ANNEXTURE-I

SYLLABUS OF M.SC. (ELECTRONICS) (Effective from AY: 2018-19)

The Couse requirement is completion of 64 credits(ie 16 credits/semester,

SR. NO	COURSE CODE	TITLE	CREDITS	ТҮРЕ		
	SEMESTER-I					
1	ELC 101	MICROELECTRONICS AND VLSI DESIGN	4	L		
2	ELO 101	ADVANCED DIGITAL COMMUNICATION SYSTEMS	4	L		
3	ELO 102	NUMERICAL COMPUTATION AND ALGORITHMS(FLIPPED CLASSROOM)	4	L		
4	ELC 102	ELECTRONICS PRACTICALS – I	4	Р		
5	ELO 181	SWAYAM-I	4	L		
		ΤΟΤΑ	L 16			
		SEMESTER II		1		
1	ELC 201	EMBEDDED SYSTEMS DESIGNS and IoT(FLIPPED CLASSROOM)	4	L		
2	ELO 201	OPTICAL COMMUNICATION SYSTEMS	4	L		
3	ELO 202	OPERATING SYSTEM AND RTOS	4	L		
4	ELC 202	ELECTRONICS PRACTICALS- II	4	Р		
5	ELO 281	SWAYAM-II	4	L		
6	ELO 203	BASICS OF MEDICAL IMAGING	1	L		
7	ELO 204	DATA SCIENCE AND MACHINE LEARNING	4	L		
		ΤΟΤΑ	L 16			
		SEMESTER III		1		
1	ELC 301	SIGNALS AND SYSTEMS	4	L		
2	ELO 301	DIGITAL SIGNAL PROCESSING	4	L		
3	ELO 302	INSTRUMENTATION & CONTROL THEORY	4	L		
4	ELC 302	ELECTRONICS PRACTICALS - III	4	Р		
5	ELO 381	SWAYAM-III	4	L		
6	ELO 303	DIGITAL SYSTEM DESIGN USING HDL	4	L		
7	ELO 304	EDA TOOLS (FLIPPED CLASSROOM)	4	L		
8	ELO 305	INDUSTRIAL INTERNSHIP	1	L+P		

			TOTAL	16	
		SEMESTER IV			1
1	ELO 401	PROJECT		8	Р
2	ELC 401	LASER SYSTEM ENGINEERING		4	L
3	ELC 402	ELECTRONICS PRACTICALS - IV		4	Р
4	ELO 481	SWAYAM-IV		4	L
5	ELO 402	NANOELECTRONICS & NANOSYSTE	MS	4	L
6	ELO 403	PHARMACEUTICAL INSTRUMENTA	ΓΙΟΝ	4	L
7ELO 404COMMUNICATION AND TECHNICAL SKILLS (FLIPPED CLASSROOM)		4	T+P		
	·		TOTAL	16	

Programe: M. Sc. (Electronics)

SEMESTER I

Course Code: ELC101 Title **of the Course:** MICROELECTRONICS AND VLSI DESIGN **Number of Credits:** 4

Prerequisites for	Should have graduate level knowledge in analog and digital	
the course:	electronics	
Objective:	This subject will introduce to the VLSI Technology, various fabrications processes involved in IC design, Electrical and Electronics analysis of few circuits, Some Design examples of VLSI circuits, Circuit Optimization techniques, Advance circuits designs examples of Memory, Registers, Synchronous circuits etc.	
Content:	An overview of VLSI, Modern CMOS Technology	4
	Silicon Logic, Logic design with MOSFET.	5
	Physical structure of CMOS Integrated circuits	4
	Fabrication Technologies of CMOS Integrated Circuits	7
	Elements of Physical Design	3
	Electrical characteristics of MOSFETS	6
	Electronic analysis of CMOS Logic gates	5

	Advanced Techniques in CMOS Logic Circuits	6
		Ĭ
	System specifications using HDL, General VLSI components	4
	Memories and Programmable Logic	4
	 Tutorials: 1.2nd order Butterworth filter using P-Spice student version. 2 Current Mirrors using P-Spice student version. 3.CMOS based Op-Amp using P-Spice student version. 4.Study of Lithography. 5.Compares various Static memories. 	
	Total	48
Pedagogy:	Lectures/ tutorials/assignments/self-study	
References/Readi ngs	 Introduction to VLSI Circuits and Systems, John P. Uyemura, WILLEY. Principles of CMOS VLSI Design, N.H.E. W. & Eshahiraghian, Addison Wesley Modern VLSI Design System on Silicon, Pearson Education Asia. By W. Wolf. VLSI Technology, S.M. Sze, McGraw Hill (1995). Basic VLSI Design, Douglas Pucknell, K. Eshraghian, Prentice Hall India. 	
<u>Learning</u> Outcomes	Students should able to designed fundamental gates and customize them for specific electrical and electronics application, Should understand the fabrications processes involved in VLSI technology, Write the Hardware descriptive form of circuits, Synchronize the combinational and sequential circuits, design a static and dynamic memory cell, Understand the Programmable logics building blocks.	

Course Code: ELO 101 Title of the Course: ADVANCED DIGITALCOMMUNICATION SYSTEMS

Number	of C	Credits:	4
--------	------	----------	---

Prerequisites for the	Graduate level understanding in basics of Electronic
<u>course:</u>	Communications
Objective:	This course is intended to introduce to students into the basics of wireless systems – concepts, theory. It covers various modulation techniques, to enable the student to synthesize and analyze wireless and mobile cellular communication systems over a stochastic fading channel

<u>Content:</u>	Introduction to Mobile and Cellular Communication Systems: Main Definitions, impact of Mobile and Cellular Radio Communication Historical overview. Fundamental of Radio Mobile and Cellular Practices Radio mobile links and cells, Frequency re-use, Principles of Cellular Com. Mobile Telephone Switching Subsystem, The mobile frequency spectrum, Hand-off, Cochannel and adjacent channel interference limitations, Near-far problem, Power Control.	6
	Mobile Communication Channel including antennas: The mobile wireless propagation channel, Notions on antennas especially the near and far field concept, Line of Sight (LOS) propagation, Multipath fading, outdoor and Indoor Propagation, Flat and selective fading, Special antennas for base stations and headsets, Deterministic, Empirical and Statistical Methods for propagation link computations.	8
	Overview of Mobile and Cellular Radio Communication Modulation and Detection Techniques: Analog modulations and detection: AM, FM, PM, ACSB, Hybrid and Digital modulation: PCM, ASK, FSK, QPSK, QAM, MSK, etc, Coherent and noncoherent detection, C/N, S/N, Eb/No and BER relations, Probability concepts, Mobile Radio links parameters.	10
	Overview of Multiple Accesses Techniques: Simplex, Duplex TDD and Time Division Duplex, Time division multiple access (TDMA) FDMA and OFDM, Code Division multiple access (CDMA), Hybrid multiple access, Management of voice, Data and Video (Multimedia) information.	09
	Modern Digital Radio Systems: standards, proposals and comparisons GSM (Europe and all over the world) - TDMA, IS-54 (U.S.A.)- TDMA, IS-95 (U.S.A., Korea) CDMA-, PHS (Japan) - TDMA, Frequency Hopping (FH) (U.S.A.) - CDMA, PCS, PCS Cordless telephone 2nd generation (CT-2), Cellular digital packet data (CDPD), and Wireless LAN, New standard trends Edge, 3rd and 4th generation beginning, LTE,	07
	Mitigation Techniques for Mobile System: Overview of Natural and manmade external noise sources, Radiation hazards effects from base stations, Mobile and portable equipments.	0.4
	Diversity Techniques for Mobile Radio Systems: Dispersive channels, Space diversity, Frequency diversity,	04

	Equalizer techniques	04
	Tutorials:	
	1. Study of Global Positioning system working principle.	
	2. Study of mobile Service providers in Goa Region.	
	3. Study of AIR station Bambolim, Goa.	
	4. Study of Distance Education Infrastructure Setup	
	(DEITE) at Goa University.	
	5. Study of various interfacing of mobile set eg. Bluetooth.	
	Total	48
Pedagogy:	lectures/ tutorials/assignments	
References/Readings	1. Steele, R., Hanzo, L., ''Mobile Radio	
	Communication'' 3rd Edition Wiley 2005.	
	2. Rappaport, T.S., "Wireless Communications:	
	Principles And Practice, 2/E, Pearson	
	3. Wireless Communications (WIRELESS	
	COMMUNICATIONS, 2ND ED, Molisch A F), Wiley	
Learning Outcomes	At the end of the course,	
	1.the students will be able to understand the design,	
	specifications and the performances of various wireless communication systems	
	2. Apply the cellular concepts to evaluate the signal	
	reception performance in a cellular network.	
	3. Apply the traffic analysis to design cellular network	
	with given quality of service constraints.	
	4. Determine the appropriate model of wireless	
	fading channel based on the system parameters and the	
	property of the wireless medium.	
	5. Analyze and design receiver and transmitter diversity techniques.	

Course Code: ELO102 **Title of the Course:** Numerical Computation and Algorithms **Number of Credits:** 4

Prerequisites for the	Students should have a knowledge of programming	
course:		
<u>Objective:</u>	The primary objective of the course is to develop the basic understanding of numerical algorithms and skills to implement algorithms to solve mathematical problems on the computer and also Data Bases.	
Content:	Computer Programming: Introduction to Algorithms, Elements of Computer Programming language Basics of algorithm design, general model, Dynamic programming model, principle of optimality, backtracking models.	08 hours

	 Algorithm order and complexity. Backtracking example 	
	Backtracking example.	
	Data Structures: Introduction to Data Structures, Vectors and	
	Lists, Binary Trees, Graphs, Hashing.	10 hours
	• Implementation of Shortest path algorithm	
	• Implementation of binary tree	
	1	
	Theory of Numerical programming: Theory of numerical	
	errors, Numerical Integration: Trapezoidal & Simpsons rule,	24 hours
	Romberg method, Improper integrals; Numerical Solution of	24 hours
	linear equations: Guass-Jordon elimination and Lu	
	decomposition, Numerical Solutions of nonlinear equations:	
	Bracketting, bisection, Secant & Regulafalsi method, Newton-	
	Ralphson method; Numerical Solutions to Ordinary differential	
	equations: Runge-Kutta method, Modified midpoint method, Richardson extrapolation.	
	Trapezoid methods, Newtons Raphson methods	
	 Bisection and Regular falsi methods 	
	 Runge Kutta 	
	- mango manu	
	Database: Basic Concepts, Relational Data Model, Database	
	Design, DBMS storage structures and access methods, Query	
	Processing, Transaction Processing, Security & Integrity,	06 hours
	Distributed Databases, Client Server Computing.	00 nours
	• SQL for database	
	Client Server data base query	
	Tutorials:	
	 Implementation of Vector in C++. Implementation of List in C++. 	
	 Implementation of Eist in C++. Implementation of minimum path algorithms in C++. 	
	 Simple Example of Database querying in C++. 	
	1. Case study on the Emerging Trends in databases (Data	
	mining).	
	Total	48
Pedagogy:	lectures/ tutorials/presentation/practical	
	1 Dete structures using C and C + by Vediduck Langeau	
<u>References/Readings</u>	 Data structures using C and C++ by Yedidyah Langsam, Moshe J Augenstein, Aaron M Tenenbaum, Prentice Hall 	
	of India, 1995	
	 Data Abstraction and Problem solving in Java by Frank M 	
	Carrano, Janet J Prichard ,Addison-Wesley, 2001	
	3. Numerical Recipes in C, William H. Press, Brain P.	
	Flannery, William T. Vetterling, Saul A. Teulosky,	
	Cambridge University Press, 1990.	
	4. Numerical Mathematical Analysis, J. B. Scarborough,	
	Oxford and IBM Publishing Company (1979).	
	5. Numerical Recipes in C: The Art of Scientific Computing	
	by William H Press, Brian P Flannery, Saul A Teukolsky -	
	Mathematics – 1992. Eurodemontals of Database Systems 4th Edition by P	
	6. Fundamentals of Database Systems, 4th Edition by R Elmasri, S Navathe Addison-Wesley, 2003	
Learning Outcomes	After completing this course they will be able to use	
Learning Outcomes	riter completing this course mey will be able to use	

numerical methods for solving a problem, locate and use	
good mathematical software, get the accuracy you need	
from the computer, assess the reliability of the numerical	
results, and determine the effect of round off error or loss	
of significance. Solve a linear system of equations using an	
appropriate numerical method	

Course Code: ELC 102 **Title of the Course: ELECTRONICS PRACTICALS –I Number of Credits:** 4

Number of Cred	115. +	
Prerequisites	Should have studied graduate level basic level electronic	
for the course:	subject. It is assumed that students have a working knowledge	
	of passive and active components and digital circuits.	
Objective:	The hardware experiments give a student hands-on experience	
	to design the basic digital and analog circuits, usually found in	
	house hold appliances. The simulations experiments give	
	understanding of the digital communications having various	
	modulation techniques and also data correction and detection in	
	general communication system.	
Content:	Hardware experiments	
	1. Design of variable voltage supply @ 2 Amps.	
	2. Temperature Controller using 741.	
	3. Design of Function Generator.	
	4. Design of 4-bit UP-DOWN Counter.	
	5. Design of Power Amplifier 10 Watts.	
	6. Design of Stepper driver using Monoshot & 555 Timer.	
	Software Simulations	
	7. Implementation of MSK modulation and demodulation.	
	8. ASK, FSK, QPSK, modulation & demodulation.	
	9. QPSK, modulation & demodulation	
	10. DS-CDMA simulation.	
	11. Channel Coding methods.	
	a. Convolution b. Block code	
	12. Error detection and correction Algorithm	
	a. CRC b. Hamming code	
	Total	96
Pedagogy:	Presentations /assignments/self-study	
Learning	The student will understand and should be able to handle basic	
<u>Outcomes</u>	equipment in house hold. Also, he will thoroughly understand	
	the basics of communication system for modulation, data	
	coding, error coding channel coding methods.	

Course Code: ELO181 Title of the Course: SWAYAM-I Prerequisite/objectives/learning outcomes as provided by course on SWAYAM website. Number of Credits: 4

SEMESTER II

Course Code: ELC 201 Title of the Course: EMBEDDED SYSTEMS DESIGNS & IoT Number of Credits: 4

Prerequisites for the	Should have studied microprocessor and C programming	
course:	at graduate level	
<u>Objective:</u>	 Architectures of Microcontroller and its programming with Interfacing various Interfaces is discussed in depth in this paper. In this course students are going to learn how to develop apps for Android phone using SDK. To Understand the Architectural Overview of IoT To Understand the IoT Reference Architecture and Real-world Design Constraints To Understand the various IoT Protocols (Data link, Network, Transport, Session, Service) 	
<u>Content:</u>	Architectures:Embeddedsystem, ComputerArchitecture,RISC/CISCandHarvard/PrincetonArchitectures,Introduction to 8-bit Micro controllers,ARM :Introduction to 32/64-bit Processors,Latest ARM,ARM Architecture & Organization,ARM/THUMB,ARM/THUMBInstructionSet,ARM/THUMBInstructionSet,Handling, Timers/Counters,UART,SPI,PWM,WDT,Input Capture,Output Compare Modes,I2C.Interfacing:LED,Switches,ADC,LCDProgramming :ARMproduction to Android & app development	10 2 7 3
	IoT ARCHITECTURE AND PROTOCOLS: IoT-An Architectural Overview– Building an architecture, Main design principles and needed capabilities, An IoT architecture outline, standards considerations. M2M and IoT Technology Fundamentals- Devices and gateways, Local and wide area networking, Data management, Business processes in IoT, Everything as a Service (XaaS), M2M . Introduction IoT Big Data Analytics IOT DATA LINK LAYER & NETWORK LAYER PROTOCOLS PHY/MAC Layer(3GPP MTC, IEEE 802.11, IEEE 802.15), Wireless HART,Z-Wave, Bluetooth Low Energy,	8 2 5

	Zigbee Smart Energy, DASH7 - Network Layer-IPv4, IPv6, 6LoWPAN, 6TiSCH,ND, DHCP, ICMP, RPL, CORPL, CARP TRANSPORT & SESSION LAYER PROTOCOLS Transport Layer (TCP, MPTCP, UDP, DCCP, SCTP)- (TLS, DTLS) – Session Layer-HTTP, CoAP, XMPP, AMQP, MQTT SERVICE LAYER PROTOCOLS & SECURITY Service Layer -oneM2M, ETSI M2M, OMA, BBF – Security in IoT Protocols– MAC 802.15.4 , 6LoWPAN, RPL, Application Layer.	6 5
<u>Total</u>		48
Pedagogy:	lectures/ tutorials/assignments/self-study/Flipped classroom	
References/Readings	 Jivan Parab etal., Exploring C for microcontroller (Springer 2007) Lipovski G. J. Single and multiple Chip Microcontroller interfacing. Prentice Hall, USA 1998. Beginning Android 4 Application Development Professional Android 4 Application Development Learning Android Game Programming : A Hands-On Guide to Building Your First Android Game 1st Edition Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand,StamatisKarnouskos, David Boyle, "From Machine-to-Machine to theInternet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014. Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet ofThings", ISBN 978-3-642- 19156-5 e-ISBN 978-3-642-19157-2, Springer Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-onApproach)", 1st Edition, VPT, 2014. 	
Learning Outcomes	 Students will be able to develop their own embedded platform using ARM They will be able to design android application for mobiles 	
	• understand where the IoT concept fits and possible future trends; understand the various network protocols used in Application	

Course Code: ELO201 **Title of the Course:** OPTICAL COMMUNICATION SYSTEMS

Number of Credits	4	
Prerequisites for the course:	The Knowledge of Electro statics and electromagnetics. Also, basic understanding of analog and digital communication is preferable.	
<u>Objective:</u>	The paper highlights importance of optical communication over existing copper cable and microwave communication. It also gives an elaborate view of electromagnetic spectrum usage for various applications starting from telephony till satellite communication. A strong theoretical base is created to understand the difference between ray theory and wave theory approach for passage of signal in optical fibers. The estimation of noise in optical detection is discussed in detail. The paper emphasizes the industrial needs in cabling technique and type of cable used. Different techniques of optical fiber manufacturing and measuring their characteristic are discussed.	
<u>Content:</u>	Light Propagation in Optical Fiber: Geometric picture, Pulse spread due to material dispersion, loss mechanism, Theory of Optical waveguides, methods of waveguides analyses, modes in steps and graded index fiber, new types of optical fibers Fiber Optics Technology: Glass fiber fabrication, cable design, coupling, splicing and connectors, splicing methods, connectors, fiber	7 7
	measurements. Optical Sources: LED and LDs, development of Laser diodes structures, transmitter circuits, Coupling efficiency of source to fiber.	6
	Optical detectors: Photodiodes, Avalanche diodes and other detectors. Receiver sensitivity and BER: Receiver design, Noise in	6 8
	detectors. Communication System design : System requirement, System design, Link analyses, Power budgeting.	7
	Transmission : TDM, Undersea fiber optics communication system, WDM and DWDM techniques	7
	Total	48
Pedagogy:	Lectures/Tutorials/Presentations /self-study	
<u>References/Readi</u> ngs	1. Optical Fiber Communication by A. Selvarajan and etal TMH, .	

Number of Credits: 4

	 2. Optical Fiber Communication by Gerd Keiser , MGH , . 3. Optical Electronics, 4th Edition by A. Yariv, HRW publication, 	
<u>Learning</u> <u>Outcomes</u>	The students at the end of the paper, will have some knowledge of designing a point to point optical link for a given situation. They will also be able to choose the right type of components if an assignment of optical network design is given. The course is also useful for students who would like to join telecom industries, as many aspects of practical situation are discussed during course of study. They are also taught to monitor signal losses during course of signal transmission. The student from this course will be	
	confident	

Course Code: ELO 202 **Title of the Course:** OPERATING SYSTEM AND RTOS **Number of Credits:** 4

Number of Creates.		1
Prerequisites for	Should have studied digital electronics at graduate level	
the course:		
Objective:	This course develops to focus on concept of highlighting the various methods of improvising speed of computing machine through the operating system organization and various entity managements. Further the subject is developed to analyse the small embedded system developments through the Real Time Operating Systems for task management efficiency.	
<u>Content:</u>	Introduction to Computer Organization and Architecture : hardware vs. software -the virtual machine concept, concept of von Neumann architecture, hardware components and functions, trends in hardware development, system configurations and classifications.	6 hours
	Process Description and Control: Processes, process states, processor modes, context switching, CPU scheduling algorithms, threads.	5 hours
	Concurrency Control: Concurrent processes, critical section problem and solutions, mutual exclusion solution requirements, semaphores and monitors.	5 hours
	Deadlocks: Characterization, detection and recovery, avoidance, prevention.	5 hours
	Inter Process Communication: classical IPC problems and solutions, IPC techniques.	3 hours
	The Input/Output and File Subsystem: I/O devices, controllers and channels, bus structures, 1/0 techniques (programmed, interrupt driven and DMA), I/O subsystem layers. Concepts of files and	6 hours

	 directories, issues and techniques for efficient storage and access of data. I/O and file system support for graphics, multimedia, databases, transaction processing and networking. The Memory Subsystem: Memory types and hierarchy, module level Organization, cache memory. Memory partitioning, swapping, paging, segmentation, virtual memory. The Central Processing Unit: CPU components, register sets, instruction cycles, addressing modes, instruction sets, concept of micro-programming ,Basics of RISC approach, pipelined and super-scalar 	8 hours 6 hours
	approaches, vector processors and parallel processors, hardware support for the OS. µCOS case study	4 hours
	Tutorial1. Implementing Lower Level Shell2. Implementing Signal in Unix3. Hard disk partitioning in Linux	
	Total	48
Pedagogy:	Lectures/ tutorials/assignments/self-study	
References/Readi ngs	 Operating system principles, 3rd Edition,by Willian Stallings –PHI(1998) Operating system concepts by Silberchatz and Galvin - Addision wesley Operating system by Tanaumbuam, PHI New Delhi 	
Learning Outcomes	Will able to generalize the understanding of the computing machine and various entities associated with the enhancement of the efficiency. Will able to handle the operating system management process, memory, I/O, Secondary Disk and organizations of various. Students will able to handle any operating system for process and task managements if follows the documentations of the same.	

Course Code: ELC 202 **Title of the Course:** ELECTRONICS PRACTICALS-II **Number of Credits:** 4

Prerequisites for the course:	Should have studied microcontrollers and embedded system.
Objective:	The students will handle experiments on processor and

<u>Content:</u>	 controllers like 8086, 89C51, PIC and ARM controller derivatives for Input Output operation, Various communication interfaces, data acquisition, task management. 1. Coping the memory segment using 8086 Assembler 2. Sorting of numbers using 8086 Assembler 3. Multiplication & Division using 8086 Assembler 4. LCD & LED Interfacing to ATMEL 89C52 5. 7-segment Interfacing to ATMEL 89C52 (BCD counter) 6. Display Temperature using ATMEL 89C52 7. Serial Transmission and reception PIC16F877 8. Configuring On - chip ADC PIC16F877 9. Waveform generation using I2C based Max5822 interfaced to PIC 16F877 10. Hex Keypad Interfaced to ARM controller 11. LCD & LED Interfacing using ARM controller 12. Switching of tasks using ARM controller 13. Shell programming - Web Application. 	
	e e	
	Total	96
Pedagogy:	Presentations /self-study/laboratory design and implementation	
Learning Outcomes	Should able to analyze the architectures of any processor, controller. Will able to designs some application using embedded system using tasks for real time applications. Should able to handle any computing machine using shell script for computing and management.	

Course Code: ELO 281 Title of the Course: Swayam-II Number of Credits: 4 Prerequisite/objectives/learning outcomes as provided by course on SWAYAM website

Title of the Course: BASICS OF MEDICAL

Course Code: ELO 203 IMAGING Number of Credits: 1

<u>Prerequisites for the</u> course:	NIL	
Objective:	This is a basic course to give an idea of various radiology techniques used in hospitals for imaging internal organs. While the major part of the course deals with X-ray based imaging techniques, other popular techniques such as ultrasound and Magnetic Resonance Imaging are discussed in depth. The	

	mathematical tools used for imaging analysis are also discussed	
	briefly. Advanced techniques such as 3D imaging and Doppler	
	methods are explained in a concise manner.	
Content:	UNIT-I :Basic Medical Imaging :	6
	Basics of medical imaging, X-ray, CT, Ultrasound, MRI,	
	PET-CT, SPECT-CT, Gamma Camera, Catheterization Lab.	
	Aspects of light imaging, convolutions and transforms,	
	photometry lenses and depth of field, Image perception and	
	3D Imaging, Image acquisition, Display, Image processing	
	operations, scanning & segmentation.	
	UNIT-II: Ultrasound Imaging:	6
	Principles of Ultrasound, Basic Ultrasound instrumentation,	
	Image Characteristics: Ultrasonic Texture, Speckle reduction,	
	Compensation of Phase Aberration, Tissue Characterization.	
	Imaging techniques: (A mode, B Mode, 2B, B/M, 4B, Gated	
	Mode, 3D, 4D, M-Mode, Echocardiography) ,Doppler	
	Methods, Image recording devices, Image artifact,	
Total		12
Pedagogy:	lectures/ tutorials/assignments/self-study/presentation/	
References/Readings	1. Introduction to Medical Imaging: Physics, Engineering	
<u></u> _	and Clinical Applications ,Cambride	
	2. Medical Imaging: Principles and Practices, CRC press.	
Learning Outcomes	This course enriches a common man regarding	
	non-invasive techniques used by hospitals and	
	clinics to monitor the various health related issues.	
	The course also prepares a student for higher	
	learning in field of biomedical electronics.	

Course Code: ELO 204 **Title of the Course:** Data Science and Machine Learning **Number of Credits:** 04

Prerequisites for the	Should have the knowledge of basic linear algebra and	No. of
course:	reasonable programming experience	Lectures
Objective:	The objective of this course develop the fundamental	
	knowledge of concepts related to data science and see how	
	Data Science helps to analyze large, unstructured data with	
	different tools	
Content:	1. Introduction:	03
	What is data science? Exploratory data analysis, Data	
	Science Process, Data Case Studies	
	2. Types of Data: Structured and Unstructured data, Quantitative and Qualitative data, Data levels	03
	3. Python Structuring Data Science: Why Python, Working with Python, Reviewing basic	03

	python	
	 4. Visualizing Data: Matplotlib, Bar Charts, Line Charts, Scatterplots, For Further Exploration 	03
	 Working With Data: Exploring One-Dimensional Data, Two Dimensions, n- dimensions, Data classes, Cleaning and Munging, Manipulating Data, Rescaling, Dimensionality Reduction 	05
	6. Machine Learning: Modeling, What is Machine Learning? Overfitting and Underfitting, Correctness, The Bias-Variance Trade-off, Feature Extraction and Selection	05
	7. k-Nearest Neighbors: Model, Curse of Dimensionality	04
	8. Regression: Simple Linear Regression: Model, Using Gradient Descent, Maximum Likelihood Estimation Multiple Regression: Model, Assumptions of the Least Squares Model, Fitting the Model, Interpreting the Model, Goodness of Fit, Digression: The Bootstrap, Standard Errors of Regression Coefficients, Regularization Logistic Regression: The Logistic Function, Applying the Model, Goodness of Fit, Support Vector Machines	06
	9. Decision Trees: What Is a Decision Tree? Entropy, The Entropy of a Partition, Creating a Decision Tree, Random Forests	02
	10. Neural Networks: Perceptrons, Feed-Forward Neural Networks, Backpropagation	03
	11. Deep Learning: The Tensor, The Layer Abstraction, The Linear Layer, Neural Networks as a Sequence of Layers, Loss and Optimization, Other Activation Functions, Softmaxes and Cross-Entropy, Dropout	05
	12. Clustering The Idea, The Model, k-mean, Bottom-Up Hierarchical Clustering	04
	13. Data Science and Ethical Issues: Discussions on privacy, security, ethics,	02
Total		48
Pedagogy:	Lectures/Tutorials/Assignments/Self- Study/Presentation/Practical	
<u>Reference/Readings</u>	1. Data Science from Scratch, First Principles with Python, 2 nd Edition, Joel Grus, O'Reilly Media,Inc., 1005	

	 Gravenstein Highway North, Sebastopol, CA 95472. Principles of Data Science, Sinan Ozdemir, Packt Publishing, Livery Place, 35 Livery Street, Birmingham B3 2PB, UK. Doing Data Science, Straight Talk From The Frontline, Cathy O'Neil and Rachel Schutt, O'Reilly. 2014, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. Programming in Python, Dr. Pooja Sharma, First Edition,
	BPB Publications, India
Learning Outcomes	At the end of the course students will be able to:
	1. Explain the fundamentals concepts of data science and categories of data.
	2. Develop the skills to analyze the data with python programming.
	3. Analyze the unstructured data using various methodologies to get meaningful information out of it.

SEMESTER III

Course Code: ELC 301 **Number of Credits:** 4 Title of the Course: Signals and Systems

Prerequisites for the	Should have studied first year of M.Sc electronics	
course:		
Objective:	The objectives of this course are to develop good understanding	
	about signals, systems and their classification; to provide with	
	necessary tools and techniques to analyze electrical networks	
	and systems to develop expertise in time-domain and frequency	
	domain approaches. Also discusses different types of Filters	
	and Its design.	
Content:	1. Signal And Signal Processing:	04
	Characterization and classification of signal, Typical signal	
	Operations.	
	•	
	2.Discrete time signal and Systems:	
	Time Signal, Sequence representation, Sampling process,	08
	Simple Interconnection schemes, Correlation of Signal,	
	Random Signal.	
	3.Discrete Time Fourier Transform:	
	Continuous Discrete-time FT, Energy Density Spectrum, Phase	10
	and Group Delays, Sampling of continuous tie signal, Low pass	
	& Band pass Signal, Anti-Aliasing Filter design, Sample and	
	Hold, A to D, D to A convertors, Effects of sample and hold.	
	4 D:-: 4-1 F: 14-1 Game - 4	0.0
	4.Digital Filter Structure:	08
	Block diagram representation, FIR, IIR filter, Allpass filter,	
	Tunable IIR Digital filter, Digital Sin-Cosine generator.	
	Computational complexity.	
	5.FIR Digital Filter Design:	07
	Preliminary considerations, FIR Design based on windowed FS,	~ .

	Design of minimum phase.	
	2. DSP Algorithm implementation: Structure simulation, Computation of DFT, DFT & IDFT using MATAB, Sliding DFT, Number representation, Handling overflow, Tunable digital filters.	06
	3. Application of Digital Signal Processing: Dual tone multi frequency tone signal Detection, Musical sound processing, Signal compression, Trans multiplexers.	05
	 Tutorials: 1. History of Fourier Transform. 2. Understanding Speech Spectral Analysis Problem. 3. Understanding FFT. 	
	 Study of TMS Series of processors. MATLAB program for generation of complex exponential sequence. 	
<u>Total</u>		48
Pedagogy:	lectures/ tutorials/assignments/self-study/presentation/	
References/Readings	 Sanjit K Mitra, Digital Signal Processing: A computer Based Approach Digital Signal Processing, Johnny Johnson, PHI. Digital Signal Processing, Proakis, PHI. 	
Learning Outcomes	Applying different signal processing algorithms to any given application.	
	Learns about Different types FIR and IIR filters	

Course Code: ELO 301 **Number of Credits:** 4 Title of the Course: Digital Signals Processing

Prerequisites for the	Basic knowledge in Numerical Methods and computation	
	at graduate level or higher.	
<u>course:</u>	at graduate level of higher.	
Objective:	This course develops concepts in designing the	
	experiment in Matlab and Simulink.	
Content:	Students have to design the following experiments in	
	Matlab and Simulink and plot the characteristics of the	
	signal processing system under design.	
	1.Filters	
	a. Lp norm	12
	b. Ensemble averaging Filters	
	c. Exponential moving average systems	
	d. Median filter	
	e. FIR	
	2.Understanding and implementation of aliasing effect.	05
	3.Oscillators	
	a. Design using Van der Pol's equation	07

		1
	b. Lorentz oscillators systems	
	c. Gaussian oscillators systems	
		05
	4.FFT and DFT: design and implementation of DFT and FFT	
	based algorithms, and their application in communication.	05
	5. Image processing a. Interpolations b. Pattern recognition using PCA	09
	6.Simulink	05
	a. Transfer function design and study for impulse and	
	finite sequence.	
	b. Convolution	
Total		48
Pedagogy:	lectures/ self-study/presentation/lab courses	
Learning Outcomes	• Student learn how to use the advanced mathematical tools	
	how to apply them for signal processing.	
	• Student can plot the signals in both time domain and	
	transform domains using MATLAB	
	• Students also learns to uses SIMULINK tool to model	
	his/her design	
	 Learns Image processing algorithms PCA etc. 	
	- Learns mage processing argorithms i CA etc.	

Course Code: ELO 302 **Title of the Course:** INSTRUMENTATION & CONTROL THEORY **Number of Credits:** 4

Prerequisites for the	Graduate level knowledge in analog and digital	
	electronics, Basics of differential equations.	
<u>course:</u>	electronics, basics of unreferitial equations.	
Objective:	Various principles of transduction and actuator are	
	discussed in this course. The important parameters used	
	in instrument characterization are also explained. Types	
	of error committed by a user and how to deal with them	
	are explained with examples. Also, various standards	
	followed for accurate measurement are discussed in	
	depth. The techniques used to convert analog data into	
	digital domain and its analysis and storage are also	
	discussed in this course. How a PID controller is tuned	
	for a given application is also discussed in this paper. Few	
	important instruments such as Oscilloscope, spectrum	
	analyzers, wave analyzers, Lock in amplifiers are	
	described in depth	
Content:	Introduction: Basic Concepts of measurements,	7
	calibrations and standards. Transducers (Types and	
	parameters) and Sensors: Displacement, strain, vibration,	
	Pressure, Flow, Temperature, Force and Torque (linearity,	
	accuracy, precision, bandwidth, repeatability)	
	Amplification : Simple ended, Differential and	

Instrumentation amplifier.5Sampling: An Anti-aliasing, Multiplexers, Sample and Hold, Track and Hold.5Computer Interfaces: Serial (RS-232), Parallel, GPIB (IEEE-488), Universal Serial Bus (USB)4Display Devices: Review of LED, LCD, CRT devices, segmental and dot matrix displays. General purpose test equipments: CRO, Digital storage oscilloscope, Digital voltmeter,7Equipments: CRO, Digital storage oscilloscope, Digital voltmeter,Wave Wave10Spectrum analysis, Lock-in-amplifiers, Pulse generators and waveform generators,5
Hold, Track and Hold.5Computer Interfaces: Serial (RS-232), Parallel, GPIB (IEEE-488), Universal Serial Bus (USB)4Display Devices: Review of LED, LCD, CRT devices, segmental and dot matrix displays. General purpose test equipments: CRO, Digital storage oscilloscope, Digital voltmeter, Wave7OutputWave spectrum analysis, Lock-in-amplifiers, Pulse generators10
Computer Interfaces: Serial (RS-232), Parallel, GPIB (IEEE-488), Universal Serial Bus (USB)4Display Devices: Review of LED, LCD, CRT devices, segmental and dot matrix displays. General purpose test equipments: CRO, Digital storage oscilloscope, Digital voltmeter, Wave7Spectrum analysis, Lock-in-amplifiers, Pulse generators10
(IEEE-488),UniversalSerialBus(USB)4 Display Devices: Review of LED, LCD, CRT devices,segmental and dot matrix displays.General purpose test7equipments:CRO, Digital storage oscilloscope, Digitalvoltmeter,Wave10Spectrum analysis,Lock-in-amplifiers,Pulse generators
Display Devices:Review of LED, LCD, CRT devices, segmental and dot matrix displays.7equipments:CRO, Digital storage oscilloscope, Digital voltmeter,7Spectrum analysis, Lock-in-amplifiers, Pulse generators10
segmental and dot matrix displays. General purpose test7equipments: CRO, Digital storage oscilloscope, Digital voltmeter,7Voltmeter,Wave10Spectrum analysis, Lock-in-amplifiers, Pulse generators10
equipments: CRO, Digital storage oscilloscope, Digital voltmeter,Wave 10Spectrum analysis, Lock-in-amplifiers, Pulse generators
voltmeter, Wave 10 Spectrum analysis, Lock-in-amplifiers, Pulse generators
Spectrum analysis, Lock-in-amplifiers, Pulse generators
\mathbf{b}
Control System: Types of control system - open loop,
closed loop, linear, non-linear, continuous, discrete, 10
frequency and time response, open loop motor control,
DC motor phase control,PD,PI,PID
Tutorials:
1. Study of Open loops control System.
2. Electronics Chocks.
3. Design of On/Off temperature controller using
thermistor sensor.
4. Study of SEM.5. Study of Scanning Probe technique.
4. Study of SEWLS: Study of Scanning 1100e technique. Fotal
Pedagogy: Lectures/Assignment, Presentation
Lectures/Assignment, Presentation
References/Readings 1. Industrial Control Electronics – John Webb, Kevin
Greshok, Merrill Publications, . 2. Elements of Electronic Instrumentation and
Measurement, Joseph J. Carr, Prentice Hall India.
3. Modern Electronic Instrumentation and Measurement
Techniques, Albert Helfnick, William Cooper, PHI
4. Instrumentation Measurement by Northrop CRC 2001
Learning Outcomes This course is appropriate for the students who would like
to make his career in industries. The features of various
networks taught in this course will enable him/her to guide
an industry for choosing an appropriate instrumentation
network and types of interfaces he can adopt for
automation of sophisticated instruments used in quality
control and analysis. The course empowers a student who
is likely to go for higher studies in electronics and
Instrumentation technology.

Course Code: ELC302 **Title of the Course:** Electronics Practical III

Number of Credits: 4

Prerequisites for the	Should have knowledge in microcontroller and embedded	
course:	systems	

Objective:	The course gives hands on experience on TMS 320 DSP,	
<u>Objective:</u>	Altera NIOS II and National Instruments Platform	
<u>Content:</u>	 Altera NIOS II and National Instruments Platform 1. Design of S/C circuit for Strain gauge /Glucose strip @ 3.3V. 2. Design of S/C circuit for Thermistor sensor @ 3.3 V and interfacing with ARM. 3. FFT using TMS 320. 4. Convolution using TMS 320. 5. Analysis of frequency components using Spectrum Analyzer 6. VHDL implementation for the Multiplexer & Demultiplexer 7. VHDL Implementation for Encoder & Decoder 8. VHDL implementation for the Counter. 9. Verilog implementation for the Memory Module. 10. Verilog implementation for the Latch. 11. Display Hello world and blinking Led's using NiosII soft core 12. Matrix Manipulation on NIOSII Core (Multiplication, determinant, Inverse, Transpose) 13. Android (two experiments) 14. NI ELSVIS(two experiments) 15. Obstacle Avoidance using 89V52 based Robot 16. Obstacle detection for varying range using 89v52 based Robot 17. Line follower using 89v52 based Robot 	
Total		96
Pedagogy:	Assignment, Presentation and Laboratory work	-
Learning Outcomes	 On completing this couse they are in a position to design signal conditioning circuit, also they are exposed to Altera FPGA by implementing various digital circuits using VHDL and Verilog. Student themselves will be able to develop an android app. Can handle a NI ELVIS board to implement and testing any circuit. 	

Course Code: ELO 381 Title of the Course: Swayam-III Prerequisite/objectives/learning outcomes as provided by course on SWAYAM website. Number of Credits: 4

Course Code: ELO303 Number of Credits: 4	3 Title of the Course: Digital System Design Us	ing HDL
Prerequisites for the	Should have studied digital electronics at graduate level.	
course:		
Objective:	This course develops concepts in Principles of	
	Combination and Sequential logic design, VHDL and	
	Verilog.	
<u>Content:</u>	1. Introduction: About Digital Design, Analog versus Digital, Electronic Aspects of Digital Design, PLD's, ASIC, Digital Design level. Digital Concept and Number System: General Positional number system conversions, Operation, BCD, Gray Code, Character Codes, Codes for Actions, Conditions, and States n- Cubes and Distance, Codes for Detecting and Correcting Errors, Error-Detecting Codes, Error-Correcting and Multiple- Error-Detecting Codes, Hamming Codes, CRC Codes, Two- Dimensional Codes, Checksum Codes, m-out-of-n Codes, Codes for Serial Data Transmission and Storage, Parallel and Serial Data, Serial Line Codes,	07
	 Combinational Logic Design Principles: Switching Algebra, Combinational-Circuit Analysis, Combinational-Circuit Synthesis, and Timing Hazards. 	08
	3. Hardware Description Languages: HDL-Based Digital Design, ABEL Hardware Description Language, The VHDL Hardware Description Language, The Verilog Hardware Description Language,	06
	 4. Combinational Logic Design Practices: Documentation Standards, Circuit Timing, Combinational PLDs, Decoders, Encoders, Three-State Devices, Multiplexers, Exclusive-OR Gates and Parity Circuits, Comparators, Adders, Subtractors, and ALUs, Combinational Multipliers. 	06
	5. Sequential Logic Design Principles & Practices: Bistable Elements, Latches and Flip-Flops, Clocked Synchronous State-Machine Analysis, Clocked Synchronous State-Machine Design, Designing State Machines Using State Diagrams, State-Machine Synthesis Using Transition Lists, Another State-Machine Design Example, Decomposing State Machines, Feedback Sequential-Circuit Analysis, Feedback Sequential-Circuit Design, ABEL Sequential-Circuit Design Features ,Sequential-Circuit Design with VHDL , Sequential-	09

	 Circuit Design with Verilog, Sequential-Circuit Documentation Standards , Latches and Flip-Flops ,Sequential PLDs , Counters, Shift Registers, Iterative versus Sequential Circuits , Synchronous Design Methodology , Impediments to Synchronous Design , Synchronizer Failure and Metastability 6. Memory, CPLDS, AND FPGAS Read-Only Memory, Read/Write Memory, Static RAM, Dynamic RAM, Complex Programmable Logic Devices, Field- Programmable Gate Arrays Tutorials: Design flow for the simple microprocessor in HDL Study and compares types of RAMS. Design of GRAY code circuit. Study of ALTERA PLD's Study of XYLINX PLD's. Studying WEB Pack Xilinx tool. 	12
Total		48
Pedagogy:	lectures/ tutorials/assignments/self-study	
References/Readings	 Digital Design Principles and Practices, by John F. Wakerly, Prentice Hall's Fourth Edition. Digital Logic Applications & Designs by John M. Yarbough, CWS Publishing Co. Division of Thomson Learning, Giovanni De Micheli, "Synthesis and Optimization of Digital Circuits," Tata McGraw-Hill, 2003. Srinivas Devadas, Abhijit Ghosh, and Kurt Keutzer, "Logic Synthesis," McGraw-Hill, USA, 1994. Neil Weste and K. Eshragian,"Principles of CMOS VLSI Design: A System Perspective,2nd edition, Pearson Education, 2000. Kevin Skahill, "VHDL for Programmable Logic," Pearson Education, 2000. M.N.O. Sadiku, Elements of Electromagnetics 2nd Edition), Oxford University press, 1995. 	
Learning Outcomes	Explains Principles of Combination and Sequential logic design and HDL.	

Course Code: ELO 304

Title of the Course: EDA Tools

Number of Credits: 4

Prerequisites for the	Should have studied Digital Communication Systems	
course:		
Objective:	This course develops concepts in Programming	
	with different types of EDA Tools	
Content:	Study of JTAG, Modelsim Syntax study.	
	1. Study of Phases of Quartus compilations.	4

		-
	2. Study of phases of ISE compilations	4
	3. Testing logic using ChipScope-I.	4
	4. Testing logic using ChipScope-II	4
	5. Parallel implementation of CRC.	4
	6. Serial implementation of CRC.	4
	7. FIFO implementation	4
	8. pulse stretcher	4
	9. Test bench using Modelsim-I	4
	10. Test bench using Modelsim-I	4
	11. Test bench using Modelsim-I	4
	12. Test bench using Modelsim-I	4
Total		48
Pedagogy:	Assignments/self-study/Lab courses/FLIPPED CLASSROOM	
References/Readings	 Design through Verilog HDL By T. R> Padmanabhan & Sundari. IEEE press, Wiley Interscience. http://www.xilinx.com/itp/xilinx7/help/iseguide/html/ise _fpga_design_flow_overview.htm Hands on experience on altera development board by J.S.Parab,etal: Springer Netherland 2018(ISBN 978-81- 322-3769-3) 	
Learning Outcomes	The Student will be able to use different types of EDA tools and learn programming with these tools.	

Course Code: ELO 305 **Title of the Course:** Industrial Internship **Number of Credits:** 1

Prerequisites for the course:	Should have graduate level knowledge of Electronics	
Objective:	This course develops concepts in industrial training, preparing seminars and working on short term projects	
<u>Content:</u>	 Industrial training and Seminar: A student has to undergo Industrial training equivalent to one credit for the period of minimum 1 month in the respective Electronics industries / Research Laboratory anywhere in India. Each student has to give a power point presentation on the industrial internship which they had undergone 	24
Pedagogy:	Self-study/presentation	
Learning Outcomes	 The Student will be exposed to the different kinds of working environments in electronic industries. Will be able to understand industrial flow and make a documentation. 	

SEMESTER IV

Course Code: ELC 401 **Title of the Course:** Laser System Engineering **Number of Credits:** 4

Prerequisites for the	Graduate level knowledge in Electronics/Physics	
<u>course:</u> Objective:	At the end of the course the student is expected to know the difference between ordinary light and light emitted by a laser device. Which are different method used for excitation of laser devices? Why four level lasers are more efficient as compared to three level? The theory to explain the generation of stimulated emissions. Actual laser systems used in industry and examples most powerful lasers in the world. Application of lasers in medical, civil and defense areas.	
Content:	Optical Resonators : Energies in resonator, Febry-Perot Etalon, Febry-Perot Etalon as Optical Spectrum Analyzer, Mode Stability Criteria, Resonance Frequency of Optical Resonator, Unstable Resonator	9
	Interaction of Radiation with Atomic System: Spontaneous transmission between Atomic layer, Homogenous and In-Homogeneous broadening, Line shape functions, Stimulated transmission, Absorption and amplification, gain saturation in Homogenous media.	8
	Theory of Laser Oscillator: Febry Perot Laser, Three and Four Level Laser, Power in Laser Oscillator, Optimum Light coupling, Multimode Laser Oscillator and Mode Locking Methods of Mode locking, Pulse length Measurements, Q-Switching , methods of Q-Switching.	8
	Laser Systems: Pumping and laser Efficiency, Ruby Laser, Flash Pumping ,Nd-YAG Laser, Nd Glass Laser, Threshold for CW and Pulse operation, He- Ne Laser, CO2 Laser, Ar-Ion Laser, Excimer Laser, Dye Laser.	7
	Non –Linear Optics: Origins of Non-Linear Polarization, relation between induced Polarization	4
	Interaction of Light and Sound: Scattering of Light by Sound, RamanNath and Bragg diffraction, Defration of light by Sound, Intensity modulation.	6
	Optical Communication: Advances in optical Communication, Optical Network.	6
	Tutorials: 1. Understanding Diffraction of Laser Light using grating 2. Comparison of resolving power of Prism and Grating. 3. Focusing of Laser Light.	

	4. Collimation of Laser Light.	
	5. Study of Raman Laser system.	
		1.2
<u>Total</u>		48
Pedagogy:	Lectures/presentation/assignments	
References/Readings	1. Optical Electronics, 4th Edition by A. Yariv, HRW	
	publication, .	
	2. OptoElectronbics, by Ghatak and Tyagarajan TMH	
	Publication .	
Learning Outcomes	The student has sufficient knowledge of lasers for	
	applications involving medical treatment as well as	
	defense needs. They will have a full knowledge of	
	classification of lasers and its usage. Now a days, most of	
	the industries use high power lasers as a tool, the student	
	with this knowledge will be handy in guiding the work	
	force for safe use of laser.	

Course Code: ELC 402 **Title of the Course:** ELECTRONICS PRACTICALS - IV **Number of Credits:** 4

Prerequisites for the	Should have studied EDA Tools .	
<u>course:</u> Objective:	 The course is intended to introduce to the students with LabVIEW and SPEEDY 33 Boards and MYRio BThoard Also there are few labs on Altera DE2 Board using NIOS II soft core Prosessor. 	
<u>Content:</u>	 Reading from flash using DE2 board LCD and 7 segment Interfacing using DE2 board PS/2 Mouse Interface on DE2 board UART Interface using DE2 board Blinking of LEDs using RTOS on DE2 Board. KEY pad and ADC interfacing using RTOS Echo implementation on speedy33 kit(lab view) Reverberation implementation on speedy33 kit(lab view) IOT (3 experiments) My RIO(3 experiments) 	
Total		96
Pedagogy:	Presentation and Laboratory works	
Learning Outcomes	After completion of this course on practical they will be able to develop and design some applications based on SPEEDY 33 using LABView, MYRio, Altera DE2 Board	

Course Code: ELO 401 **Title of the Course:** PROJECT **Number of Credits:** 8

Prerequisites for the	Decided by DC at the beginning of the IIIrd semester	
<u>course:</u>	based on the performance at M.Sc part-I	
Objective:	This course develops concepts design modules/ instrumentation as required by industry/ institution/ departments	
Content:	This course is basically to utilize the knowledge they have acquired during the course of study and apply them for designing a gadget/interface/module required for an electronic industry/ department/ Institution. The progress of the project is periodically monitored by an guide and department council.	192
Pedagogy:	Self-study/presentation	
Learning Outcomes	 The Student will be exposed to the different kinds of working environments in electronic industries. Will be able to understand industrial flow and make a dissertation. 	

Course Code: ELO 481 Title of the Course: Swayam-IV Prerequisite/objectives/learning outcomes as provided by course on SWAYAM website. Number of Credits: 4

Course Code: ELO 402 **Title of the Course: Nanoelectronics and Nanosystems Number of Credits:** 4

Prerequisites for the	The students should have a working knowledge of	
course:	electronics and instrumentation at graduate level	
Objective:	This course develops concepts in Microelectronics,	
	Biological Networks, Bio and Molecular Electronics and	
	Nanoelectronics.	
Content:	Introduction:	05
	Development of microelectronics;	
	Potentials of Silicon Technology; Basics of Nanoelectronics,	05
	some physical fundamentals, basics of information theory;	
	Dislage Ingrined Concents	05
	Biology Inspired Concepts	05
	Biological networks, Biology Inspired Concepts;	
	Bio-chemical and Quantum-Mechanical Computers	06

	DNA computer ,Quantum computer;	
	Parallel Architectures for Nanosystems . Architectural principles, Architectures for parallel processing;	06
	Softcomputing and Nano electronics. - methods of soft computing, characteristics of neural networks in nanoelectronics;	06
	Quantum Electronics; Bio and Molecular Electronics Bio electronics ,molecular electronics;	08
	Nanoelectronics with Tunneling Devices; Single Electron Transistor (SET); Nanoelectronics with Superconducting Devices; The Limits of Integrated Electronics	07
	Tutorials: 1. Laser tweezers. 2. Study of AFM. 3. Study of STM.	
Total		48
Pedagogy:	lectures/ tutorials/assignments/self-study/presentation/	
<u>References/Readings</u>	 Nanoelectronics And Nanosystem By K. Goser , P Glosekotter & J. Dienstuhl Springer Introduction to Nanoelectronics Science, Nanotechnology, Engineering, and Applications By Vladimir V. Mitin etal ; From Cambridge Handbook of Nanoscience, Engineering, and Technology, Second Edition by William A. Goddard CRC. 	
Learning Outcomes	At the end of this course students will be able to apply the concepts studied in this paper to practical reality.	
Course Code: ELO 40	3 Title of the Course: Pharmaceutical Instrumentation	n

Course Code: ELO 403 **Title of the Course: Pharmaceutical Instrumentation Number of Credits:** 4

Prerequisites for the course:	Should have graduate level knowledge of Instrumentation.	
Objective:	This course develops concepts in Spectrometric and Separative Methods and Electron Microscopy	
<u>Content:</u>	Introduction to Chemical Instrumental Analysis: advantages over classical methods, classification, various units used in chemical analysis. Introduction to Electroanalytical methods, potentiometry, voltammetry, coulometry.	05 09

	Spectrometric Methods-I: Laws of Photometry, Instrument components, UV-visible instrument component, photo colorimeters, single and double beam instruments, various types of UV-visible spectrophotometers. Atomic absorption spectrophotometer: Principle, working, hollow cathode lamp, atomizer, back-ground correction.	09
	Spectrometric Methods-II: IR spectroscopy: Principle, IR sources, IR detectors, dispersive and Fourier, Transform IR spectroscopy. Atomic Emission Spectroscopy: Principle, types, Flame photometer, DC arc and AC arc excitation, plasma excitation. X-ray spectrometry: Instrumentation for X-ray spectrometry, X-ray diffractometer: Bragg's law	08
	Spectrometric Methods-III: Fluorimeters and Phosphorimeters: Principle, spectrofluorimeters, spectrophosporimeter, Raman effect, Raman spectrometer, Nuclear Magnetic Resonance (NMR) spectrometry:	07
	Chemical shift, principle, working of NMR, FT-NMR Miscellaneous Instruments: Gas analysers: CO, CO2, Hydrocarbons, O2, NOx	07
	Separative Methods: Chromatography: Classification, Gas chromatography: principle, constructional details, GC detectors, High Performance Liquid Chromatography (HPLC): principle, constructional details, HPLC detectors	10
	Electron microscopy: TEM & SEM- principles, instrumentation and analysis, scanning tunneling microscopy, atomic force microscopy, principles, instrumentation and analysis- applications	
	Tutorial:1. Study of filter photometer.2. Study of UV-visible spectrophotometer.3. Study of ESR	
Total		48
Pedagogy:	lectures/ tutorials/assignments/presentation	
References/Readings	 Instrumental Methods of Analysis, Willard, Merritt, Dean, Settle, CBS Publishers & Distributors, New Delhi, Seventh edition. Instrumental Methods of Chemical Analysis, Galen W. Ewing, McGraw-Hill Book Company, Fifth edition 	
	 Introduction to Instrumental Analysis, Robert D. Braun, McGraw-Hill Book Company. Principles of Instrumental Analysis, Skoog, Holler, Nieman, Thomson brooks-cole publications, 5th edition 	
Learning Outcomes	A student crediting this course will be comfortable	

with use of analytical instruments used in pharmaceutical industries and laboratories. They can join industries in Quality Control divisions.	
---	--

Course Code: ELO 404

Title of the Course: Communication and Technical Skills

Number of Credits: 4

<u>Prerequisites for the</u> <u>course:</u>	Should have graduation in any science stream	
Objective:	This course develops the ability to work in group, to face interviews and to give presentations	
Content:	 This course has self-study module where students will be assigned case studies. The students are supposed to gather the required subject materials by way of visiting the factories/ industries/ Institutions physically or through their website, and prepare a documentation, The documentation will be discussed in Group discussion wherein the skills of the student in Management & Communication will be evaluated by DC. The wattage of the evaluation is as follows Group discussion in topic related to electronics (25%) Answer paper in the area of communication skills (25%) Has to write /compile technical papers & present (25%) Modelling of electronics systems (25%) 	
Pedagogy:	lectures/ tutorials/assignments/self-study	
References/Readings	 Essentials of Technical Communication Sunil Gokhale Communication Skills By Leena, Sen, Prentice Hall of India. http://owl.english.purdue.edu/; http://owl.english.purdue.edu/workshops/hypertext/ 	
Learning Outcomes	The student will gain experience and confidence to present themselves fearlessly at interviews .The students will also be prepared to write technical papers and present them in the conferences.	