid	
reactions addition reactions double decomposition reaction	
electron transfer reaction solid-gas reactions sintering	
factors influencing reactivity of solids	
6 Phase Transformations in Solids	6
Thermodynamic consideration Burgers classification	0
structural change in phase transformation Martensite	
transformation temperature and pressure induced	
transformations order-disorder transitions electronic	
transition transformation with a change in composition	
enantiotrony and monotrony. Ehrenfest's classification	
7 Electrical Properties	7
Flectrical conductivity free electron theory Fermi energy	,
insulators semiconductors and conductors hand theory of	
semiconductor Brilliouin zones Hall effect Peltier effect	
Seebeck effect photo conductivity and ionic conductivity	
Superconductivity BCS theory Meissner effect high	
temperature superconductor	
8 Semiconductor Devices	5
Diodes and transistors Junction field effect transistor and	
metal oxide semiconductor field effect transistor light meter	
nhotodiode nhototransistor solar cells light emitting diodes	
l aser materials	
9 Ontical and dielectric properties	1
Juminescence and phosphorescence piezoelectric	-
ferroelectric materials and applications thermal conductivity	
nhonon interaction, thermal expansion coefficient	
10 Magnetic properties	5
Introduction to magnetism behavior of substance in a	
magnetic field magnetic moments diamagnetism	
naramagnetism experimental determinations of	
suscentibility ferromagnetism anti-ferromagnetism and	
ferrimagnetism magnetization of ferromagnetic substance	
Pedagogy: Mainly lectures and tutorials Seminars / term naners /assign	nents /
presentations / self-study or a combination of some of these can	also be
used. ICT mode should be preferred. Sessions should be intera	ctive in
nature to enable peer group learning.	
References / 1. A.R. West, Solid State Chemistry and Its Applications 1 st F	d., John
Readings: Wiley & Sons. Singapore. 1984 (reprint 2007).	,
2 LV Approff Introduction to Colids 1 st Ed. Tata McCrow Li	

		(33 rd Reprint).
	3.	N. B. Hannay, Treatise on Solid State Chemistry Vol.4 Reactivity of
		Solids, 1 st Ed.; Plenum Press, 1976.
	4.	D. K. Chakraborty, Solid State Chemistry, 2 nd Ed.; New Age
		International Publisher, 2010.
	5.	H. V. Keer, Principles of the Solid State, 1 st Ed., New Age
		International (P) Ltd., (Wiley Eastern Ltd,), 1993, (Reprint 2008).
	6.	C. N. R. Rao & K. J. Rao, Phase Transitions in Solid, 1 st Ed.; McGraw
		Hill, 1977.
	7.	W. D. Callister, Materials Science and Engineering: An Introduction,
		7 th Ed.; John Wiley, 2007.
	8.	B. D. Fahlman, Materials Chemistry, 2 nd Ed.; Springer, 2011.
	9.	H. R. Allcock, Introduction to materials chemistry, 1 st Ed.; John Wiley
		& Sons, 2011.
	10.	C. N. R Rao & Gopalkrishnan, New directions in solid state
		chemistry, 2 nd Ed.; Cambridge University Press, 1997.
	11.	R. S. Drago, Physical Methods in Inorganic Chemistry, Affiliated East
		West Press Pvt. Ltd., 2017.
	12.	G. C. Miessler, D. A. Tarr, Inorganic Chemistry, 3 rd Ed.; Pearson,
		2004.
Course	1.	Students will be able to explain different methods of material
outcomes:		synthesis.
	2.	Students can explaineffect of size variations on solid state
		properties of materials.
	3.	Students can explain different types of defects and phase
		transformations in materials.
	4.	Students will be in position to describe magnetic, electrical,
		dielectric, optical, and semiconductor properties of materials.

Course Code: CHI-503 Title of the course: Concepts in Molecular Symmetry and Spectroscopy

Number of Credits: 04

Prerequisites for the course:	Students should have studied Inorganic chemistry courses at Chemistry in semester I	M.Sc.
Course	1. To train the students to understand the concepts of molecular syn	nmetry
Objective:	and their applications in chemistry	
	2. To train the students to understand different spectroscopic tech	nniques
	viz. magnetic resonance, vibrational & Mössbauer spectroscor	by with
	emphasis on spectral interpretation.	
Content	1. Molecular symmetry	No of
	a. Symmetry elements and symmetry operations, symmetry planes and symmetry reflections, inversion center, proper axes	hours
	and proper rotations, improper axis and improper rotations.	30
	b. Products of symmetry operations, equivalent symmetry	
	elements and equivalent atoms, relations among symmetry	
	elements and operations, symmetry elements and optical	
	isomerism, symmetry point groups, symmetries with multiple	
	high order axes, classes of symmetry operations, procedure	
	for symmetry classification of molecules.	
	c. Group and it's defining properties, order of the group,	
	examples of group, group multiplication table, cyclic group,	
	acyclic group, abelian group, non-abelian group. Sub groups,	
	classes, properties of conjugate elements.	
	d. Some properties of matrices and vectors, the great	
	orthogonality theorem, reducible and irreducible	
	characters character tables Pases for irreducible	
	representations direct product Symmetry Adapted Linear	
	Combinations and its applications Cage and cluster	
	compounds, metal sandwich compounds.	
	e. Crystal symmetry, space groups.	
	2. Spectroscopy	30
	a. Magnetic Resonance Spectroscopy; interaction between	
	electron spin and magnetic field, interaction between nuclear	
	spin and magnetic field, Resonance condition, instrumental	
	requirements,	
	b. Presentation of ESR (electron spin resonance) and NMR	
	(nuclear magnetic resonance) spectra, line widths of ESR and	

	NMR spectra, hyperfine coupling in isotropic systems (e.g. H
	atom, methyl radical etc.), anisotropic system, number of
	expected ESR signals for one electron paramagnetic species,
	zero field splitting and Kramer's degeneracy, Spin energy
	levels of octahedral Mn(II) complexes, nuclear quadrupole
	interaction, spin Hamiltonian, ESR spectra of some transition
	metal compounds, Electron delocalization, NMR spectral
	interpretation of a few nuclei like ¹⁹ F, ²⁹ Si, ³¹ P.
	c. Mössbauer spectroscopy; Mössbauer effect, Mössbauer
	principle. Recoilless emission and absorption spectral line
	widths. Doppler shift, experimental arrangement of
	Mössbauer spectroscopy, chemical shift (isomer shift).
	quadrupole splitting, magnetic hyperfine interaction.
	discussion of selected Mössbauer nuclei like ⁵⁷ Fe. ¹²⁹ I.
	d. Vibrational spectroscopy: Infrared spectroscopy and Raman
	spectroscopy, principle, their use in determination of
	molecular structure.
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /
	presentations / self-study or a combination of some of these can also be
	used. ICT mode should be preferred. Sessions should be interactive in
	nature to enable peer group learning.
References /	1. F. A. Cotton, Chemical Applications of Group theory, 3 rd Ed.; John
Readings	Wiley,1990
-	2. J. E. Huheey, E. A. Keiter, R.L. Keiter, Inorganic Chemistry: Principles
	of structure and reactivity, 4 th Ed.; Pearson, 1993.
	3. G. R. Desiraju, J. J. Vittal, A. Ramanan, Crystal Engineering, IISC Press,
	world Scientific, 2011.
	4. R. L. Dutta, A. Syamal, Elements of Magnetochemistry, 2 nd Ed.;
	Affiliated East-West Press, New Delhi, 1993.
	5. C. N. Banwell, E. M. McCash, Fundamentals of Molecular
	Spectroscopy, 4 th Ed.; Tata McGraw Hill, New Delhi, 1994.
	6. G. Aruldhas, Molecular structure and spectroscopy, Prentice Hall of
	India, 2001
	7. P. Atkins, J. De Paula, J. Keeler, Atkins' Physical Chemistry,
	International Ed.; Oxford University Press, 2018.
	8. M. Weller, T. Overton, J. Rourke, F. Armstrong, Inorganic Chemistry,
	International Ed.;Oxford University Press, 2018.
	9. E. A. V. Ebsworth, D. W. H. Rankin, S. Cradock, Structural Methods in
	Inorganic Chemistry, ELBS, 1988.
	10. K. Nakamoto, Infrared and Raman Spectra of Inorganic and
	Coordination Compounds, Part A: Theory and Applications in
	Inorganic Chemistry, 6 th Ed.; Wiley, 2009.
	11. K. Nakamoto, Infrared and Raman Spectra of Inorganic and
	Coordination Compounds, Part B: Applications in Coordination,

	Organometallic and Bioinorganic Chemistry, 6 th Ed.; Wiley, 2009. 12. R. S. Drago, Physical Methods in Inorganic Chemistry, Affiliated East West Press Pvt. Ltd., 2017 13. G. C. Miessler, D. A. Tarr, Inorganic Chemistry, 3 rd Ed.; Pearson, 2004
Course outcomes:	 Students will be able to explain symmetry aspects of simple molecules and their applications in chemistry. Students will be able to explain IR, Raman, ESR, NMR, Mössbauer spectra of simple molecules to determine molecular geometry. Students will understand fundamental difference between various spectroscopic techniques. Students will be able to explain the space groups.

Course Code: CHI-504Title of the course: Concepts in Inorganic Chemistry

Number of Credits: 04

Prerequisit	Students should have studied Inorganic chemistry courses at	t M.Sc.
es for the	Chemistry in semester I	
course:		
Course Objective:	 To gain knowledge in selected topics in inorganic chemistry and the applications of inorganic compounds in selected areas. To learn in details about the s-block elements and their compounds. To understand the concepts in acid-base reactions in the In chemistry. To gain knowledge about atomic stability and nuclear reactions. To study the importance of metal ions in the field of metal chemistry. 	d study ds. organic edicinal
Content	1. s-Block elements and their compounds	No of
	a. Hydrogen and hydrides; Electronic structure, position in	hours
	 periodic table, abundance, preparation, properties, isotopes, ortho and para hydrogen. Classification of hydrides, preparation & properties of hydrides; hydrogen ion, hydrogen bonding and its influence on properties. b. Group 1 elements; Introduction, abundance, extraction, physical and chemical properties, solubility and hydration, solutions of metal in liquid ammonia, complexes, crowns and cryptands, electrides, alkalides, difference between lithium and the other group 1 elements; Introduction, abundance, extraction, physical and chemical properties, solutions of metal in liquid ammonia, complexes, crowns and cryptands, electrides, alkalides, difference between lithium and the other group 1 elements, diagonal relationship between Li and Mg. c. Group 2 elements; Introduction, abundance, extraction, physical and chemical properties, solutions of metal in liquid ammonia, complexes, anomalous behaviour of beryllium, difference between beryllium and the other group 2 elements, diagonal relationship between Be and Al, preparation and properties of Grignard reagent. 	17
	2. Inorganic medicinal chemistry	16
	a. Anticancer agents; Platinum and Ruthenium complexes as	
	anticancer drugs, Cancerchemotherapy, phototherapy, radiotherapy using borane compounds	
	h Chelation therany	
	c. Gadolinium and technetium complexes as MRI contrast	
	agents, X-ray contrast agents.	
	d. Anti-arthritis drugs.	

	e. Anti-bacterial agents (Ag, Hg, Zn and boron compounds).	
	f. Antiseptic and anti-biotic.	
	g. Deodorants and anti-perspirants.	
	3. Chemistry of radioactive elements	15
	a. Atomic nucleus; Classification of nuclides and nuclear	
	stability.	
	b. Review of Nuclear models.	
	c. Radioactivity, Decay processes and decay energy, half-life of radioactive elements.	
	d. Nuclear reactions; Nuclear fission and fusion processes.	
	e. Nuclear Reactors; Nuclear reactor components and	
	functions, Q values for nuclear reactions.	
	f. Detection and measurement of activity; Radiation detection principles	
	g. Physical and Chemical separation techniques of radioactive	
	elements.	
	n. Radio-analytical techniques, Activation analysis.	
	I. Nuclear waste management.	
	4. Acids and Bases	12
	a. Brønsted acidity; Proton transfer equilibria in water, Solvent	
	levelling, The solvent system definition of acids and bases,	
	Characteristics of Brønsted acids, Periodic trends in aqua acid	
	strength, Simple oxoacids, Anhydrous oxides, Polyoxo	
	compound formation, Nonaqueous solvents.	
	b. Lewis acidity; Examples of Lewis acids and bases, Group	
	characteristics of Lewis acids.	
	c. Reactions and properties of Lewis acids and bases; The	
	fundamental types of reaction, Hard and soft acids and bases,	
	Thermodynamic acidity parameters, Solvents as acids and	
	bases.	
	d. Applications of acid-base chemistry, Superacids and	
	superbases, Heterogeneous acid-base reactions.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignr	ments /
	presentations / self-study or a combination of some of these can	also be
	used. ICT mode should be preferred. Sessions should be intera	ctive in
	nature to enable peer group learning.	
References	1. P. W. Atkins, T. Overton, J. Rourke, M. Weller, F. Arm	nstrong,
/ Readings	Shriver & Atkins Inorganic Chemistry, 5 ¹¹¹ Ed.;Oxford Publi	cations,
	2009.	
	2. J. E. Huheey, E. A. Kieter, R. L. Kieter, O. K. Medhi, In	organic
	Chemistry: Principles of Structure & Reactivity, 4 ^{err} Ed.;F	'earson,
	2011.	

	3.	F. A. Cotton, G. Wilkinson, P. L. Gauss, Basic Inorganic Chemistry, 2 rd Ed Willow 2008
	4	D Lee Concise Inorganic Chemistry 5 th Ed Wiley 2008
	5.	F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 3 rd Ed.;
		Wiley, 1984.
	6.	N. N. Greenwood, A. Earnshaw, Chemistry of the Elements,
		Pergamon Press, 1 st Ed.; 1984.
	7.	A. G. Sykes, Advances in Inorganic Chemistry, UK Ed.; Academic
		Press Ltd., 1991.
	8.	H. J. Arnikar, Essentials of Nuclear Chemistry, 4 ¹¹ Revised Ed.; New
		Age Intl.Publishers, 2011.
	9.	G. Friedlander, J. W. Kennedy, E. S. Macias, J. M. Miller, Nuclear & Padiochomistry 2 rd Ed.: John Willoy & Sons, 1981
	10	K A Strohfeldt Essentials of Inorganic Chemistry I st Ed · John
	10.	Willey & Sons. 2015.
	11.	G.R. Choppin, J-O. Linjenzin, Radiochemistry and Nuclear
		Chemistry, 2 nd Ed.; Butterworth-Heinemann Ltd, 1995.
	12.	R. S. Drago, Physical Methods in Inorganic Chemistry, Affiliated
		East West Press Pvt. Ltd., 2017
	13.	G. C. Miessler, D. A. Tarr, Inorganic Chemistry, 3 ^{ra} Ed.; Pearson,
		2004
	1 Stu	dents will be able to explain the chemistry of s-block elements
	2. Stu	dents will be able to explain fundamentals of inorganic medicinal
	che	mistry.
Course	3. Stu	dents will be able to solve numerical problems related to some
outcomes:	con	cepts in acid-base and nuclear chemistry.
	4. Stu	dents will be able to analyse reactions and processes in field of
	nuc	lear chemistry.

M.Sc. Organic/Inorganic/Analytical/Physical Chemistry Part-II syllabus for AY 2023-24 (SEM III and SEM IV) based on NEP 2020

		SEM III & IV		
	Research Specific Elective (RSE) Courses			
Sr. No.	Subject code	Paper title	Credits	
1.	<u>CHO-600</u>	Practical Course in Organic Chemistry-III	4	
2.	<u>CHO-601</u>	Practical Course in Organic Chemistry-IV	4	
3.	<u>CHO-602</u>	Retrosynthesis and Heterocyclic Chemistry	4	
4.	<u>CHO-603</u>	Chemistry of Natural Products	4	
5.	<u>CHI-600</u>	Practical Course in Inorganic Chemistry-III	4	
6.	CHI-601	Practical Course in Inorganic Chemistry-IV	4	
7.	CHI-602	Principles and applications in catalysis	4	
8.	CHI-603	Selected Topics in Inorganic Chemistry	4	
9.	CHA-600	Practical Course in Analytical Chemistry-III	4	
10.	CHA-601	Practical Course in Analytical Chemistry-IV	4	
11.	CHA-602	Advanced Mass Spectrometry	4	
12.	CHA-603	Selected Topics in Analytical Chemistry	4	
13.	CHP-600	Practical Course in Physical Chemistry-III	4	
14.	CHP-601	Practical Course in Physical Chemistry-IV	4	
15.	CHP-602	Heterogeneous Catalysis: Fundamentals and	4	
		Applications		
16.	<u>CHP-603</u>	Applied Electrochemistry	4	
17.	CHC-600	Research Methodology and instrumental techniques-I	4	
18.	CHC-601	Research Methodology and instrumental techniques-	4	
		II		
19.	<u>CHC-651</u>	Discipline Specific Dissertation	16	
		Generic Elective (GE) Courses		
Sr. No.	Subject code	Paper title	Credits	
1.	<u>CHO-621</u>	Polymer Chemistry: Concepts, Synthesis and	4	
		Processing of Polymers		
2.	<u>CHO-622</u>	Concepts in Medicinal Chemistry	4	
3.	<u>CHO-623</u>	Concepts in Green Chemistry	4	
4.	<u>CHO-624</u>	Chemistry of Life	4	
5.	<u>CHO-625</u>	Organometallic Chemistry and Rearrangement	4	
		Reactions		
6.	<u>CHI-621</u>	Bioinorganic Chemistry	4	
7.	<u>CHI-622</u>	Chemistry of p-block elements & their compounds	4	

8.	<u>CHI-623</u>	Environmental Chemistry	4
9.	<u>CHI-624</u>	Inorganic Chemistry: Industrial Perspective	4
10.	<u>CHA-621</u>	Fundamentals of Crystallography	4
11.	<u>CHA-622</u>	Advanced NMR and combined Spectroscopy	4
12.	<u>CHA-623</u>	Bioanalytical Techniques	4
13.	<u>CHA-624</u>	Calibration and Validation in Analytical Chemistry	4
14.	<u>CHP-621</u>	Solid State Chemistry: Concepts and Applications	4
15.	<u>CHP-622</u>	Nanoscience: Concepts and Applications	4
16.	<u>CHP-623</u>	Physical aspects of Polymer Chemistry	4
17.	<u>CHP-624</u>	Colloids and Surface Chemistry	4
		Dissertation	
1.	<u>CHC-651</u>	Discipline Specific Dissertation	16

SEM III INORGANIC CHEMISTRY			
Sr. No.	Subject	Paper title	Credits
	code		
1	CHI-600	Practical Course in Inorganic Chemistry-III	4
2	CHI-601	Practical Course in Inorganic Chemistry-IV	4
3	CHC-600	Research Methodology and instrumental techniques-I	4
4	CHC-601	Research Methodology and instrumental techniques-II	4
5	CHI-621	Bioinorganic Chemistry	4
6	CHI-622	Chemistry of p-block elements & their compounds	4
7	CHI-623	Environmental Chemistry	4
8	CHI-624	Inorganic Chemistry: Industrial Perspective	4
		SEM-IV INORGANIC CHEMISTRY	
Sr. No.	Subject	Paper title	Credits
	code		
1	CHI-602	Principles and applications in catalysis	4
2	CHI-603	Selected topics in Inorganic Chemistry	4
3	CHC-651	Discipline Specific Dissertation	16

M.Sc. Inorganic Chemistry Part-II syllabus for AY 2023-24 (SEM III and SEM IV)

Course Code: CHI-600 **Title of the course:** Practical Course in Inorganic

Chemistry-III

Number of Credits: 4

Prerequisit	Should have studied Inorganic chemistry practical course at M.Sc. Part-I.	
es for the		
course:		
Course	1. To introduce practical knowledge in Inorganic Chemistry.	
Objective:	2. To learn techniques of crystallization and synthesis of coord	dination
	compounds.	
	3. To learn characterization of compounds using different instruments	
	4. To provide experience of synthesis and characterization of material	s.
	5. To introduce analysis of ores for metal content.	
Content	Minimum 23 experiments from the entire list shall be conducted	No of
		hours
	Unit – 1 Experiments in coordination chemistry: complex	
	synthesis, metal analysis (Any Five)	30
	a. Purification (distillation/recrystallisation) of ligands like acacH, en, carboxylic acids etc.	
	b. Preparation of manganic tris(acetylacetonate) and estimation of manganese.	
	c. Preparation of tris(thiourea)copper(I) sulfate and estimation of	
	copper.	
	d. Preparation of isomers: cis and trans-	
	dichloro(ethylenediamine)cobalt(III) chloride and estimation of cobalt.	
	e. Preparation and resolution of tris(ethylenediamine)cobalt(III) ion and estimation of cobalt.	
	f. Preparation of cis and trans-potassium	
	dioxalatodiaquochromate(III) and estimation of chromium.	
	g. Preparation of nitro and nitrito-pentaaminecobalt(III) chlorides and estimation of cobalt.	
	h. Preparation cobalt(III) porphyrin complex and estimation of cobalt.	
	i. IR spectral characterization of free ligands and coordinated ligands	
	NOTE: In complex synthesis the student is expected to recrystallise	
	the product, record IR spectra and carry out metal analysis	
	Spectral analysis can be carried over.	
	Unit –2 Experiments in Solid state chemistry (Any Eight)	36
	a. Preparation of spinel oxides by precursor method.	

b. Estimation of metals in precursors and oxides.	
c. Characterization of precursors by thermal analysis.	
d. Characterization of precursors and oxides by infrared analysis.	
e. X-ray diffraction studies of metal oxides.	
f. Direct current electrical resistivity of semiconductor (Ge/Si) by	
Four Probe method.	
g. Curie temperature determination of dielectric material (PZT) by	
measurement of dielectric constant v/s temperature.	
h. Measurement of saturation magnetization, Ms, Mr and Hc of	
ferromagnetic materials.	
i. Determination of Curie temperature of magnetic oxides by A.C.	
susceptibility studies.	
i. Preparation of CuO/SiO ₂ or NiO/SiO ₂ by wet impregnation	
method.	
Unit – 3 Instrumental methods / spectral analysis / ion exchange	30
(Any Six)	
a. Determination of stability constant of Fe(III) – salicylic acid	
compound (Job's Method).	
b. Determination of stability constant of Fe(III) – thiocyanate	
compound.	
c. Determination of stability constant of Fe(II) – 1,10-	
phenanthroline compound.	
d. Determination of instability constant for the reaction between	
Ag^+ and NH_3 .	
e. Determination of instability constant for the reaction between	
Ag^+ and en.	
f. Determination of instability constant for the reaction between	
Cu^{2+} and NH ₃ .	
g. Determination of instability constant for the reaction between	
Cu^{2+} and en.	
h. Ion exchange chromatography:	
Separation of Mg^{2+} and Co^{2+} by anion exchange column.	
Separation of transition metal cations by anion exchange	
column.	
Unit – 4 Ore / Alloy / commercial sample separation and	24
analysis using Titrimetry / Gravimetry / spectroscopy method	
(Any Four)	
a. Analysis of Goan Iron ore: Hematite / magnetite	
b. Analysis of Devardas alloy	
c. Analysis of solder (Pb and Sn)	
d. Analysis of Pyrolusite	
e. Analysis of Nickel-Aluminium alloy	
f. Analysis of Brass alloy	
g. Analysis of Bauxite	

	h. Analysis of Magnesite
Pedagogy	Students will be given pre-lab and post-lab assignments on theoretical
	aspects of laboratory experiments prior to the conduct of each experiment.
References	1. G. Brauer, Handbook of Preparative Inorganic Chemistry, Vol. 1
/ Readings	& 2, 1963.
	2. G. Pass & H. Sutcliffe, Practical Inorganic Chemistry, Preparations,
	Reactions and Instrumental Methods, 2 nd Ed.; Chapman & Hall, 1974.
	3. S. De Meo, J. Chem. Ed., Vol 80, Pg.No.796-798, 2003.
	4. W. L. Jolly, The Synthesis & Characterization of Inorganic Compounds,
	Prentice-Hall, INC, 1970.
	5. A. J. Elias, General Chemistry Experiments, Revised Ed.; University
	Press, 2008.
	6. J. Mendham, R.C. Denney, J.D. Barnes, M.J. K. Thomas, Vogel's Text
	Book of Quantitative Chemical Analysis, 6 th Ed.; Pearson, 2002.
	7. G. Svehla, Vogel's Text Book of Qualitative Inorganic Analysis, 7 th
	Ed.; Pearson, 2011.
	8. G. Marr, B. W. Rockett, Practical Inorganic Chemistry, Van Nostrnad
	Reinhold London, 1972.
Course	1. Students will be in a position to purify ligands and will apply knowledge
Outcome:	to synthesize coordination compounds.
	2. Students will be able to study properties of coordination compounds using
	different instruments.
	3. Students will apply knowledge to synthesize solid state material and can
	study their properties.
	4. Students will be in position to separate metal ions by ion exchange
	chromatography.
	5. Students apply knowledge to separate and analyze metals present in ores
	and alloys.

Course Code: CHI-601 **Title of the course:** Practical Course in Inorganic

Chemistry-IV

Number of Credits: 4

Prerequisit	Should have studied Inorganic chemistry practical course at M.Sc. Part-	[.
es for the		
course:		
Course	1. To introduce to practical knowledge in Inorganic Chemistry.	
Objective:	2. To learn techniques of crystallization and synthesis of coord	dination
	compounds.	
	3. To learn characterization of compounds using different instruments.	
	4. To provide experience of synthesis and characterization of materials.	
	5. To introduce analysis of ores for metal content.	
Content	Minimum 20 experiments from the entire list shall be conducted	No of
	Unit-1 Preparation of ligands (including distillation /	hours
	recrystallization) / metal-ligand compounds / inorganic	
	compounds (Any 6)	36
	a. Preparation of Schiff's base and characterization by IR. Ex.	
	Condensation of simple aldehydes with diammines (ethylene	
	diammine, 1,3-propanediammine)	
	b. Preparation of substituted benzoic acids and characterization.	
	c. Preparation of acetylacetonate complexes of Co(II) and Co(III) and	
	estimation of cobalt.	
	d. Preparation of ammonium dichromate and ammonium	
	heptamolybdate.	
	e. Preparation of aluminium(III)tris(acetylacetonate) and estimation	
	of aluminium.	
	f. Preparation of potassium dihydroxodioxalatotitanate(IV) and	
	estimation of titanium.	
	g. Preparation of manganic acetate and estimation of manganese	
	h. Preparation of chromium(II) acetate hydrate and estimation of	
	chromium.	
	i. Preparation of $K_2ON(SO_3)_2$ (Fremy's salt).	
	Note: Wherever possible IR and other spectral studies should be	
	undertaken for prepared compounds.	
	Unit –2: Syntheses, characterization and solid state study of	36
	ABO ₃ /AB ₂ O ₄ oxides (Any 6)	
	a. Preparation of Perovskite/Spinel oxide by oxalate precursor	
	method.	
	b. Characterization of precursor using CHN Analyser and estimation	
	of metals in the precursors and oxides by gravimetric and	

	volumetric analysis.	
	c. Characterization of precursor and Perovskite/Spinel oxide by	
	FTIR.	
	d. Thermal analysis (TG/DTA) of prepared precursors.	
	e. Isothermal Mass Loss Studies.	
	f. X-ray diffraction studies of Perovskite/Spinel oxide prepared.	
	g. Electrical resistivity measurement of the prepared oxide by Two	
	probe / Four Probe method.	
	h. Dielectric studies of prepared oxide: Dielectric constant and	
	dielectric loss V/s I) Frequency and II) Temperature.	
	i. Magnetic Characterization of prepared Spinel oxide by i)	
	Hysteresis loop data (Ms. Mr. Hc) and ii) A.C. Susceptibility.	
	Note: Wherever possible IR and other spectral studies should be	
	undertaken	
	Unit – 3: Instrumental experiments/separation of metal ions by ion	36
	exchange resins (Any 6)	50
	a Determination of stability constant of Fe(III)-Sulfosalicylic acid	
	compound in the solution	
	b UV-visible spectroscopy study of transition metal complexes	
	c. Potentiometric determination of cohalt/ nickel /zinc by EDTA	
	d Conductance measurements: preparation and electrical	
	conductivity measurements of some cobalt complexes	
	e Determination of magnetic suscentibility of Mp(II) Cu(II) etc.	
	e. Determination of magnetic susceptionity of Win(11), Cu(11) etc.	
	f. Colorimetric estimation of Ha/Cd	
	a Separation of transition motal actions by action avalance	
	g. Separation of transition metal cations by cation – exchange	
	h IB and NMB studies of Increasis compounds. Ex. VO(2000)	
	i. IR and NNR studies of morganic compounds. Ex. $\sqrt{O(acac)_2}$	
	Unit 4: Ore englycia Alley englycia using Titrimetry (12
	Unit – 4: Ore analysis/ Alloy analysis using fitrimetry /	12
	Gravimetry / spectroscopy method (Any 2)	
	a. Analysis of Malancine	
	b. Analysis of Michael Steel eller	
	c. Analysis of Nickel Steel alloy	
	a. Analysis of Con Metal	
	e. Analysis of Gun Metal	
	1. Analysis of magnatium	
Dadama	g. Analysis of Diolize Students will be given me leb and next leb aggingments on the section	o croata
reaagogy	Students will be given pre-lab and post-lab assignments on theoretical	aspects
Defer	of laboratory experiments prior to the conduct of each experiment.	
Keierences	1. G. Brauer, Handbook of Preparative Inorganic Chemistry, Vol. 1 &	
/ Readings	2, 1903.	
	2. G. Pass & H. Sutcliffe, Practical Inorganic Chemistry, Preparati	ons,
	Keactions and Instrumental Methods, 2 th Ed.; Chapman & Hall, 1974	•

	3. S. De Meo, J. Chem. Ed., Vol 80, Pg.No.796-798, 2003.
	4. W. L. Jolly, The Synthesis & Characterization of Inorganic Compounds,
	Prentice-Hall, INC, 1970.
	5. A. J. Elias, General Chemistry Experiments, Revised Ed.; University Press,
	2008.
	6. J. Mendham, R.C. Denney, J.D. Barnes, M.J. K. Thomas, Vogel's Text
	Book of Quantitative Chemical Analysis, 6 th Ed.; Pearson, 2002.
	7. G. Svehla, Vogel's Text Book of Qualitative Inorganic Analysis, 7 th Ed.;
	Pearson, 2011.
	8. G. Marr, B. W. Rockett, Practical Inorganic Chemistry, Van Nostrnad
	Reinhold London, 1972.
Course	1. Students will be in a position to explain general aspects involved in
Outcome:	purification of ligands and will apply knowledge to synthesize ligands and
	coordination compounds.
	2. Students will be able to characterize coordination compounds usinf
	instrumental techniques.
	3. Students will be in a position to prepare solid state materials and study their
	properties.
	4. Students will apply knowledge to separate metal ions by ion exchange
	chromatography.
	5. Students will be able to analyze metals in ores and alloys

Course Code: CHI-602 **Title of the course:** Principles and applications in catalysis

Number of Credits: 4

Prerequisit	Students should have studied chemistry courses at M.Sc. Part-I.	
es for the		
course:		
Course	1. To understand the fundamentals concepts of chemical reactions of	over the
Objective:	catalysts.	
	2. To understand energy saving and making green processes in cl	hemical
	reactions.	
	3. To understand fundamentals and basic concepts of chemical reaction	ions for
	developing higher productivity and viability.	
	4. To provide knowledge on applications of heterogeneous, homogeneous	ous and
	other catalytic processes.	
	5. To make aware of catalytic approaches in environmental pollution	control
	processes.	
Content	1. Origin and development of catalysts	No of
	a. Introduction to heterogeneous, homogeneous and bio-catalysis,	hours
	importance of catalysis in chemical reactions and its industrial	
	applications.	5
	b. Concepts of Atom Economy, Turnover number and Turnover	
	frequency.	
	2. Heterogeneous Catalysis	23
	a. Introduction to heterogeneous catalysis, energy profile diagram	
	and diffusion of gas, general mechanisms such as Langmuir-	
	Hinshelwood and Rideal-Eiley.	
	b. Adsorptions: Physical and chemical adsorption, chemisorptions	
	of gases on solid surfaces, nature of adsorbed layer, dissociative	
	adsorptions, scattering, trapping and sticking, simple adsorptions	
	isotherm, Langmuir adsorption, the BET adsorption isotherm and	
	Surface area determination.	
	c. Types of Catalysts: Preparations and separations of the catalysts,	
	meso and micro porous materials, nano material catalysts and	
	significance, zeolites and related molecular sieves, supported and	
	bifunctional catalysts and catalyst regeneration, activity and life	
	of the catalysts, active centers, promoters and poisons, catalyst	
	deactivations.	
	d. Characterization of solid catalysts: Structure and surface	
	morphology, porosity, pore volume and diameter, particle size,	
	X-ray diffraction, Thermal analysis (DTA/TG and DSC), SEM,	
	TEM, X-ray absorption spectroscopy, XPS and Auger Electron	
	Spectroscopy to surface studies, TPD for acidity and basicity of	

the catalysts	
e Heterogeneous reactions: Thermodynamic consideration in	
surface reactions, mechanism of catalytic reactions, ammonia	
synthesis oxidation reduction reactions CO oxidation No	
decomposition Fisher transch catalysis selective catalytic	
reduction method of finding reaction rate and the rate	
determining stops	
f Theories of Catalysis: Boundary layer theory estalysis by	
semiconductors Wolkenstein theory Balanding's approach	
electronic factors in catalysis by metals molecular orbital	
approach	
approach.	10
5. Homogeneous Catalysis	12
a. Homogeneous catalytic reactions, merits and demerits,	
diagram activation an energy general achama for aclaulating	
diagram, activation energy, general scheme for calculating	
kinetics of the reactions.	
b. Decomposition of hydrogen peroxide, acid-base catalysis.	
c. Homogeneous catalytic reactions: Hydrogenation,	
hydroformylation, isomerization, Monsanto acetic acid process,	
Carboxylation reactions, wacker reaction, coupling reactions and	
asymmetric oxidations.	2
4. Photo-catalysis Homogeneous photo-catalysis photo-sensitized and photo-oxidations	3
reactions beterogeneous photo-catalysis, semiconductor photo-	
catalysts, generation of hydrogen by photo-catalysts and harnessing	
solar energy nhoto-degradation of dyes	
5 Catalytic polymerizations	5
Homogeneous and heterogeneous catalysis in polymerizations	5
reactions (few examples) Ziegler – Natta catalyst in polymerizations	
reactions.	
6. Bio-catalysis	3
Nomenclature and classification of enzymes, metal ions and	-
metalloenzymes, general properties, enzymatic reactions such as	
redox and decomposition, action of enzymes, mechanistic pathways	
of few enzymatic reaction, factors affecting enzymes and enzyme	
applications.	
7. Phase transfer catalysis	3
Mechanism of PTC, types of phase transfer catalysis with selected	
examples, advantages and disadvantage.	
8. Catalyst for energy and environment	6
Catalytic gasification, electricity from gas turbine, steam reforming,	
electro-catalysis, fuel cells for energy production like methanol,	
molten carbonate and solid oxide fuel cells, catalysts for	
environmental pollution in emission control and selective catalytic	

	reduction.		
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /		
	presentations / self-study or a combination of some of these can also be used.		
	ICT mode should be preferred. Sessions should be interactive in nature to		
	enable peer group learning.		
	1. A.V. Salker, Catalysis: Principles and Basic Concepts, Scientific		
References	International, 2019.		
/ Readings	2. P. H. Emmett, Catalysis, Vol I, Reinhold, 1955.		
	3. D. K. Chakraborty, Adsorption and Catalysis by Solids, New Age		
	International (P) Ltd., 2008.		
	4. J. M. Thomas, W.J. Thomas, Heterogeneous Catalysis, VCH publication, 1997.		
	5. A. Clark, The Theory of Adsorption and Catalysis, Academic Press, 1970.		
	6. E. R. Rideal, Concept in Catalysis, Academic Press, 1968.		
	7. G. M. Panchenov, V. P. Lebedev, Chemical Kinetics and Catalysis, Mir		
	publication, 1976.		
	8. S. J. Thomson, G. Webb, Heterogeneous Catalysis, Oliver and Boyd		
	Publications, 1968.		
	9. R. A. Van Santen, J. W. Niemantsvedict, Chemical Kinetics and Catalysis,		
	Plenum Press, 1995		
	10. M. Beller, A. Renken, R. van Santen, Catalysis, Wiley VCH, 2012.		
Course	1. Students will be able to explain concepts and general properties of different		
Outcome:	types of catalysts.		
	2. Students will be able to explain the catalytic reaction mechanisms and green		
	catalytic processes.		
	3. Students will be in position to prepare and characterized catalysts.		
	4. Students will apply knowledge to develop reaction specific catalysts using		
	basic concepts.		
	5. Students will apply knowledge to develop catalysts for useful chemical		
	reactions and environmental pollution control processes.		

Course Code: CHI-603 Title of the course: Selected Topics in Inorganic Chemistry

Number of Credits: 4

Prerequisites	Students should have studied Inorganic chemistry courses at M.Sc. Part-I		
for the			
course:			
	1. To study the amorphous and glass materials.		
	2. To learn the properties of refractories and solid lubricants a	and their	
Course	applications.		
Objective:	3. To understand the concepts of Inorganic electrochemistry.		
	4. To study the important instrumental techniques for characteriz	ation of	
	Inorganic materials.		
Content	1. Amorphous and Glass Materials	No of	
	a. Introduction to amorphous materials	hours	
	b. Glasses		
	c. Glass transition temperature	7	
	d. Composition of glasses		
	e. Viscosity		
	f. Glass forming methods		
	g. Commercial glasses		
	h. Chalcogenide glasses		
	i. Ceramic glasses		
	j. Metallic glasses		
	2. Refractories and Solid lubricants	13	
	a. Classification of refractories		
	b. Properties of refractories: Thermal expansion and contraction,		
	Refractoriness, Spalting resistance, Thermal conductivities		
	c. Resistance to melts-slags and glasses		
	d. Refractory materials: Aluminous type, silica type, basic type,		
	insulating type		
	e. Special refractories: Oxide refractories, other refractories, ideal		
	refractories		
	t. Solid lubricants: Inorganic, organic, and nanomaterial lubricants	_	
	3. Fundamentals of Inorganic Electrochemistry	5	
	a. Basic aspects of electrochemistry, electron transfer reactions at		
	electrode surface, potential and electrochemical cells,		
	b. voltammetric techniques, linear voltammetry, cyclic		
	voltainmetry; reversible, irreversible, and quasi-reversible		
	processes; applications of cyclic voltammetry with reference to		
	A Characterization Techniques	25	
	4. Unaracterisation Lechniques	35	
	a. Diffraction methods (XKD, Neutron and Electron)		

c. Thermal analysis
d SEM FESEM
U. SEIVI, FESEIVI
e. TEM (HR-TEM and Imaging)
f. FTIR
g. X-ray Absorption spectroscopy
h. Electron spectroscopy (XPS, UPS, Auger)
i. Atomic emission spectroscopy
j. UV-Visible spectroscopy (DRS)
Pedagogy Mainly lectures and tutorials. Seminars / term papers /assignments /
presentations / self-study or a combination of some of these can also be used.
ICT mode should be preferred. Sessions should be interactive in nature to
enable peer group learning.
References / 1. A.R. West, Solid State Chemistry and Its Applications, 1 st Ed., John
Readings Wiley & Sons, Singapore, 1984 (reprint 2007).
2. L.V. Azaroff, Introduction to Solids, 1 st Ed. (33 rd Reprint), Tata McGraw
Hill, 2009.
3. D. K. Chakraborty, Solid State Chemistry, 2 nd Ed.; New Age
International Publisher, 2010.
4. H. V. Keer, Principles of the Solid State, 1 st Ed. (Reprint 2008); New Age
International (P) Ltd., (Wiley Eastern Ltd.), 1993.
5. W. D. Callister, Materials Science and Engineering: An Introduction, 7 th
Ed.; John Wiley, 2007.
6. B. D. Fahlman, Materials Chemistry, 2 nd Ed.; Springer, 2011.
7. H. R. Allcock, Introduction to materials chemistry, 1 st Ed.; John Wiley &
Sons, 2011.
8. R. H. Doremus, Glass Science, 2 nd Ed.; Wiley, 1973.
9. P. N. Ross, Handbook of Fuel Cells, 7 th Ed.; Wiley, 2003.
10. D. T. Sawyer, A. Sobkowak, J. L. Roberts Jr., Electrochemistry for
chemists, 2 ^{ad} Ed.; John Wiley, Inc., 1995.
11. P. W. Atkins, I. L. Overton, J. P. Rourke, M. I. Weller & F. A.
Armstrong, Shriver & Atkins' Inorganic Chemistry, 5 Ed.; Oxford
University Press, 2010.
Analytical Chamistry, 0 th Ed : Canagage logrning, 2014
Analytical Chemistry, 9 Ed., Cengage learning, 2014.
6 th Ed · Cengage learning 2007
14 G. Aruldas. Molecular Structure and Spectroscopy 2 ^{ed} Ed · PHI Learning
Pvt. Ltd., 2015.
Course 1. Students will be able to explain different amorphous and glass materials and
Outcome: their properties.
2. Students will be able to differentiate between the types of refractories and
solid lubricants.
3. Students will be able to analyse a cyclic voltammogrames of inorganic

compounds. 4. Students will apply knowledge to characterize inorganic materials by using
instrumental techniques.

Course Code: CHI-621 Title of the course: Bioinorganic Chemistry

Number of Credits: 4

Prerequisites	Students have studied chemistry/biochemistry courses at M.Sc. Part-I.	
for the course:		
Course	1. To understand the role of inorganic elements especially metal ions in biology.	
Objective:	2. To introduce metallobiolecules, metalloproteins & metalloenymes.	
	3. To understand the role of small molecule model compounds.	
	4. To introduce the concept of Biomimetic chemistry.	
Content	1. Essential elements in biology	No of
	Periodicity of elements, distribution of elements in biosphere, bio-	hours
	availability, bio-stability, building blocks of the biosphere; carbohydrates,	
	nucleic acids and proteins, biological importance of water, and brief	12
	review of the chemistry of biopolymers. Metallobiomolecules:	
	classification, metalloproteins (enzymes), metal activated proteins	
	(enzymes), metal functions in metalloproteins, Principles of coordination	
	chemistry related to bioinorganic research, physical methods in	
	bioinorganic chemistry.	
	2. Alkali and alkaline earth metals in biology	12
	Introduction, biological importance of the alkali and the alkaline earth	
	cations, Cation transport through membranes (ion pumps).	
	Photosynthesis, Hill reaction, Chlorin macrocycle and chlorophyll,	
	Absorption of light by chlorophyll, role of metals in photosynthesis, in	
	vitro photosynthesis.	
	3. Non-redox metalloenzymes	12
	Zinc metalloenzymes like carboxypeptidase, carbonic anhydrase and	
	alcohol dehydrogenase, Bio-functions of zinc enzymes, active site	
	structure and model complexes.	
	4. Biochemistry of a few transition metals	12
	Role of Fe, Mo, Cu and Ni. Oxygen carriers and oxygen transport	
	proteins, iron porphyrins (Haemoglobin and myoglobin). Haemocyanins	
	and Haemerythrins, Synthetic models for oxygen binding haemproteins.	
	Cytochrome C, catalase, peroxidase, and superoxide dismutase, blue	
	copper proteins, vitamin B_{12} coenzymes, nitrogen fixation and iron-sulfur	
	proteins, biological nitrogen fixation, nitrogenase and dinitrogen	
	complexes, iron-sulfur proteins, synthetic analogues for Fe-S proteins,	
	core extrusion reactions. Metal transport and storage: A brief review of	
	iron transport. transferrin, ferritin, hemosiderin, siderophores, iron	
	biomineralization	
	5. Biomimetic Inorganic Chemistry	12
	Fundamentals of biomimetic chemistry, metal – oxygen intermediates,	
	techniques used to probe the active sites of oxygen carriers, redox chemistry	

	of free molecular dioxygen, spectroscopy of Fe-O-Fe moiety, geometry and
	electronic structure of coordinated dioxygen, other ligands for biological
	oxygen carriers, reactions of metal-oxygen compounds, oxygenases,
	Cytochrome P-450, synthetic procedures of simple ligands, isolation of S-
	containing amino acidor extraction of chlorophyll from green leaves,
	recrystallization of carboxylic acids. Non-Heme and heme ligands.
Pedagogy	Mainly lectures / tutorials / assignments /group discussion / self-study
	/presentations or a combination of some of these could also be used to some
	extent.
Reference /	1. S. J. Lippard & J. M. Berg, Principles of Bioinorganic chemistry, Panima
Readings	Publishing Corporation
	2. B. I. Britini, H. B. Gray, S. J. Lippard & J. S. Valentine, Bioiorganic
	chemistry, University Science books, Mill Valey, CA, 1994.
	3. D. E. Fenton, Biocoordination Chemistry, Oxford Chemistry Printers, 25
	Oxford University Press, 1995
	4. E. E. Conn, P.K. Stumpf, G. Bruening & R. H. Doi, Outlines of
	Bioinorganic Chemistry, 5 th Ed.; Wiley Eastern, 1983.
	5. F.A. Cotton, G. Wilkinson, P.L. Gaus, Basic Inorganic Chemistry, 3 rd Ed.
	(Chapter 31); WileyIndia, 2007.
	6. M. Weller, T. Overton, J. Rourke & F. Armstrong Inorganic Chemistry, Int.
	Ed. (Chapter 25); Oxford University Press, 2018.
	7. P Atkins, T Overton, J Rourke, M Weller & F Armstrong, Shriver & Atkins'
	Inorganic Chemistry, 5 th Ed. (Chapter 27); Oxford University Press, 2010.
	8. J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry: Principles of
	Structure and Reactivity, 5 th Ed. (Chapter 19); Addison Wesley Publishing.
	9. R. W. Hay, Bioinorganic chemistry, Ellis Horwood Chichester, 1984.
	10. M.N. Hughes, The Inorganic Chemistry of Biological processes, 2 nd Ed.;
	Wiley (Interscience), 1984.
	11. R. R. Crichton, Biological Inorganic Chemistry, Elsevier, 2012.
	12. R. Breslow, Biomimetic Chemistry: Biology as an Inspiration, The Journal of
	Biological Chemistry, vol. 284, no. 3, pp. 1337–1342, 2009.
	13. C. Housecroft, A. G. Sharpe, Inorganic Chemistry, 4 th Ed; Pearson Publishing,
	2012.
Course	1. Students will be in a position to clarify the significance of essential elements in
Outcome:	biology.
	2. Students will be able to explain the role played by metal ions in vital processes
	like i) oxygen storage and transport and ii) electron transfer.
	3. Students will be able to explain basic concepts in Biomimetic chemistry.
	4. The students will be able use different techniques in Bioinorganic Chemistry.

Course Code: CHI-622 **Title of the course:** Chemistry of p-block elements & their

compounds

Number of Credits: 4

Prerequisites	Students should have studied chemistry/biochemistry courses at M.Sc	. Part-I.
for the		
course:		
Course	1. To study the different trends in physical and chemical propertie	es of p-
Objective:	block elements.	
	2. To understand the variations in physical and chemical proper	rties of
	compounds of p-block elements.	
	3. To study the preparation and structure of some important compoun	ds of p-
	block elements.	
	4. To study the applications of some of their compounds.	
Content	1. General trends of different properties in groups and periods	No of
	in periodic table	hours
		4
	2. Chemistry of Group 13 Elements and their Compounds	13
	a. Introduction, physical properties, chemical reactions with	
	oxygen, nitrogen, sulphur, halogens, HCl, NaOH, NH ₃ , mono-	
	di-tri-chlorides, alums, organo-compounds of B and Al,	
	difference between boron and other Gr. 13 elements, diagonal	
	relationship.	
	b. Preparation, bonding and structure of diborane, higher boranes,	
	borane anions, carboranes and metallocarboranes.	
	c. Borazine: Synthesis, properties, structure, bonding and some of	
	its derivatives.	
	d. Borates: Classification, structure and examples.	
	3. Chemistry of Group 14 Elements and their Compounds	13
	a. Introduction, physical properties, allotropy, compounds of	
	Gr.14: different types of oxides, di, tetra & catenated halides,	
	hydrides, sulphides, cyanides.	
	b. Coordination compounds, organosilicon compounds, silicones,	
	cluster compounds of Ge, Sn and Pb.	
	c. Silicates: classification with examples and applications, zeolite.	
	d. Carbon dating, graphene, metallocarbohedrenes, freons.	
	e. Intercalation compounds of graphite with oxygen and fluorine,	
	heavier Group 1 elements, different halides including FeCl ₃ .	
	f. Carbides: classification, preparation, properties and uses.	
	4. Chemistry of Group 15 Elements and their Compounds	9
	a. Introduction, allotropes, physical properties, Preparation,	

	properties and structure of: Hydrides, halides, oxides,	
	oxyacids, oxohalides.	
	b. Preparation, properties and structure of Phosphorous: sulphides,	
	oxosulphides, organophosphorous compounds.	
	c. Classification, preparation, properties and structures of	
	phosphazenes.	
	5. Chemistry of Group 16 Elements and their Compounds	9
	a. Introduction, allotropes, physical properties, Preparation,	
	properties and structure of: Hydrides, halides, oxohalides,	
	oxides, oxyacids, classification of oxides.	
	b. Compound of sulphur and nitrogen: Preparation, properties and	
	structure of $(SN)_x$, S_2N_2 and S_4N_4 .	
	c. Polyatomic sulphur cations, anionic polysulphides, compounds	
	with sulphur as a ligand.	
	6. Chemistry of Group 17 Elements and their Compounds	8
	a. Introduction, physical properties; preparation, properties and	
	structure of: oxides, oxyacids, halides, oxohalides,	
	hydrogenoxide fluorides and related compounds.	
	b. Preparation, properties and structure of: interhalogen	
	compounds, polyhalide anions, polyhalonium cations, halogen	
	cations.	
	7. Chemistry of Group 18 Elements and their Compounds	4
	a. Introduction, physical properties; preparation, properties,	
	structure and bonding of xenon compounds (fluorides and	
	oxides); organoxenon compounds, compound containing Xe-	
	Xe bond.	
	b. Preparation, properties and structure of compounds of other	
	noble gases.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignr	nents /
	presentations / self-study or a combination of some of these can also be	be used.
	ICT mode should be preferred. Sessions should be interactive in na	ature to
	enable peer group learning.	
References /	1. P. W. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Sh	river &
Readings	Atkins Inorganic Chemistry, 5 th Ed.; Oxford Publications, 2009.	
	2. J. E. Huheey, E. A. Kieter, R. L. Kieter, O. K. Medhi, In	organic
	Chemistry: Principles of Structure & Reactivity, 4 th Ed.; Pearson, 2	011.
	3. N. N. Greenwood, A. Earnshaw, Chemistry of the Elements,	2^{nu} Ed.
	(reprinted); Elsevier, 2014.	
	4. J. D. Lee, Concise Inorganic Chemistry, 5 th Ed. (reprint); Bl	ackwell
	Science Wiley, 2015.	, ard
	5. F. A. Cotton, G. Wilkinson, P. L. Gauss, Basic Inorganic Chemis	stry, 3 rd
	Ed.; Wiley, 2008.	ord T
	6. F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 2	5 Ed.;
	W1ley, 1984.	

	7. G. C. Miessler, D. A. Tarr, Inorganic Chemistry, 3 rd Ed.; Pearson, 2004.
Course	1. Students will be able to explain the trends in physical properties in groups
Outcome:	and periods in the periodic table.
	2. Students will be able to explain the chemistry of p-block elements as this
	course will give sufficient information about p-block elements and their
	compounds in particular.
	3. Students will be able to prepare some important compounds of p-block
	elements.
	4. Students will apply the knowledge of chemical properties of compounds to
	solve day to day problems.

Course Code: CHI-623 **Title of the course:** Environmental Chemistry

Number of Credits: 4

Prerequisit	Students should have studied chemistry/ biochemistry courses at M.Sc.Part-I.		
es for the			
course:			
Course	1. To introduce to fundamentals of environmental chemistry.		
Objective:	2. To provide important knowledge of environmental chemistry in day-to-da		
	life.		
	3. To give the basic knowledge of environmental pollution.		
	4. To make aware of the harmful effects of environmental pollutants and	l control	
	measures.		
Content	1. Structure and properties of atmosphere:	No of	
	Introduction, Temperature profile of the atmosphere, Lapse rate,	hours	
	Temperature inversion.	4	
	2. Biogeochemical cycles	8	
	Introduction, Biogeochemical cycles of Oxygen, Carbon, Sulphur,		
	Nitrogen, Phosphorus, and Hydrogen.		
	3. Soil Pollution	6	
	Introduction, Air and water in the soil, Inorganic and Organic		
	components in the soil, Reactions in the soil, Waste pollutants in the soil		
	and soil contamination, Excess usage of agrochemicals, Adsorption and		
	decomposition of organic matter in the soil.		
	4. Air pollution	12	
	Types of emissions, Air pollution dispersion models, Types of emission		
	sources, Estimation of Dispersion parameters, Types of Plumes, global		
	warming		
	Particulate matter: Introduction, Particle size range, Health Hazards,		
	Analysis of particulate matter, Control devices, Inorganic Particulates,		
	Radioactive particulates, Organic particulates and other contaminants.		
	5. Water pollution and Conditioning	8	
	a. Introduction.		
	b. Hard water and water softening by chemical methods.		
	c. Carbonate hardness removal by lime, Magnesium hardness removal		
	by lime, and non-carbonated hardness removal by soda ash.		
	d. Calcium carbonate solubility.		
	e. Re-carbonation and acid process.		
	f. Barium-lime cold process.		
	g. Ion exchange process.		
	6. Plastic pollution	10	
	a. Microplastics		
	b. Global occurrence, distribution, and the fate of plastic in the		

	environment.	
	c. Weathering and degradation of plastics.	
	d. Microplastics, types of microplastics, nanoplastics.	
	e. Analysis and identification of microplastics.	
	f. Impact on the terrestrial and marine environment (estuarine, open	
	ocean, coral reefs).	
	g. Inputs of microplastics into the oceans.	
	h. Transfer of microplastics into the food chain: bioaccumulation and	
	Biomagnification.	
	i. Microplastic ingestion, toxicity, and impact on human health.	
	7. Selected industrial effluent treatment.	8
	a. Industrial effluent treatment,	
	b. Effects of Industrial effluents on surface water and land,	
	c. Manufacture process and treatment of fertilizers and pesticides,	
	d. Electroplating process and treatment of the waste,	
	e. Waste from the cement industry, Waste from the sugarcane and	
	paper industry.	
	8. Waste Management and Case studies	4
	a. Waste Management (sources and types of solid wastes, disposal	
	techniques, collection methods, waste management approach).	
	b. Case study (Bhopal gas tragedy, use of DDT).	
Pedagogy	Mainly lectures and tutorials. Seminars/term	papers
	/assignments/presentations/self-study or a combination of some of these	can also
	be used. ICT mode should be preferred. Sessions should be interactive in	n nature
	to enable peer group learning.	
	1. P. W. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, St	river &
References	Atkins Inorganic Chemistry, 5 th Ed : Oxford Publications, 2009.	
/ Readings	2 I E Hubeev E A Keiter R L Keiter O K Medhi Inorganic Ch	emistry.
/ Iteauings	Principles of Structure & Reactivity 4 th Ed · Pearson 2011	ennisery.
	3 N N Greenwood A Earnshaw Chemistry of the Elements	2 nd Ed
	(reprinted): Elsevier 2014	2 14.
	4 I D Lee Concise Inorganic Chemistry 5 th Ed (reprint): Blackwell	Science
	Wiley. 2015.	~ 0101100
	5 F A Cotton G Wilkinson P L Gauss Basic Inorganic Chemistry	3^{rd} Ed ·
	Wiley 2008	5 Eu.,
	6 F A Cotton G Wilkinson Advanced Inorganic Chemistry 3 rd Ed	· Wilev
	1984	, whey,
	7. G. C. Miessler, D. A. Tarr, Inorganic Chemistry 3 rd Ed · Pearson 20	04.
	8 R. C. Hale, M. E. Seeley, M. J. La Guardia, J. Mai, F. V. Zeng, A.	v olohal
	nerspective on microplastics 2020 Journal of Geophysical R	esearch.
	Oceans, Wiley, 125 (1) e2018JC014719	
	9. S. Sharma, S. Chatteriee, Microplastic pollution a threat to	marine
	ecosystem and human health: a short review 2017 Environmental	Science
	and Pollution Research Springer 24 21530-21547	
	and I shution resources, springer, 27, 21550 21577.	

	10. L. Andrady, Microplastics in the marine environment, 2011, Marine
	pollution bulletin, 62(8), 1596-1605.
	11. R. C. Thompson, C. J. Moore, F. S. Vom Saal, S. H. Swan, Plastics, the
	environment and human health: current consensus and future trends. 2009,
	Philosophical transactions of the royal society B: biological sciences, Royal
	Society, 364 (1526), 2153-2166.
Course	1. Students will be in a position to know the basic environmental
Outcome:	chemical processes.
	2. Students will be able to explain the origin and harmful effects of toxic
	chemicals in the environment.
	3. Students will be aware of the analysis of some pollutants.
	4. Students will be in a position to give examples of case studies.

Course Code: CHI-624 **Title of the course:** Inorganic Chemistry: Industrial

Perspective

Number of Credits: 4

Prerequisites	Students should have studied M.Sc. Part-I chemistry courses.	
for the		
course:		
Course	1. To discuss the economic importance of inorganic materials.	
Objectives:	2. To teach the concepts in chemistry useful for inorganic industries	
	3. To learn syntheses involved in industrial production.	
	4. To recognize applications of industrial inorganic materials in	several
	other sectors.	
Content	1. Economic importance of Inorganic materials in industry	No of
	a. Chemical industries & their economic importance	hours
	b. Commodity, fine and speciality chemicals	
	c. Water: potable water, fresh water from sea water & / or	15
	brackish water	
	d. Hydrogen: water electrolysis, petrochemical processes and coal	
	gasification	
	e. Peroxide and inorganic peroxo compounds: hydrogen peroxide,	
	sodium peroxide, sodium perborate, sodium carbonate	
	perhydrate, alkali peroxodisulfate	
	f. Nitrogen / phosphorous / sulphur /halogens and their	
	compounds: ammonia, hydrazine, hydroxylamine, phosphoric	
	acid & its salts, organophosphorus compounds, sulphuric acid,	
	other important sulphur compounds, compounds of fluorine,	
	chloroalkali electrolysis, hydrochloric acid, chlorine-oxygen	
	compounds, compounds of bromine and compounds of iodine	
	2. Minerals in fertilizer industry	10
	a. Nitrogen-containing fertilizers: ammonium sulphate,	
	ammonium nitrate and urea	
	b. Phosphorous-containing fertilizers: superphosphates, triple	
	superphosphates, ammonium phosphates and nitrophosphates	
	c. Potassium-containing fertilizers: potassium chloride, potassium	
	sulphate and potassium nitrate	
	3. Metals / silicon and their compounds in industry	15
	a. Alkali metals: lithium, sodium and potassium	
	b. Alkaline-earth metals: beryllium, magnesium, calcium,	
	strontium and barium	
	c. Others metals: aluminium, chromium, manganese and iron	
	d. Silicon: silicon & its inorganic compounds andorgano-silicon	

	compounds			
	4. Inorganic solids and their applications	20		
	a. Silicates: glass, alkali silicates, zeolites			
	b. Inorganic fibers: asbestos, textile glass, optical, carbon, metal			
	and ceramic reinforcing fibers			
	c. Ceramics: clay, electro, magneto and nonoxide ceramics			
	d. Construction materials: lime, cement, gypsum, coarse ceramic			
	and expanded products			
	e. Enamels: enamel frit and its raw material as metal oxides /			
	carbonates / nitrates / fluorides			
	f. Metal carbides: titanium, zirconium, hafnium, vanadium,			
	niobium tantalum, chromium, molybdenum, tungsten, thorium			
	and uranium carbides			
	g. Inorganic carbon: diamond, natural graphite, synthetic carbon			
	& synthetic graphite, pyrolytic carbon & pyrolytic graphite and			
	activated carbon			
	h. Fillers: natural and synthetic fillers			
	i. Inorganic pigments: white, coloured, black and speciality			
	pigments			
Pedagogy	Mainly lectures / tutorials / assignments / self-study/ industrial visit	ts/ field		
	trips in and around Goa or combination of some of these could also	be used		
	to some extent.			
Reference	1. K.H. Büchel, HH. Moretto& P. Woditsch, Industrial In-	organic		
/Readings	Chemistry, 2 nd completely revised Ed., Wiley VHC, 2000.			
	2. G. Buxbaum& G. Pfaff, Industrial Inorganic Pigments, 3 rd Ed.	, Wiley		
	VHC, 2005.	ard — a		
	3. N.N. Greenwood & A. Earnshaw, Chemistry of the Elements,	^{3rd} Ed.,		
	Pergamon Press, Exeter, 1998.	• ,		
	4. F.A. Cotton, G. Wilkinson & P. L. Gaus, Basic Inorganic Che	emistry,		
	3^{-1} Ed., John Wiley, 2007.			
	5. F.A. Cotton & G. Wilkinson, Advanced Inorganic Chemistry,	6 Ea.,		
	Wiley Eastern, 2007.			
	o. J.E. Huneey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry: Pri	ncipies		
	7 LD Lee Consise Inorgania Chemistry 5 th Ed. Wiley 2008			
	7. J.D. Lee, Concise morganic Chemistry, 5 Ed., whey, 2008.	organic		
	Chemistry International Ed Oxford University Press 2018	organie		
	9 P Atkins I De Paula & I Keeler Atkins' Physical Che	mistry		
	International Ed Oxford University Press 2018	inistry,		
	10 A.R. West, Solid State Chemistry and Its Applications. 2 nd Ed	l. John		
	Wiley & Sons.2014.	,		
Course	1. Students will be able to discuss the economic importance of in	organic		
Outcomes:	materials.			
	2. Students will be able to understand concepts in chemistry use	eful for		
inorganic industries.				
--	--	--	--	--
3. Students will be able to describe syntheses involved in industrial				
production.				
4. Students will be able to explain applications of industrial inorganic				
materials in several other sectors.				

Name of the Programme: M.Sc. Part-II (Chemistry)

Course Code: CHC-600 **Title of the course:** Research Methodology and instrumental

techniques-I

Number of Credits: 4

Effective from AY: 2023-24

Prerequisites	Students should have studied chemistry courses at MSc-I level.				
for the					
course:					
Course	1. To introduce various aspects of research methodology.				
Objective:	2. To provide understanding ethics & scientific conduct.				
	3. To introduce academic writing.				
	4. To introduce databases used in chemistry.	4. To introduce databases used in chemistry.			
	5. To provide understanding and importance of lab safety.				
	6. To understand the usefulness of various instrumental techniques in				
	characterization of chemical compounds.				
Content	1. Introduction to Research Methodology	No of			
	Research- meaning, objectives, motivation, types and	hours			
	methodology.				
	Process- formulating the research problem; literature survey; 5				
	developing the hypothesis and the research design; sample				
	design and collection of the data; execution of the project;				
	analysis of data; testing of hypothesis; generalizations and				
	interpretation, and preparation of the report or presentation of				
	the results & conclusions.				
	2. Scientific conduct and ethics	5			
	Ethics: definition, nature of moral judgements and reactions,				
	Ethics with respect to science and research.				
	Intellectual honesty and research integrity.				
	Scientific misconducts: Falsification, Fabrication, and				
	Plagiarism (FFP).				
	Redundant publications: duplicate and overlapping				
	publications.				
	Selective reporting and misrepresentation of data.				
	3. Academic writing	5			
	Publication ethics: definition, introduction and importance				
	Conflicts of interest				
	Publication misconduct: definition, concept, problems that lead				
	to unethical behaviour and vice versa				
	Violation of publication ethics, authorship and contributorship				
	Identification of publication misconduct, complaints and				
	appeals				
	Predatory publishers and journals				

		2				
	4. Data bases and research metrics 3 Detahases 1. Indexing detahases 2. Citation detahases Web of					
	Databases: 1. Indexing databases 2. Citation databases: Web of					
	Science, Scopus, UGC-Care List etc.					
	Research Metrics: 1. Impact Factor of journal as per Journal					
	Citation Report, SNIP, SJR, IPP, Cite Score 2. Metrics: h-index,					
	g index, i10 index etc					
	5. Safety aspects in Chemistry5					
	Good laboratory practices.					
	Handling of various chemicals, solvents & glassware.					
	Fires and fighting with fires.					
	Hazardous substances, classification and handling					
	Safety Data Sheet					
	6. Softwares in Chemistry 7					
	Data plotting					
	Structure Drawing					
	Reference management software					
	7. Instrumental methods of analysis: 30					
	Demonstration and/ or data analysis in following techniques:					
	Elemental analysis: CHNS analysis and AES					
	Infrared (IR), Raman, Ultraviolet-Visible (UV-Vis)					
	Nuclear magnetic resonance $({}^{1}H, {}^{13}C)$					
	Chromatographic techniques: HPLC, GC,					
	Hyphenated Techniques: LC-MS & GC-MS,					
	Diffraction methods: XRD					
	Thermal analysis: DSC					
	Microscopy: SEM, TEM					
	Methods for determination of magnetic & dielectric					
	properties.					
	Cyclic voltammetry					
Pedagogy	Mainly lectures/recorded video lectures/ tutorials, discussions, se	minars,				
	internal exams/ assignments, / demonstration/ self-study	or a				
	combination of some of these. ICT mode should be preferred. Sessions					
	should be interactive in nature to enable peer group learning.					
References /	1. C. R. Kothari, Research Methodology: Methods & Tech	niques,				
Readings	New Age International Pvt. Ltd., 2004.	-				
	2. Bird, Philosophy of Science, Routledge, 2006.					
	3. M. Coghill & L. R. Garson, The ACS Style Guide: Effective					
	Communication of Scientific Information, American Cl	hemical				
	Society Washington, DC & OXFORD University Press New					
	York. 2006.					
	4. Y. K. Singh, Fundamentals of Research Methodology &					
	Statistics, New Age International Pvt. Ltd., 2006.					
	5. National Research Council, Prudent practices in the laboratory:					
	handling and management of chemical hazards, The N	Jational				

	Academies Press, USA, 2011.
	6. B. S. Furniss, A. J. Hannaford, P. W. G. Smith & A. R. Tatchell,
	Vogel's Text book of Practical Organic Chemistry, 5 th Ed.;
	Longmann, 1989
	7. E. A. V. Ebsworth, D. W. H. Rankin & S. Craddock, Structural
	Methods in Inorganic Chemistry, Blackwell Scientific Publishers.
	1986.
	8. R. S. Drago, Physical Methods in Chemistry, 2 nd Ed. W. B.
	Saunders Co. Ltd. 2016
	9. R. M. Silverstein, F. X. Webster; Spectrometric identification of
	Organic Compounds; 6 th Ed, Wiley, 2011.
	10. J. Mendham, R. C. Denny, J. D. Barnes & M. Thomas, Vogel's
	Textbook of Quantitative Chemical Analysis, 6 th Ed.; Pearson
	Education Asia, 2002.
	11. H. V. Keer, Principles of the Solid State, 1 st Ed. New Age
	International (P) Ltd., 2005.
	12. G. D. Christian, Analytical Chemistry, 6 th Ed.; Wiley, 2004.
	13. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of
	Analytical Chemistry, 9 th Ed.; Cengage learning.
	14. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental
	Analysis, 7 th Ed.; Cengage learning.
	15. P. G. Lampman, G. Kriz and J. Vyvyan, Introduction to Organic
	Spectroscopy, 5 th Ed.; Cengage Learning, 2015.
	16. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T.
	T. Eisenhart, and J. L. Dempsey, A Practical Beginner's Guide to
	Cyclic Voltammetry, J. Chem. Educ. ACS, 2018, 95, 197-206.
	17. V. Rajaraman, Computer Programming in Fortran 90 And 95,
	PHI Learning Pvt. Ltd., 2013.
	18. Szabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction
	to Advanced Electronic Structure Theory, Dover Publications,
	Inc. Mineola, 1989.
Course	1. Students will be able to apply research methodology concepts.
Outcome:	2. Students will be able to apply computer technology to solve their
	research problems in chemistry.
	3. Students will know in advance the safety precautions to be taken in
	the chemical lab.
	4. Students will gain fundamental knowledge on characterization
	techniques.

Name of the Programme: M.Sc. Part-II (Chemistry)

Course Code: CHC-601 **Title of the course:** Research Methodology and instrumental

techniques-II

Number of Credits: 4

Effective from AY: 2023-24

Prerequisites	Students should have studied chemistry courses at MSc-I.					
for the course:						
Course	1. To introduce various aspects of research methodology.					
Objective:	2. To provide understanding ethics & scientific conduct.					
	3. To introduce academic writing.					
	4. To introduce databases used in chemistry.					
	5. To provide understanding and importance of lab safety.					
	6. To understand the usefulness of various instrumental techniques					
	characterization of chemical compounds.					
Content	1. Research Methodology, Scientific conduct, ethics &	No of				
	academic writing	hours				
	Research- meaning, objectives, motivation, types and					
	methodology.	15				
	Process- formulating the research problem; literature survey;					
	developing the hypothesis and the research design; sample					
	design and collection of the data; execution of the project;					
	analysis of data; testing of hypothesis; generalizations and					
	interpretation, and preparation of the report or presentation					
	of the results & conclusions.					
	Ethics: definition, nature of moral judgements and reactions,					
	Ethics with respect to science and research.					
	Intellectual honesty and research integrity.					
	Scientific misconducts: Falsification, Fabrication, and					
	Plagiarism (FFP).					
	Redundant publications: duplicate and overlapping					
	publications.					
	Selective reporting and misrepresentation of data.					
	Publication ethics: definition, introduction and importance					
	Conflicts of interest					
	Publication misconduct: definition, concept, problems that					
	lead to unethical behaviour and vice versa					
	Violation of publication ethics, authorship and					
	contributorship					
	Identification of publication misconduct, complaints and					
	appeals					
	Predatory publishers and journals					
	2. Softwares in chemistry, Data bases and Research metrics	10				

	Data plotting using GNU plot; Structure Drawing using			
	ChemSktech; Reference management software such as			
	Mendeley and Zotero.			
	Databases: Indexing databases, Citation databases: Web of			
	Science, Scopus, UGC-Care List, Scimago etc.			
	Research Metrics: Impact Factor of journal as per Journal			
	Citation Report, SNIP, SJR, IPP, Cite Score; Metrics: h-			
	index, g-index, i10-index etc			
	Molecular Docking software			
	3. Safety practices in Chemical research	5		
	Introduction to lab safety.			
	Handling of various chemicals, solvents & glassware.			
	Fires and fighting with fires.			
	Hazardous substances, classification and handling			
	Safety Data Sheet			
	4. Instrumental methods	30		
	UV-Visible spectroscopy in elucidation of mechanisms of			
	C-H activation reactions, epoxidation etc by transition metal			
	catalyst.			
	Understanding water oxidation reaction using Cyclic			
	voltammetry (CV) & Linear Sweep voltammetry (LSV)			
	Determining capacity of supercapacitors using			
	Galvanostatic Charge-Discharge (GCD)			
	Electrochemical Impedance Spectroscopy (EIS)			
	Resonance Raman and isotope labelling studies.			
	Infrared (IR) spectroscopy applications			
	¹ H, ¹³ C- NMR spectroscopy and applications			
	Selected chromatographic techniques such as HPLC, GC.			
	Hyphenated Techniques/applications: LC-MS, GC-MS, LC-			
	NMR-MS, GC-IR, ICP-MS			
	Diffraction methods: High temperature XRD			
	Thermal analysis: TG/DTA/DSC			
	Microscopy: Fe-SEM, HR-TEM			
	Methods for determination Ms, Mr, Hc, Tc, ε^{t} and Tan δ .			
	Potentiometry			
Pedagogy	Mainly lectures/recorded video lectures/ tutorials, discu	ussions,		
	seminars, internal exams/ assignments, / demonstration/ self-stu	dy or a		
	combination of some of these. ICT mode should be preferred. Sessions			
	should be interactive in nature to enable peer group learning.			
References /	1. C. R. Kothari, Research Methodology: Methods & Tech	niques,		
Readings	2 Bird Philosophy of Science Routledge 2006			
	2. Diru, rhilosophy of Science, Routledge, 2000. 3. M. Coghill & I. R. Garson. The ACS Style Guide: Effective			
	Communication of Scientific Information, American Cl	nemical		
	Society Washington, DC & OXFORD University Press New	v York,		

		2006.
	4.	Y. K. Singh, Fundamentals of Research Methodology & Statistics,
		New Age International Pvt. Ltd., 2006.
	5.	National Research Council, Prudent practices in the laboratory:
		handling and management of chemical hazards. The National
		Academies Press, USA, 2011.
	6.	B. S. Furniss, A. J. Hannaford, P. W. G. Smith & A. R. Tatchell,
		Vogel's Text book of Practical Organic Chemistry, 5th Ed.:
		Longmann, 1989
	7.	E. A. V. Ebsworth, D. W. H. Rankin & S. Craddock, Structural
		Methods in Inorganic Chemistry, Blackwell Scientific Publishers,
		1986.
	8.	R. S. Drago, Physical Methods in Chemistry, 2nd Ed. W. B.
		Saunders Co. Ltd. 2016
	9.	R. M. Silverstein, F. X. Webster; Spectrometric identification of
		Organic Compounds; 6th Ed, Wiley, 2011.
	10.	J. Mendham, R. C. Denny, J. D. Barnes & M. Thomas, Vogel's
		Textbook of Quantitative Chemical Analysis, 6th Ed.; Pearson
		Education Asia, 2002.
	11.	H. V. Keer, Principles of the Solid State, 1st Ed. New Age
		International (P) Ltd., 2005.
	12.	G. D. Christian, Analytical Chemistry, 6th Ed.; Wiley, 2004.
	13.	Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of
		Analytical Chemistry, 9th Ed.; Cengage learning.
	14.	Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental
		Analysis, 7th Ed.; Cengage learning.
	15.	Pavia, G. Lampman, G. Kriz and J. Vyvyan, Introduction to
		Organic Spectroscopy, 5th Ed.; Cengage Learning, 2015.
	16.	N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T.
		Eisenhart, and J. L. Dempsey, A Practical Beginner's Guide to
		Cyclic Voltammetry, J. Chem. Educ. ACS, 2018, 95, 197–206.
	17.	V. Rajaraman, Computer Programming in Fortran 90 And 95, PHI
		Learning Pvt. Ltd., 2013.
	18.	Attila Szabo, Neil S. Ostlund, Modern Quantum Chemistry:
		Introduction to Advanced Electronic Structure Theory, Dover
		Publications, Inc. Mineola, 1989.
	19.	Leach, Molecular Modelling, Principles and applications,
		Longman, 1998.
	20.	w. Nam et al, Dioxygen activation by Metalloenzymes & models,
		Accounts of Chemical Research, 2007, Volume 40 & references
		cited therein.
Course	1.	Students will be familiar with research methodology concepts.
Outcome	2	Students will be able to apply computer technology to solve their
Sucome.	۷.	research problems in chemistry
	2	Stydente will be even in education the sufficiency of the sufficiency
	3.	Students will know in advance the safety precautions to be taken in
		the chemical lab.
	4.	Students will gain fundamental knowledge on characterization
		techniques.

Name of the Programme: M.Sc. Part-II (Chemistry)

Course Code: CHC-651 **Title of the course:** Discipline Specific Dissertation

Number of Credits: 16

Effective from AY: 2023-24

Prerequisites	Students should have studied chemistry courses at MSc-I level.		
for the course:			
Course	To develop the skills of preparing and conducting independent research.		
Objective:			
Content	As per OA-35	No of Hours	
		480	
Pedagogy:	Dissertation carried out individually by each student throughout the		
	academic year.		
References /	As required for the development of review and methodology.		
Readings:			
Course	Students will be able to understand and apply the tools and techniques of		
Outcome:	chemistry in conducting independent research.		