

**गोंय विद्यापीठ** ताळगांव पठार गोंय - ४०३ २०६ फोन: +९१-८६६९६०९०४८



# (Accredited by NAAC)

# **Goa University**

Taleigao Plateau, Goa - 403 206 Tel : +91-8669609048 Email : registrar@unigoa.ac.in Website: www.unigoa.ac.in

GU/Acad -PG/BoS -NEP/2023/85/4

Date:29.05.2023

Ref: GU/Acad –PG/BoS -NEP/2022/339/9 dated 20.08.22

# CIRCULAR

In supersession to the above referred Circular, the updated approved Syllabus with revised Course Codes of the **Master of Science in Electronics** Programme is enclosed.

The Dean/ Vice-Deans of the School of Physical and Applied Sciences are requested to take note of the above and bring the contents of the Circular to the notice of all concerned.

(Ashwin Lawande) Assistant Registrar – Academic-PG

Τo,

- 1. The Dean, School of Physical and Applied Sciences, Goa University.
- 2. The Vice-Deans, School of Physical and Applied Sciences, Goa University.

Copy to:

- 1. The Chairperson, Board of Studies in Electronics.
- 2. The Programme Director, M. Sc. Electronics, Goa University.
- 3. The Controller of Examinations, Goa University.
- 4. The Assistant Registrar, PG Examinations, Goa University.
- 5. Directorate of Internal Quality Assurance, Goa University for uploading the Syllabus on the University website.

# Goa University

| Semester     | Course<br>Code  | Course Title                                | Theory/<br>Lab   | Course<br>Credits | Contact<br>Hours |
|--------------|-----------------|---------------------------------------------|------------------|-------------------|------------------|
| Semester I   | Discipline      | Specific Core Courses (DSCC)                |                  |                   |                  |
|              | ELE-500         | Micro Electronics and VLSI Design           | Theory           | 4                 | 60               |
|              | ELE-501         | Instrumentation & Control Theory            | Theory           | 4                 | 60               |
|              | <u>ELE-502</u>  | Advanced Digital Communication<br>System    | Theory           | 4                 | 60               |
|              | ELE-503         | Electronics Practical I                     | Lab              | 4                 | 120              |
|              | Discipline      | Specific Elective Courses (DSEC)            |                  |                   |                  |
|              | <u>ELE-521</u>  | Numerical Computation and Algorithms        | Theory           | 4                 | 60               |
|              | ELE-522         | EDA Tools                                   | Theory           | 4                 | 60               |
| Semester II  | Discipline      | Specific Core Courses (DSCC)                |                  |                   |                  |
|              | ELE-504         | Embedded System Design                      | Theory           | 4                 | 60               |
|              | ELE-505         | Real Time Operating System                  | Theory           | 4                 | 60               |
|              | ELE-506         | Digital System Design                       | Theory           | 4                 | 60               |
|              | <u>ELE-507</u>  | Electronics Practical II                    | Lab              | 4                 | 120              |
|              | Discipline      | Specific Elective Courses (DSEC)            |                  |                   |                  |
|              | ELE-523         | Internet of Things                          | Theory           | 4                 | 60               |
|              | ELE-524         | Switching and Routing                       | Theory           | 4                 | 60               |
| Semester III | Research S      | pecific Elective Courses (RSEC)             |                  |                   |                  |
|              | ELE-600         | Signals and Systems                         | Theory           | 4                 | 60               |
|              | <u>ELE-601</u>  | Artificial Intelligence and<br>Applications | Theory           | 4                 | 60               |
|              | ELE-602         | Robotics                                    | Theory           | 4                 | 60               |
|              | Elective Ge     | eneric Course (EGC)                         |                  |                   |                  |
|              | <u>ELE- 621</u> | Laser System Engineering                    | Theory           | 4                 | 60               |
|              | ELE- 622        | Data Science and Machine Learning           | Theory           | 4                 | 60               |
|              | <u>ELE- 623</u> | Electric Vehicle Technology                 | Theory           | 4                 | 60               |
|              | <u>ELE- 624</u> | Biomedical Instrumentation                  | Theory           | 4                 | 60               |
| Semester IV  | Research S      | pecific Elective Courses (RSEC)             |                  |                   |                  |
|              | ELE-603         | Optical Communication Systems               | Theory           | 4                 | 60               |
|              | ELE-604         | Digital Image Processing                    | Theory           | 4                 | 60               |
|              | <u>ELE-605</u>  | Neuromorphic Computing                      | Theory           | 4                 | 60               |
|              | Discipline      | Specific Dissertation (DSD)                 |                  |                   |                  |
|              | <u>ELE-625</u>  | Project                                     | Dissertati<br>on | 16                | 480              |

# M.Sc. Electronics Programme Course Syllabus as per NEP 2020

#### Semester I

Course Code: ELE-500 Course Title: Micro Electronics and VLSI Design Number of Credits: 04 Total Hours: 60 Effective from AY: 2022-23

Total Marks: 100

# Prerequisites for the course

Should have graduate level knowledge in analog and digital electronics

#### **Objectives of Course**

This course is intended to:

- Introduce to the VLSI Technology, various fabrications processes involved in IC design ,
- Analysis of Electronics circuits, Design examples of VLSI circuits, Circuit Optimization techniques
- Advance circuits designs: Memory, Registers, Synchronous circuits etc.

| Course Con | tent                                                 |         |
|------------|------------------------------------------------------|---------|
| Unit I     | An overview of VLSI, Modern CMOS Technology          | 4 Hours |
|            |                                                      |         |
| Unit II    | Silicon Logic, Logic design with MOSFET.             | 6 Hours |
| Unit III   | Physical structure of CMOS Integrated circuits       | 6Hours  |
|            |                                                      |         |
| Unit IV    | Fabrication Technologies of CMOS Integrated Circuits | 7 Hours |
|            |                                                      |         |
| Unit V     | Elements of Physical Design                          | 4 Hours |
| Unit VI    | Electrical characteristics of MOSFETS                | 6 Hours |
|            |                                                      |         |
| Unit VII   | Electronic analysis of CMOS Logic gates              | 6 Hours |
|            | Advanced Techniques in CMOS Logic Circuits           | 6 Hours |
|            |                                                      |         |
| UNIT IX    | System specifications using HDL, General VLSI        | 5 Hours |

|    |                                                                                                   | components                                                                                                                                                                                                                                                                                   |                                        |
|----|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|    |                                                                                                   | Memories and Programmable Logic                                                                                                                                                                                                                                                              | 10 Hours                               |
|    |                                                                                                   |                                                                                                                                                                                                                                                                                              | 10 110013                              |
| Pe | dagogy                                                                                            |                                                                                                                                                                                                                                                                                              |                                        |
| Le | ctures/Exp                                                                                        | eriential Learning                                                                                                                                                                                                                                                                           |                                        |
| Со | ourse Outco                                                                                       | ome                                                                                                                                                                                                                                                                                          |                                        |
| St | udents will                                                                                       | ,                                                                                                                                                                                                                                                                                            |                                        |
|    | <ul> <li>applid</li> <li>Unde</li> <li>Write</li> <li>seque</li> <li>Unde</li> </ul>              | n fundamental gates and customize them for specific<br>cation,<br>rstand the fabrications processes involved in VLSI tec<br>the Hardware descriptive form of circuits, Synchroni<br>ential circuits, design a static and dynamic memory ce<br>rstand the Programmable logics building blocks | chnology,<br>ize the combinational and |
| Re | ferences/I                                                                                        | Readings                                                                                                                                                                                                                                                                                     |                                        |
| 1. | Introducti                                                                                        | on to VLSI Circuits and Systems, John P. Uyemura, W                                                                                                                                                                                                                                          | ILLEY.                                 |
| 2. | <ol> <li>Principles of CMOS VLSI Design, N.H.E. W. &amp; Eshahiraghian, Addison Wesley</li> </ol> |                                                                                                                                                                                                                                                                                              |                                        |
| 3. |                                                                                                   | /LSI Design System on Silicon, Pearson Education Asia                                                                                                                                                                                                                                        | •                                      |
| 4. |                                                                                                   | nology, S.M. Sze, McGraw -Hill (1995). 5.Basic VLSI De<br>nian, Prentice Hall India.                                                                                                                                                                                                         | esign, Douglas Pucknell,               |

# Course Code: ELE-501 Course Title: Instrumentation & Control Theory Number of Credits: 04 Total Hours: 60 Effective from AY: 2022-23

**Total Marks: 100** 

#### Prerequisites for the course

knowledge of analog and digital electronics, Basics of differential equations.

#### **Objectives of Course**

This course is intended to:

- Introduce principles of transduction and actuator.
- Explain the important parameters used in instrument characterization, Types of error committed by a user and how to deal with them.
- Describe various standards followed for accurate measurement.
- Explain the techniques used to convert analog data into digital domain and its analysis and storage.
- Understand instruments such as Oscilloscope, spectrum analyzers, wave analyzers, Lock in amplifiers depth.
- Fundamentals of control theory and working of PID controller tuned for a given application.

#### **Course Content**

| Unit I       | Introduction                                  | 8 Hours                                  |
|--------------|-----------------------------------------------|------------------------------------------|
| Basic Conce  | epts of measurements, Calibrations and st     | andards, Transducers: Types and          |
| parameters   | s, Sensors - Displacement, Strain, Vibratior  | , Pressure, Flow, Temperature, Force     |
| and Torque   | 2                                             |                                          |
| Unit II      | Signal Conditioning                           | 8 Hours                                  |
| Introductio  | n, Amplification, Simple ended amplifier, I   | nstrumentation amplifier, Types of       |
| Filters      |                                               |                                          |
| Unit III     | Sampling                                      | 8 Hours                                  |
| Fundament    | tal concepts, Anti-aliasing, Multiplexers, Sa | mple and Hold, Track and Hold.           |
| Unit IV      | Computer Interfaces                           | 08 Hours                                 |
| Serial (RS-2 | 232), Parallel, GPIB (IEEE-488), Universal Se | rial Bus (USB) and Variants, Bluetooth   |
| Unit V       | Display Devices                               | 10 Hours                                 |
| Review of L  | ED, LCD, Plasma display devices, segment      | al and dot matrix displays, MEMS display |
| Unit VI      | General Purpose Test Equipments               | 08 Hours                                 |

CRO, Digital storage oscilloscope, Digital voltmeter, Wave Analyser, Spectrum analysis, Lockin-amplifiers, Pulse generators and waveform generators

| Unit VII | Control System | 10 Hours |
|----------|----------------|----------|
|          |                |          |

Types of control system - open loop, closed loop, linear, non-linear, continuous, discrete, frequency and time response, open loop motor control, Principles of PD, PI, PID

#### Pedagogy

Lectures/Experiential Learning

#### **Course Outcome**

students will:

- Explain measurement parameters, calibrations and standards in electronic instrumentation.
- Comprehend the significance of signal conditioning and sampling theorem.
- Gain the knowledge of various computer interfaces, and understand the construction, working principle of different display devices and general-purpose equipments used in signal analysis.
- Explain the working principle of different types of control systems.

#### **References/Readings**

1. H. S. Kalsi, 'Electronic Instrumentation', Tata MacGrow-Hill

2. Joseph J. Carr, 'Elements of Electronic Instrumentation and Measurement', Prentice Hall India.

3.Albert Helfnick and William Cooper, 'Modern Electronic Instrumentation and Measurement Techniques', Prentice Hall India.

4. Robert Northrop, 'Introduction to Instrumentation and Measurements', CRC Press

(Back to Index)

# Course Code: ELE-502 Course Title: ADVANCED DIGITALCOMMUNICATION SYSTEMS Number of Credits: 04 Total Hours: 60 Total Effective from AY: 2022-23

Total Marks: 100

Prerequisites for the course Graduate level understanding in basics of Electronic Communications **Objectives of Course** This course is intended to: Introduce to students with basics of wireless systems – concepts, theory. Covers various modulation techniques, to enable the student to synthesize and analyse wireless and mobile cellular communication systems over a stochastic fading channel Mitigation and diversity techniques • **Course Content** Unit I Introduction to Mobile and Cellular **5 Hours Communication Systems:** Definitions, impact of Mobile and Cellular Radio Communication Historical overview. Fundamental of Radio Mobile and Cellular Practices Radio mobile links and cells, Frequency re-use, Principles of Cellular Com. Mobile Telephone Switching Subsystem, The mobile frequency spectrum, Hand-off, Cochannel and adjacent channel interference limitations, Near-far problem, Power Control. **Mobile Communication Channel including** Unit II **10 Hours** antennas The mobile wireless propagation channel, Notions on antennas especially the near and far field concept, Line of Sight (LOS) propagation, Multipath fading, outdoor and Indoor Propagation, Flat and selective fading, Special antennas for base stations and headsets, Deterministic, Empirical and Statistical Methods for propagation link computations. Unit III **Overview of Mobile and Cellular Radio 15 Hours Communication Modulation and Detection** Techniques: Analog modulations and detection: AM, FM, PM, ACSB, Hybrid and Digital modulation: PCM, ASK, FSK, QPSK, QAM, MSK, etc, Coherent and noncoherent detection, C/N, S/N, Eb/No and BER relations, Probability concepts, Mobile Radio links parameters. Unit IV **Overview of Multiple Accesses Techniques** 12 Hours Simplex, Duplex TDD and Time Division Duplex, Time division multiple access (TDMA) FDMA and OFDM, Code Division multiple access (CDMA), Hybrid multiple access, Management of voice, Data and Video (Multimedia) information. **10 Hours** Unit V Modern Digital Radio Systems standards, proposals and comparisons GSM (Europe and all over the world) - TDMA, IS-54 (U.S.A.)- TDMA, IS-95 (U.S.A., Korea) CDMA-, PHS (Japan) - TDMA, Frequency Hopping (FH) (U.S.A.) - CDMA, PCS, PCS Cordless telephone 2nd generation (CT-2), Cellular digital packet data (CDPD), and Wireless LAN, New standard trends Edge, 3rd and 4th generation beginning, LTE, Unit VI Mitigation Techniques for Mobile System 4 Hours Overview of Natural and manmade external noise sources, Radiation hazards effects from

| base stations, M                            | obile and portable equipments.                                                                                                                                        |                        |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| Unit VII                                    | Diversity Techniques for Mobile Radio Systems                                                                                                                         | 4 Hours                |  |
| Dispersive chann                            | els, Space diversity, Frequency diversity, Equalizer te                                                                                                               | echniques              |  |
| Pedagogy                                    |                                                                                                                                                                       |                        |  |
| Lectures/Experie                            | ntial Learning                                                                                                                                                        |                        |  |
| Course Outcome                              |                                                                                                                                                                       |                        |  |
| Students will                               |                                                                                                                                                                       |                        |  |
|                                             | nd the design, specifications and the performances of<br>cation systems                                                                                               | f various wireless     |  |
|                                             | <ul> <li>Apply the cellular concepts to evaluate the signal reception performance in a cellular network.</li> </ul>                                                   |                        |  |
| <ul> <li>Apply the<br/>constrain</li> </ul> | traffic analysis to design cellular network with given ts.                                                                                                            | quality of service     |  |
| paramete                                    | e the appropriate model of wireless fading channel b<br>ers and the property of the wireless medium.                                                                  |                        |  |
| <ul> <li>Analyze a</li> </ul>               | and design receiver and transmitter diversity techniq                                                                                                                 | ues.                   |  |
| References/Read                             | lings                                                                                                                                                                 |                        |  |
| 2. Rappap                                   | R., Hanzo, L., "Mobile Radio Communication" 3rd Edi<br>ort, T.S., " <u>Wireless Communications: Principles And F</u><br>is Communications (WIRELESS COMMUNICATIONS, 2 | Practice, 2/E, Pearson |  |

#### Course Code: ELE-503 Course Title: ELECTRONICS PRACTICALS – I

Number of Credits: 04 Total Hours: 60

Total Marks: 100

120 Hours

Effective from AY: 2022-23

Prerequisites for the course

Should have studied graduate level basic level electronic subject. It is assumed that students have a working knowledge of passive and active components and digital circuits.

# **Objectives of Course**

# This course is intended to:

- Give the hands-on experience to design the basic digital and analog circuits
- Simulate the various digital modulation techniques and data correction and detection used in general communication system.
- Expose students to design digital circuits using microwind.
- Implement numerical algorithm.

# **Course Content**

# **Practical Title**

# <u>Unit I</u>

- 1. Design of counters for digital clock (using Microwind s/w )
- 2. Multiplexer and Demultiplexer (using Microwind s/w )
- 3. Encoder and Decoder (using Microwind s/w)
- 4. 2nd order Butter-worth Notch Filter (p-Spice)
- 5. Buffer design using SPICE (p-Spice)
- 6. Memory design using 6T cell

# <u>Unit II</u>

- 7. Design of variable voltage supply @ 2 Amps.
- 8. Design of Function Generator.
- 9. Design of Power Amplifier 10 Watts.
- 10. Design of Stepper driver using Monoshot & 555 Timer.
- 11. Design of S/C circuit for Strain gauge /Glucose strip @ 3.3V.
- 12. Design of 4-bit UP-DOWN Counter.

# <u>Unit III</u>

- 13. Implementation of MSK modulation and demodulation.
- 14. ASK, FSK, QPSK modulation & demodulation.
- 15. QPSK, modulation & demodulation
- 16. DS-CDMA simulation.
- 17. Channel Coding methods. a. Convolution b. Block code
- 18. Error detection and correction Algorithm
  - a. CRC
  - b. Hamming code

# <u>Unit IV</u>

- 19. Numerical Programming 1 (Trapezoid method)
- 20. Numerical Programming 2 (Bisection method)
- 21. Numerical Programming 3 (Runge Kutta method)
- 22. Numerical Programming 4 (Newton Raphson method)
- 23. Numerical Programming 5 (Regula falsi method)
- 24. Numerical Programming 6 (Secant method)

### Pedagogy

Presentations /assignments/Experiential learning

# **Course Outcome**

The Students will :

- learn the basics of a communication system for modulation, data coding , error coding channel coding methods.
- Design signal conditioning and VLSI circuits for various applications.

Course Code: ELE-521 Course Title: Numerical Computation and Algorithms Number of Credits: 04 Total Hours: 60 Effective from AY: 2022-23

Total Marks: 100

Prerequisites for the course

Students should have a knowledge of programming

**Objectives of Course** 

The course is intended to,

- Develop the basic understanding of numerical computation and algorithm.
- Develop skills to implement algorithms to solve mathematical problems on the computer and Data Bases.

| Course | Content |
|--------|---------|
|--------|---------|

| Course Conten                                                                            | t                                                          |               |  |
|------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------|--|
| Unit I                                                                                   | Computer Programming                                       | 8 Hours       |  |
|                                                                                          | Algorithms, Elements of Computer Programming languag       | e, Basics of  |  |
| algorithm                                                                                |                                                            |               |  |
| design, genera                                                                           | I model, Dynamic programming model, principle of optima    | ality,        |  |
| backtracking m                                                                           | nodels.                                                    |               |  |
| Unit II                                                                                  | Data Structures                                            | 12 Hours      |  |
| Introduction to                                                                          | Data Structures, Vectors and Lists, Stack, Queue, Binary T | rees, Graphs, |  |
| Hashing.                                                                                 |                                                            |               |  |
|                                                                                          |                                                            |               |  |
| Unit III                                                                                 | Theory of Numerical programming                            | 25 Hours      |  |
| Numerical Integration: Theory of numerical errors, Trapezoidal & amp; Simpsons rule,     |                                                            |               |  |
| Romberg meth                                                                             | od, Improper integrals;                                    |               |  |
| Numerical Solution of linear equations: Gauss-Jordon elimination and Lu decomposition;   |                                                            |               |  |
| Numerical Solutions of nonlinear equations: Bracketting, bisection, Secant & amp; Regula |                                                            |               |  |
| falsi method, Newton Raphson method;                                                     |                                                            |               |  |
| Numerical Solu                                                                           | itions to Ordinary differential equations: Runge-Kutta met | hod, Modified |  |
| midpoint meth                                                                            | od, Richardson extrapolation.                              |               |  |
|                                                                                          |                                                            |               |  |
| Unit IV                                                                                  | Database                                                   | 15 Hours      |  |

Basic Concepts, Relational Data Model, Database Design, DBMS storage structures and access methods, Query Processing, Transaction Processing, Security & Computing Distributed Databases, Client Server Computing

Pedagogy

lectures/ Experiential Learning

#### **Course Outcome**

The students will:

- Use numerical methods for solving a problem, locate and use good mathematical software to achieve the required accuracy for a particular application, get the accuracy you need from the computer, assess the reliability of the numerical results.
- Solve a linear system of equations using an appropriate numerical method.
- Use data structures like Lists, Stack, Queue, Binary Trees.

#### **References/Readings**

1. Data structures using C and C++ by Yedidyah Langsam, Moshe J Augenstein, Aaron M Tenenbaum, Prentice Hall of India, 1995

2. Data Abstraction and Problem solving in Java by Frank M Carrano, Janet J Prichard ,Addison-Wesley, 2001

3. Numerical Recipes in C, William H. Press, Brain P. Flannery, William T. Vetterling, Saul A. Teulosky, Cambridge University Press, 1990.

4. Numerical Mathematical Analysis, J. B. Scarborough, Oxford and IBM Publishing Company (1979).

5. Numerical Recipes in C: The Art of Scientific Computing by William H Press, Brian P Flannery, Saul A Teukolsky - Mathematics – 1992.

6. Fundamentals of Database Systems, 4th Edition by R Elmasri, S Navathe Addison-Wesley, 2003

**Total Hours: 60** 

**Total Marks: 100** 

Prerequisites for the course

Should have studied Digital Communication Systems

#### **Objectives of Course**

This course is intended to:

- Familiarize the students with industry oriented EDA tools.
- Teach Quartus, ISE compilations and programming and its use for design and analysis.
- Enable the student to extract various design parameters from simulation results.

#### **Course Content (minimum 10 to be studied/implemented)**

Study of JTAG, Modelsim Syntax study.

- 1. Study of Phases of Quartus compilations.
- 2. Study of phases of ISE compilations
- 3. Testing logic using ChipScope-I.
- 4. Testing logic using ChipScope-II
- 5. Parallel implementation of CRC.
- 6. Serial implementation of CRC.
- 7. FIFO implementation
- 8. Pulse stretcher
- 9. Test bench using Modelsim-I
- 10. Test bench using Modelsim-I
- 11. Test bench using Modelsim-I
- 12. Test bench using Modelsim-I

#### Pedagogy

Lectures/FLIPPED CLASSROOM/Experiential Learning

#### **Course Outcome**

The students will,

- Perform compilation using Quartus and ISE software.
- Analyse logic using Chipscope-I and II.
- Develop the Test benches using Modelsim-I

### **References/Readings**

1. Design through Verilog HDL By T. R> Padmanabhan & Sundari. IEEE press, Wiley Interscience.

2. http://www.xilinx.com/itp/xilinx7/help/iseguide/html/ise

\_fpga\_design\_flow\_overview.htm

3. Hands on experience on altera development board by

J.S.Parab, etal: Springer Netherland 2018 (ISBN 978-81-

322-3769-3)

#### SEMESTER II

Course Code: ELE-504

**Course Title: EMBEDDED SYSTEMS DESIGNS** 

Number of Credits: 04 Total Hours: 60

Total Marks: 100

20

Effective from AY: 2022-23 Prerequisites for the course

Should have studied microprocessor and C programming at graduate level

**Objectives of Course** 

This course is intended to:

• Introduce with Architectures of Microcontroller and its programming with Interfacing various Interfaces is discussed in depth in this paper.

• Programming in assembly as well as in C for 8/16/32 bit controller

| Course | Content |
|--------|---------|
|        |         |

| Unit I                                                       | Introduction to Controller Architecture | 5 Hours |
|--------------------------------------------------------------|-----------------------------------------|---------|
| Computer Architecture, RISC/CISC and Princeton Architectures |                                         |         |
| Unit II                                                      | Embedded system                         | 5       |
| Definition, Basic Block, Designing of System, Applications   |                                         |         |

Unit III 8-bit Micro controllers

Introduction to various 8-Bit microcontroller, 8051 features, Architecture , Memory organization, Instruction set, Interrupts, Timer/counter, LED, Switches, ADC, DAC, LCD Interfacing, Programming in Assembly and C,

| Unit IV                                                                                      | 16 bit microcontroller | 15 |
|----------------------------------------------------------------------------------------------|------------------------|----|
| PIC controller Introduction, Architecture, Instruction set, Peripheral interfaces: LED, LCD, |                        |    |
| Serial RS232,Programming in C                                                                |                        |    |
| Unit V                                                                                       | 32-bit Microcontroller | 15 |

ARM architecture, THUMB/ARM instruction, ARM Exception Handling, Timers/Counters, UART, SPI, PWM, WDT, Input Capture, Output Compare Modes, I2C, Instruction set, Programming in Assembly and C.

Pedagogy

Lectures/Experiential Learning

Course Outcome

The students will:

- Students will learn the architecture of 8051,PIC and ARM .
- students will write an assembly and C program for 8051,PIC and ARM .
- students will write an assembly and C program for
- Students will be able to develop their own embedded platform using 8051, PIC and ARM

#### **References/Readings**

1. Jivan Parab etal., Exploring C for microcontroller (Springer 2007)

- 2. Lipovski G. J. Single and multiple Chip Microcontroller interfacing. Prentice Hall, USA 1998.
- 3. Beginning Android 4 Application Development
- 4. Professional Android 4 Application Development

Learning Android Game Programming : A Hands-On Guide to Building Your First Android Game 1st Edition

5 .Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, David Boyle, "From Machine-to-Machine to theInternet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014.

6. Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", ISBN 978-3-642-19156-5 e-ISBN 978-3-642-19157-2, Springer

7. Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-onApproach)", 1st Edition, VPT, 2014.

Total Marks: 100

# Should have studied microprocessor and C programming at graduate level Objectives of Course This course is intended to: To focus on concept of highlighting the various methods of improvising speed of computing machine through the operating system organization and various entity managements.

Prerequisites for the course

- To analyse the small embedded system developments through the Real Time Operating Systems for task management efficiency.
- Porting RTOS on embedded platform

**Course Content** 

| Unit I        | Introduction to Computer Organization and            | 6 Hours                   |
|---------------|------------------------------------------------------|---------------------------|
|               | Architecture                                         |                           |
| hardware v    | s. software -the virtual machine concept, the concep | ot of von Neumann         |
| architectur   | e, hardware components and functions, trends in ha   | rdware development,       |
| system con    | figurations and classifications.                     |                           |
| Unit II       | Process Description and Control:                     | 6                         |
| Processes,    | process states, processor modes, context switching,  | CPU scheduling            |
| algorithms,   | threads                                              |                           |
| Unit III      | Concurrency Control:                                 | 6                         |
| Concurrent    | processes, critical section problem and solutions,   | mutual exclusion solution |
| requiremer    | its, semaphores and monitors.                        |                           |
| Unit IV       | Deadlocks:                                           | 6                         |
| Characteriz   | ation, detection and recovery, avoidance, prevention | า                         |
| Unit V        | Inter Process Communication                          | 7                         |
| classical ID( | problems and solutions IDC techniques                |                           |

classical IPC problems and solutions, IPC techniques.

Unit VIThe Input/Output and File Subsystem:7I/O devices, controllers and channels, bus structures, 1/0 techniques (programmed,<br/>interrupt-driven and DMA), I/O subsystem layers. Concepts of files and directories, issues<br/>and techniques for efficient storage and access of data. I/O and file system support for<br/>graphics, multimedia, databases, transaction processing and networking.

Unit VIIThe Memory Subsystem7Memory types and hierarchy, module level Organization, cache memory. Memory<br/>partitioning, swapping, paging, segmentation, virtual memory.7Unit VIIIThe Central Processing Unit7

|                                                                                            | The Central Processing Unit                                                       | / |  |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---|--|
| CPU components, register sets, instruction cycles, addressing modes, instruction sets, the |                                                                                   |   |  |
| concept of mic                                                                             | concept of micro-programming, Basics of RISC approach, pipelined and super-scalar |   |  |
| approaches, vector processors and parallel processors, hardware support for the OS.        |                                                                                   |   |  |
| Unit IX                                                                                    | μCOS case study                                                                   | 8 |  |
|                                                                                            |                                                                                   |   |  |

#### Pedagogy

Lectures/Experiential Learning

#### **Course Outcome**

The Student Will:

- Generalize the understanding of the computing machine and various entities associated with the enhancement of the efficiency.
- Handle the operating system management process, memory, I/O, Secondary Disk and organizations of various.
- Handle any operating system for process and task managements if follows the documentations of the same.

#### **References/Readings**

1.Operating system principles, 3rd Edition, by Willian Stallings – PHI(1998)

- 2. Operating system concepts by Silberchatz and Galvin Addision wesley
- 3. Operating system by Tanaumbuam, PHI New Delhi

# Course Code: ELE-506 Course Title: Digital System Design Number of Credits: 04 Total Hours: 60 Effective from AY: 2022-23

**Total Marks: 100** 

#### Prerequisites for the course

Should have studied digital electronics at the graduate level

#### **Objectives of Course**

This course is intended to,

- Teach principles of combination and sequential logic design
- Develop implementation skills using hardware description languages.
- Teach and familiarize with industry technologies such as Memory, CPLDS, FPGA.

#### **Course Content**

|                                                                                           | Unit I            | Introduction                                                   | 6 Hours              |
|-------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------|----------------------|
|                                                                                           | About Digital     | Design, Analog versus Digital, Electronic Aspects of Digital D | esign, PLD's, ASIC,  |
| Digital Design level. Digital Concept and Number System: General Positional number system |                   |                                                                |                      |
|                                                                                           | conversions,      | Operation, BCD, Gray Code, Character Codes, Codes for Action   | ons, Conditions, and |
|                                                                                           | Charles in Curles |                                                                | ···· B·····          |

States nCubes and Distance, Codes for Detecting and Correcting Errors, Error-Detecting Codes, Error-Correcting and Multiple Error-Detecting Codes, Hamming Codes, CRC Codes, Two Dimensional Codes, Checksum Codes, m-out-of-n Codes, Codes for Serial Data Transmission and Storage, Parallel and Serial Data, Serial Line Codes

| Unit II       | Combinational Logic Design Principles                          | 4 Hours            |
|---------------|----------------------------------------------------------------|--------------------|
| Switching Al  | gebra, Combinational-Circuit Analysis, Combinational-Circuit   | Synthesis, and     |
| Timing Haza   | rds.                                                           |                    |
| Unit III      | Hardware Description Languages                                 | 4 Hours            |
| HDL-Based D   | igital Design, The VHDL Hardware Description Language, The     | e Verilog Hardware |
| Description I | anguage                                                        |                    |
| Unit IV       | Combinational Logic Design Practices                           | 4 Hours            |
| Documentat    | ion Standards, Circuit Timing, Combinational PLDs, Decoders    | , Encoders, Three- |
| State Device  | s , Multiplexers, Exclusive-OR Gates and Parity Circuits , Com | parators, Adders,  |
| Subtractors,  | and ALUs , Combinational Multipliers, Exclusive-OR Gates ar    | d Parity Circuits, |

Comparators, Adders, Subtractors, and ALUs, Combinational Multipliers.

| Unit V | Sequential Logic Design Principles & Practices | 12 Hours |
|--------|------------------------------------------------|----------|
|--------|------------------------------------------------|----------|

Bistable Elements, Latches and Flip-Flops, Clocked Synchronous State-Machine Analysis, Clocked Synchronous State-Machine Design, Designing State Machines Using State Diagrams, State-Machine Synthesis Using Transition Lists, Another State-Machine Design Example, Decomposing State Machines, Feedback Sequential-Circuit Analysis, Feedback Sequential-Circuit Design, Features ,Sequential-Circuit Design with VHDL, Sequential- Circuit Design with Verilog, Sequential-Circuit Documentation Standards, Latches and Flip-Flops ,Sequential PLDs, Counters, Shift Registers, Iterative versus Sequential Circuits, Synchronous Design Methodology, Impediments to Synchronous Design, Synchronizer Failure and Metastability

| Read-Only Memory, Read/Write Memory, Static RAM, Dynamic RAM,<br>Programmable Logic Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Complex               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Programmable Logic Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
| 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
| Unit VII Field Programmale Gate Array                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 Hours              |
| Introduction, FPGA Architectures, Configuration: SRAM-Based FPGAs a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd Antifuse           |
| Permanently Programmed FPGAs, Chip I/O, Circuit Design of FPGA Fab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rics, Architecture of |
| FPGA Fabrics, FPGA Soft-core Processor Development flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| VIII Neural Networks on FPGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 Hours              |
| Introduction, Designing a Neuron, Activation functions, Design of layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s, Training and       |
| validations, Hardware verification, Case study using PYNQ/VITIS AI framework from the study of t | nework.               |
| Pedagogy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| lectures/ Experiential Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| Course Outcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |
| The student will,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| <ul> <li>Understand principles of combination and sequential logic desi</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gn                    |
| <ul> <li>Leverage Hardware description languages for realization of con</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | binational and        |
| sequential designs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
| <ul> <li>Understand the architecture of field programmable gate array.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| References/Readings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |

1. Digital Design Principles and Practices, by John F. Wakerly, Prentice Hall's Fourth Edition.

2. Digital System Design using VHDL: Charles. H.Roth ; PWS (1998)

3. Scott Hauck and Andre DeHon, Reconfigurable Computing, Morgan Kaufmann, 2008

4. Srinivas Devadas, Abhijit Ghosh, and Kurt Keutzer, "Logic Synthesis," McGraw-Hill, USA, 1994.

5. Neil Weste and K. Eshragian,"Principles of CMOS VLSI Design: A System Perspective,2nd edition, Pearson Education, 2000.

6. Kevin Skahill, "VHDL for Programmable Logic," Pearson Education, 2000. M.N.O. Sadiku, Elements of Electromagnetics 2nd Edition), Oxford University press, 1995.

#### Course Code: ELE-507 Course Title: ELECTRONICS PRACTICALS – II

Number of Credits: 04 Total Hours: 120

s: 120

**Total Marks: 100** 

120 Hours

Effective from AY: 2022-23

#### Prerequisites for the course

Should have studied microcontrollers, embedded system, OS and EDA tools

# **Objectives of Course**

This course is intended to,

- Develop skills in handling controllers like 89C51/52, PIC and ARM controller derivatives.
- Input Output operation, Various communication interfaces, data acquisition, task management and Robotic applications.
- Cover experiments using LabVIEW with MyRIO and NI ELVIS Platform

#### **Course Content**

#### Practical Title

#### <u>Unit I</u>

- 1. 7-segment Interfacing to ATMEL 89C52 (BCD counter)
- 2. Display Temperature using ATMEL 89C52 on LCD
- 3. Obstacle Avoidance using 89V52 based Robot
- 4. Serial Transmission and reception PIC16F877
- 5. Configuring On chip ADC PIC16F877
- 6. Hex Keypad Interfaced to ARM controller & display on LCD

#### <u>Unit II</u>

- 7. Switching of LED using  $\mu$  COS
- 8. Switching of LED using RTX
- 9. Switching of LED using FPGA
- 10. KEY pad and ADC interfacing using RTOS
- 11. Shell programming Web Application.
- 12. Shell programming System Management

#### <u>Unit III</u>

- 13. VHDL implementation for the Multiplexer & Demultiplexer
- 14. VHDL Implementation for Encoder & Decoder
- 15. VHDL implementation for the Counter.
- 16. LCD and 7 -segment Interfacing using DE2 board
- 17. UART Interface using DE2 board
- 18. Echo & Reverberation implementation on speedy33 kit(lab view)

#### <u>Unit IV</u>

- 19. Automated Street lighting
- 20. Smart Irrigation System
- 21. Home Automation
- 22. Smart water monitoring system

| 23. Surveillance System                                                                               |
|-------------------------------------------------------------------------------------------------------|
| 24. Smart Parking System                                                                              |
|                                                                                                       |
| Unit V                                                                                                |
| 25. Switch basic setup                                                                                |
| 26. Virtual LAN                                                                                       |
| 27. Spanning tree protocol                                                                            |
| 28. Routing                                                                                           |
| 29. DHCP (Dynamic Host Configuration Protocol)                                                        |
| 30. Switch stacking                                                                                   |
|                                                                                                       |
| Pedagogy                                                                                              |
| Presentations /Experiential Learning/laboratory design and implementation                             |
| Course Outcome                                                                                        |
| The Students will be,                                                                                 |
|                                                                                                       |
| <ul> <li>Able to analyze the architectures of any controller.</li> </ul>                              |
| <ul> <li>Designs application using embedded system using tasks for real time applications.</li> </ul> |
| <ul> <li>Handle any computing machine using shell script for computing and management.</li> </ul>     |
| <ul> <li>Develop and design some applications based on SPEEDY 33 using LABView , NI ELVIS</li> </ul>  |
| , MYRio, Altera DE2 Board.                                                                            |
| • Develop an android app.                                                                             |
| Deferences/Deadings                                                                                   |
| References/Readings                                                                                   |
| 1. Digital Design Principles and Practices, by John F. Wakerly, Prentice Hall's Fourth                |
| Edition. Lipovski G. J. Single and multiple Chip Microcontroller interfacing. Prentice                |
| Hall, USA 1998.                                                                                       |
| 2. Beginning Android 4 Application Development                                                        |
| 3. Professional Android 4 Application Development                                                     |
| 4. Learning Android Game Programming : A Hands-On Guide to Building Your First                        |
| Android Game 1st Edition                                                                              |
|                                                                                                       |
|                                                                                                       |

**Total Marks: 100** 

# Prerequisites for the course

Students should know the basic knowledge about passive electrical and electronics components, and programming

#### **Objectives of Course**

This course is intended to:

- Introduce the fundamentals of Internet of Things and its building blocks along with their characteristics.
- understand the protocols and standards designed for IoT and the current research on it.
- know the other associated technologies like cloud and fog computing in the domain of IoT.
- provide the recent application domains of IoT in everyday life.

# **Course Content**

| Unit IIntroduction05 HoursEvolution, Addressing strategies, Sensing and Actuation -Type, Characteristics, Processi                                                      |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Evolution Addressing strategies Sensing and Actuation -Type Characteristics Processi                                                                                    |        |
| Evolution, Addressing strategies, sensing and Actuation Type, characteristics, Flotessi                                                                                 | ing    |
| topologies and types                                                                                                                                                    |        |
| Unit II IOT Networking 10 Hours                                                                                                                                         |        |
| Basics of Networking, Networking Components, Connectivity Protocol: 6LoWPAN and F                                                                                       | RFID,  |
| Data Protocol – MQTT, SMQTT, CoAP, XMPP and AMQP, Communication protocols – IE                                                                                          | EE     |
| 802.15.4, Zigbee, HART & Wireless HART, NFC, Bluetooth, Z-wave and ISA 100.11A                                                                                          |        |
| Unit III Sensing Network 15 Hours                                                                                                                                       |        |
| Wireless Sensor Networks, Sensor nodes, Sensor web, Node Behavior in WSNs, Applica                                                                                      | tions  |
| of WSNs, Coverage of WSNs, Stationary and Mobile Wireless Sensor Network, UAV Net                                                                                       | twork, |
| Flying Ad Hoc Network, Interoperability                                                                                                                                 |        |
| Unit IV Software Defined Networking 10 Hours                                                                                                                            |        |
| Basic concept, SDN architecture, SDN in IOT, Software Defined WSN, SDN for Mobile                                                                                       |        |
| Networking                                                                                                                                                              |        |
| Unit V Cloud and Fog Computing 10 Hours                                                                                                                                 |        |
|                                                                                                                                                                         |        |
| Cloud Computing: Fundamentals, Components & Characteristics, Architecture, Service                                                                                      |        |
| Cloud Computing: Fundamentals, Components & Characteristics, Architecture, Service<br>Models, Cloud types, Service Management & Security and Sensor Cloud, Fog Computin |        |

| Ur | nit VI                                                                                                              | IOT case studies and Future Trends                                                                                   | 05 Hours              |
|----|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------|
|    |                                                                                                                     | nd Smart Homes, Connected Vehicles, Smart Grid, Industria<br>aradigms, Challenges and the future.                    | l IOT, Agriculture,   |
| Ur | nit VII                                                                                                             | Hands-on                                                                                                             | 05 Hours              |
|    | -                                                                                                                   | sensors and actuators with Ardunio, Introduction to Pytho<br>o Raspberry Pi, Implementation of IOT with Raspberry Pi | n programming,        |
| Ре | dagogy                                                                                                              |                                                                                                                      |                       |
| Le | ctures/Exp                                                                                                          | eriential Learning                                                                                                   |                       |
| Со | ourse Outco                                                                                                         | me                                                                                                                   |                       |
| Or | n completic                                                                                                         | n of the course, students will be able to:                                                                           |                       |
| 1. | •                                                                                                                   | e of IOT enabling components, such as sensors, connectivity ation protocols.                                         | protocols, and        |
| 2. | Describe the IOT architecture and its component details.                                                            |                                                                                                                      |                       |
| 3. | Explain the associated technologies including cloud computing, fog computing and its applications.                  |                                                                                                                      |                       |
| 4. | •                                                                                                                   | ical knowledge about the integration of sensor and actuator<br>mentation of IOT in various applications.             | rs, coding structure, |
| Re | eferences/F                                                                                                         | eadings                                                                                                              |                       |
| 1. | S. Misra, A                                                                                                         | Mukherjee, and A. Roy, 'Introduction to IoT', Cambridge U                                                            | niversity Press.      |
| 2. | S. Misra, C. Roy, and A. Mukherjee, 'Introduction to Industrial Internet of Things and<br>Industry 4.0', CRC Press. |                                                                                                                      | of Things and         |
| 3. | ,<br>Pethuru R                                                                                                      | aj and Anupama C. Raman, 'The Internet of Things: Enabling<br>and Use Cases", CRC Press.                             | Technologies',        |
| 4. |                                                                                                                     | Bahga and Vijay Madisetti, 'Internet of Things: A Hands-on A                                                         | Approach',            |

# Course Code: ELE-524 Course Title: Switching and Routing Number of Credits: 04 Total Hours: 60 Effective from AY: 2022-23

**Total Marks: 100** 

#### Prerequisites for the course

Students should know the basic knowledge about network, basic terminologies and security at graduate level

#### **Objectives of Course**

This course is intended to:

- Introduce the student to the broader understanding of computer networks
- Cover Extensive learning in switching and routing technologies.
- Comprehensive understanding in LAN switching environment.

#### **Course Content**

| Unit I | Computer Networking | 05 Hours |
|--------|---------------------|----------|
|        |                     |          |

| Introduction, Network Components, Network types: LAN, PAN, MAN & WAN, Connection              |
|-----------------------------------------------------------------------------------------------|
| type: Point-to-point & Point-to-multipoint, Physical Topology: Star, Mesh, Bus and Ring, Data |
| Communication                                                                                 |

| Unit II        | Network Models                                                                | 10 Hours         |
|----------------|-------------------------------------------------------------------------------|------------------|
| OSI Model, T   | CP/IP Model, OSI and TCP/IP model comparison, Critique of                     | OSI and TCP/IP   |
| model, Interr  | net and Internet Architecture                                                 |                  |
| Unit III       | IP Addressing and Subnets                                                     | 15 Hours         |
| IP Addressing  | : Composition, Types & Classes, Private and Public IP addres                  | ses, Subnetting, |
| Variable Leng  | th Subnet Masks (VLSM), Troubleshooting IP addressing                         |                  |
| Unit IV        | Switching and Spanning Tree Protocol                                          | 15 Hours         |
| Switching and  | d Switches, Switch Operation, Virtual Local Area Network (VI                  | LAN) and VLAN    |
| Trunding Pro   | tocol (VTP), Spanning Tree Protocol (STP), Switch Stacking, N                 | letwork Address  |
| Translation (  | NAT)                                                                          |                  |
| Unit V         | Routing                                                                       | 10 Hours         |
| IP Routing, Ty | /pes, Classes of Routing, Distance Vector Routing Protocol (I                 | VRP), Routing    |
| Information F  | Protocol (RIP)                                                                |                  |
| Unit VI        | Network Security                                                              | 05 Hours         |
| Cryptography   | <ul> <li>Digital Signatures, Communication Security, Web Security,</li> </ul> | Virtual Private  |
| Network (VPI   | N),                                                                           |                  |
| Pedagogy       |                                                                               |                  |

Lectures/Experiential Learning

# **Course Outcome**

The students will:

- Explain in detail the concepts of Computer networking, OSI and TCP/IP model architecture along with the comparison.
- Gain the knowledge about the Switching and Routing
- Understand the basic device configuration and troubleshooting.
- Explain the Network security principles and its applications

#### **References/Readings**

- 1. Andrew S.Tanenbaum, 'Computer Networks', 3rd Edition, Prentice Hall.
- 2. James F. Kurose and Keith W. Ross, 'Computer Networking: A Top-Down Approach', 7th Edition, Pearson Education.
- 3. D-Link Certified, DCS Switching Training Guide.
- 4. D-Link Certified, DCS Switching Lab Manual
- 5. Cisco Certified Network Associate Training Guide

#### Semester III

Course Code: ELE-600

**Course Title: Signals and Systems** 

#### Number of Credits: 04 Total Hours: 60

**Total Marks: 100** 

Effective from AY: 2022-23

| Chould have               | the basic knowledge of Integration Differentiation Communic                                 | Numbers                        |
|---------------------------|---------------------------------------------------------------------------------------------|--------------------------------|
|                           | the basic knowledge of Integration, Differentiation, Complex                                | civumpers                      |
| Objectives of             |                                                                                             |                                |
|                           | intended to:                                                                                |                                |
|                           | op understanding about signals, systems and their classifica                                |                                |
|                           | de with necessary tools and techniques to analyse electrical                                |                                |
|                           | ns to develop expertise in time-domain and frequency domain                                 | ain approaches.                |
| <ul> <li>Discu</li> </ul> | sses different types of Filters and its design.                                             |                                |
| Course Conte              | ent                                                                                         |                                |
| Unit I                    | Signals and Signal Processing                                                               | 05 Hours                       |
| Characterizat             | ion and Classification of Signals, Typical Signal Processing O                              | perations.                     |
| Unit II                   | Discrete Time Signal and Systems                                                            | 08 Hours                       |
| Discrete-Tim              | e Signals, Sequence Representation, Sampling Process, Simp                                  | le Interconnection             |
| Schemes, Co               | relation of Signals, Random Signal.                                                         |                                |
| Unit III                  | Discrete Transform                                                                          | 17 Hours                       |
| Fourier series            | s, Continuous and Discrete-time Fourier Transform, Laplace                                  | Transform, Energy              |
| Density Spec              | rrum, Phase and Group Delays. Digital Processing of Continu                                 | ous Time Signals -             |
| Sampling of (             | Continuous Time Signal, Low-pass & Band-pass Signal, Anti-A                                 | liasing Filter design,         |
| Sample-and-               | Hold (S/H), Analog to Digital, Digital to Analog Convertors, Ef                             | fects of S/H, Short-           |
| Time Fourier              | Transform, Wavelet Transform                                                                |                                |
| Unit IV                   | Digital Filter Structure                                                                    | 08 Hours                       |
| Block Diagram             | n Representation, FIR, IIR filter, Allpass Filter, Tunable IIR Di                           | gital Filter, Digital          |
| Sin-Cosine G              | enerator, Computational Complexity.                                                         |                                |
| Unit V                    | FIR Digital Filter Design                                                                   | 10 Hours                       |
| Preliminary (             | onsiderations, FIR Filter Design Based on Windowed Fourier                                  | <sup>.</sup> Series, Design of |
| Minimum Ph                | ase FIR Filters.                                                                            |                                |
| Unit VI                   | DSP Algorithm Implementation                                                                | 08 Hours                       |
| Computabilit              | y Equation Describing Filter Structure, Verification, Compute                               | tion of Discrete               |
| Fourier Trans             | form (DFT), FFT, DFT & Inverse-DFT using MATAB, Number I                                    | Representation,                |
| Handling Ove              | rflow, Tunable Digital Filters.                                                             |                                |
| Unit VII                  | Application of Digital Signal Processing                                                    | 04 Hours                       |
| Dual-Tone M               | ulti-Frequency Signal Detection, Musical Sound Processing, S                                | Signal Compression,            |
| Transmultiple             | exers                                                                                       |                                |
| <b>Case Studies</b>       |                                                                                             |                                |
|                           |                                                                                             |                                |
| 1. In                     | plementation of Filters – Ensemble Average filter, Exponent                                 | tial weighted                  |
|                           | plementation of Filters – Ensemble Average filter, Exponent<br>nning system, Median Filter. | tial weighted                  |
| ru                        |                                                                                             | tial weighted                  |
| ru<br>2. In               | nning system, Median Filter.                                                                | tial weighted                  |
| ru<br>2. In<br>3. In      | nning system, Median Filter.<br>Iplementation of aliasing effect and interpolation          |                                |

Pedagogy

lectures/ Experiential Learning

#### **Course Outcome**

Students will be able to:

- 1. Explain classification of signals and signal processing operations.
- 2. Understand the discrete time signals and its discrete time Fourier transform representation.
- 3. Learn different structural representation of FIR and IIR digital filters.

#### **References/Readings**

- 1. Sanjit K Mitra, 'Digital Signal Processing: A computer Based Approach, 3rd Edition, Tata MacGraw-Hill, 2011
- 2. Johnny R. Johnson, Introduction To Digital Signal Processing, Prentice Hall, 1989.
- 3. John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing, 4th Edition, Pearson Education, 2007.
- 4. Simon Haykin, Van Veen, Signals and Systems, 2nd Edition, Wiley, 2007
- 5. Richard G. Lyons, 'Understanding Digital Signal Processing', Pearson, 2022
- 6. S. Palani, 'Signals and Systems', Springer International Publishing, 2021

Total Marks: 100

# Prerequisites for the course Should have knowledge of basic electronics and programming. **Objectives of Course** This course is intended to: • Introduce the foundation concepts in the field of artificial intelligence. Become familiar with basic principles of AI toward problem solving Know approaches of inference, perception, uncertain knowledge, and reasoning Prepares a student to take a variety of focused, advanced courses in various subfields of AI. **Course Content** Unit I Introduction 08 Hours History, Philosophy of AI, Definitions, Introduction to: AI System Hardware CPU, RAM, GPU, Interconnects, Storage, Network Controller; AI Accelerators GPUs; • System Software Operating System, Virtualization, Cloud. 08 Hours Unit II **Containers, IDE & Schedulers** Introduction to Containers and IDE; Scheduling and Resource Management Introduction to schedulers and orchestration tools; DeepOps: Deep-dive into Kubernetes with the deployment of various AI-based services. Unit III **Problem-solving by search** 12 Hours Introduction to unguided and guided search; State Space Search: Depth First Search, Breadth First Search, Depth First Iterative Deepening Heuristic Search: Best First Search, Hill Climbing, Solution Space, TSP, Escaping Local Optima, Stochastic Local Search Unit IV **Knowledge Representation and Reasoning 10 Hours** Knowledge Representation (KR) Introduction, Knowledge Progression, KR model, category: typology map, type, relationship, framework, mapping, forward & backward representation, KR system requirements; KR schemes; KR issues; KR using predicate logic, KR using Rules Reasoning: Definitions Reasoning, formal logic, and informal logic, uncertainty, monotonic logic, non-monotonic Logic; Methods of reasoning and examples - deductive, inductive, abductive, analogy; Sources of uncertainty; Approaches to reasoning - symbolic, statistical

| and fuzzy; Symbolic Reasoning, Statistical Reasoning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |  |
| Unit V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Learning System & Neural Networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12 Hours           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Learning System & Neural Networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12 HOUIS           |  |  |
| Definition, learning agents, components of the learning system; Rote Learning, Learning from examples; Explanation-based learning, Clustering, Reinforcement Learning Introduction to NN, ANN, CNN, ML, Deep Learning: Model, architecture, Learning Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |  |
| Unit VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Applications of Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 Hours           |  |  |
| Game playing, Computer Vision, Expert Systems, agricultural and soil management applications, Cognitive Science, Finance, meteorology, Health care.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |  |
| Case Studies:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |  |
| <ol> <li>Implementation of CNN for databases available in the public domain.</li> <li>Development of your own deep network.</li> <li>Image processing of the data collected using UAV/drone</li> <li>Solving health care/ meteorology problem using AI algorithm.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |  |
| Pedagogy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |  |
| Lectures/Exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eriential Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |  |  |
| Course Outco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |  |  |
| Students will:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nowledge of the basic concepts of Artificial Intelligence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | problem-solving, knowledge representation, and reasoning a<br>to deal with all the concepts and problems using NN, ANN, CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • •                |  |  |
| learni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |  |
| <ul> <li>Able the second s</li></ul> | to apply the knowledge and will generate automated syste<br>AI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ms (Applications)  |  |  |
| References/Readings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ak Khemani, 'A First Course in Artificial Intelligence', McGra<br>), 1 <sup>st</sup> ED, 2014.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aw Hill Education  |  |  |
| 2. Stuart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J. Russell and Peter Norvig, 'Artificial Intelligence', Pearson, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |  |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e F Lugar, Artificial Intelligence: Structure and strategies for ogen by the strategies for one | complex, Problem   |  |  |
| 4. Wolfg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ang Ertel, Nathanael T. Black, Introduction to Artificial I<br>n, Springer,2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ntelligence Nils J |  |  |

- 5. Principles of Artificial Intelligence, Illustrated Reprint Edition, Springer Heidelberg, 2014.
- 6. Alexander Jung Machine, 'Learning: The Basics (Machine Learning: Foundations, Methodologies, and Applications)', Springer, 2022
- 7. Cherry Bhargava, Pardeep Kumar Sharma, 'Artificial Intelligence. Fundamentals and Applications', CRC Press, 2022

Number of Credits: 04 Effective from AY: 2022-23 Total Hours: 60

**Total Marks: 100** 

#### Prerequisites for the course

Should have knowledge of Basic electronics hardware, Mathematics, and programming.

#### **Objectives of Course**

This course is intended to:

- Introduce robotics and the key elements and constituents of a robot; science and technology in robots; ROS.
- Understand and explain the various elements of the robotic system.
- Study all necessary kinematics and various analysis techniques.
- Understand the robot dynamics and control theory.
- Give exposure to futuristic robotic technologies.

#### **Course Content**

| Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Introduction       | 10 Hours |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--|--|--|--|--|
| Introduction- Brief history, types, classification and usage, growth; Robot applications-<br>Manufacturing industry, defense, rehabilitation, medical, etc.; Laws of Robotics;<br>Introduction to ROS                                                                                                                                                                                                                                                                                                                                                                                      |                    |          |  |  |  |  |  |
| Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elements of robots | 12 Hours |  |  |  |  |  |
| Links, joints, actuators, and sensors;<br>Position and orientation of a rigid body, Homogeneous transformations;<br>Representation of joints, link representation using D-H parameters, Examples of D-H<br>parameters, and link transforms;<br>Different kinds of actuators – stepper, DC servo and brushless motors, model of a DC servo<br>motor;<br>Types of transmissions;<br>Purpose of sensors, internal and external sensors, common sensors – encoders,<br>tachometers, strain gauge-based force-torque sensors, proximity, and distance measuring<br>sensors, and vision sensors. |                    |          |  |  |  |  |  |
| Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Kinematics         | 07 Hours |  |  |  |  |  |
| Direct and Inverse Kinematics;<br>Kinematics of serial robots: Direct and inverse kinematics problems, Inverse kinematics of<br>constrained and redundant robots, Tractrix-based approach for fixed and free robots and<br>multi-body systems;                                                                                                                                                                                                                                                                                                                                             |                    |          |  |  |  |  |  |

Kinematics of parallel robots: direct and inverse kinematics problems, Mobility, Stewart-

| Gough platform, passive joints.                                                                                                                                                                                                                               | Degrees-of- freedom of parallel mechanisms and man | ipulators, Active and |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------|--|--|--|
| Unit IV                                                                                                                                                                                                                                                       | Velocity and static analysis                       | 05 Hours              |  |  |  |
| Linear and angular velocity of links, Manipulator Jacobians for serial and parallel<br>manipulators;<br>Statics of serial and parallel manipulators, Statics and force transformation matrix of a<br>GoughStewart platform, Singularity and Statics analysis. |                                                    |                       |  |  |  |
| Unit V                                                                                                                                                                                                                                                        | Robot Dynamics & Controls                          | 10 Hours              |  |  |  |
| Robot dynamics equation; General procedure for dynamics equation forming and introduction to control; Actuator dynamics and PD, PID control for robots; Trajectory tracking control; Lyapunovs theorems; Neural network control design                        |                                                    |                       |  |  |  |
| Unit VI                                                                                                                                                                                                                                                       | Robotics Applications                              | 09 Hours              |  |  |  |
| Introduction, development, and working of: UAV, Drone, Humanoid Robots & Underwater robot                                                                                                                                                                     |                                                    |                       |  |  |  |
| Unit VII                                                                                                                                                                                                                                                      | Futuristic Robots                                  | 07 Hours              |  |  |  |
| Introductions to MEMS (micro-electro-mechanical systems),<br>Introduction to Cognitive Robotics and Human-Robot Interaction,<br>Robots in Space & Defense applications                                                                                        |                                                    |                       |  |  |  |
| Case Studies:                                                                                                                                                                                                                                                 |                                                    |                       |  |  |  |
| <ol> <li>Development of obstacle avoidance and line following robot.</li> <li>Implementation of ROS.</li> <li>Simulation of robotic trajectories.</li> <li>Drone-based image analysis.</li> </ol>                                                             |                                                    |                       |  |  |  |
| Pedagogy                                                                                                                                                                                                                                                      |                                                    |                       |  |  |  |
| Lectures/Experier                                                                                                                                                                                                                                             | ntial Learning                                     |                       |  |  |  |
| Course Outcome                                                                                                                                                                                                                                                |                                                    |                       |  |  |  |

Students will:

- Gain knowledge of the basic concepts in robotics, ROS, key elements, and constituents of the robotic system.
- Learn the kinematics of serial and parallel robots and will be able to perform various analyses.
- Understand the various robotic dynamics and control designs.
- Able to understand and develop robotic systems.
- Have an update on the latest robotic research & technologies.

#### **References/Readings**

- 1. Ghosal, A., 'Robotics: Fundamental Concepts and Analysis', Oxford University Press, 9<sup>th</sup> reprint, 2013
- 2. Robert J Schilling, 'Fundamentals of Robotics', Prentice Hall India, 1<sup>st</sup> ED, 2003
- 3. John J Craig, 'Introduction to Robotics', Prentice Hall International, 3<sup>rd</sup> ED, 2005
- 4. Jitendra R. Raol, Ramakalyan Ayyagari, 'Control Systems: Classical, Modern, and Al-Based Approaches', CRC Press, 1<sup>st</sup> ED, 2019
- 5. Gao, Yang, 'Space Robotics and Autonomous Systems', Institution of Engineering & Technology, 2021
- 6. Lentin Joseph, Aleena Johny, 'Robot Operating System (ROS) for Absolute Beginners', 2<sup>nd</sup> ED, 2022

#### Course Code: ELE-621 **Course Title: Laser System Engineering** Total Hours: 60 Total Marks: 100 Number of Credits: 04 Effective from AY: 2022-23

| Prerequisites for the course                                                                                                                                                                                                                                                                                                                                                       |                                                 |             |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------|--|--|
| Gradua                                                                                                                                                                                                                                                                                                                                                                             | Graduate level knowledge in Electronics/Physics |             |  |  |
| Object                                                                                                                                                                                                                                                                                                                                                                             | ives of Course                                  |             |  |  |
| <ul> <li>This course is intended to: <ul> <li>Teach the difference between ordinary light and light emitted by a laser device.</li> <li>Introduce the method used for excitation of laser devices.</li> <li>Explain the theory behind generation of stimulated emissions.</li> <li>Cover various application of lasers in medical, civil and defence areas.</li> </ul> </li> </ul> |                                                 |             |  |  |
| Course                                                                                                                                                                                                                                                                                                                                                                             | Content                                         |             |  |  |
| Unit I                                                                                                                                                                                                                                                                                                                                                                             | Optical Resonators                              | 12 Hours    |  |  |
| Energies in resonator, Febry-Perot Etalon , Febry-Perot Etalon as Optical Spectrum<br>Analyzer, Mode Stability Criteria , Resonance Frequency of Optical Resonator, Unstable<br>Resonator                                                                                                                                                                                          |                                                 |             |  |  |
| Unit<br>II                                                                                                                                                                                                                                                                                                                                                                         | Interaction of Radiation with Atomic System     | 10<br>Hours |  |  |
| Spontaneous transmission between Atomic layer, Homogenous and In-Homogeneous broadening , Line shape functions, Stimulated transmission , Absorption and amplification , gain saturation in Homogenous media .                                                                                                                                                                     |                                                 |             |  |  |
| Unit<br>III                                                                                                                                                                                                                                                                                                                                                                        | Theory of Laser Oscillator                      | 10 Hours    |  |  |
| Febry Perot Laser , Three and Four Level Laser , Power in Laser Oscillator, Optimum Light coupling , Multimode Laser Oscillator and Mode Locking Methods of Mode locking , Pulse length Measurements , Q-Switching , methods of Q-Switching .                                                                                                                                      |                                                 |             |  |  |
| Unit<br>IV                                                                                                                                                                                                                                                                                                                                                                         | Laser Systems                                   | 8 Hours     |  |  |
| Pumping and laser Efficiency, Ruby Laser, Flash Pumping ,Nd-YAG Laser , Nd Glass Laser ,<br>Threshold for CW and Pulse operation , HeNe Laser , CO2 Laser , Ar-Ion Laser , Excimer<br>Laser , Dye Laser.                                                                                                                                                                           |                                                 |             |  |  |
| Unit<br>V                                                                                                                                                                                                                                                                                                                                                                          | Non –Linear Optics                              | 6 Hours     |  |  |

| Unit<br>VI                            | Interaction of Light and Sound                                                                                                                                                                                                                                                                                                                                     | 7 Hours     |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                       | ring of Light by Sound, RamanNath and Bragg diffraction , Diffraction of , Intensity modulation.                                                                                                                                                                                                                                                                   | light by    |
| Unit<br>VII                           | Applications of Lasers                                                                                                                                                                                                                                                                                                                                             | 7 Hours     |
|                                       | Laser cutting and welding, lunar laser ranging, Optical Network, optical t<br>copy, Laser Leveling, Surface Defects scanning, bar code scanner                                                                                                                                                                                                                     | weezers,    |
|                                       | Case Studies                                                                                                                                                                                                                                                                                                                                                       |             |
| 2. Con<br>3. Foc<br>4. Coll<br>Pedag  | erstanding the diffraction of Laser Light using grating<br>nparison of resolving power of Prism and Grating.<br>using of Laser Light.<br>imation of Laser Light.<br>ogy<br>es/ tutorials/assignments/presentation<br>e Outcome                                                                                                                                     |             |
| The st                                | udent will,<br>have sufficient knowledge of lasers for applications involving medical to<br>well as defence needs.<br>have a full knowledge of classification of lasers and its usage.<br>Have knowledge to handle high power industrial lasers.                                                                                                                   | reatment as |
| Refere                                | nces/Readings                                                                                                                                                                                                                                                                                                                                                      |             |
| 2. A. 0<br>1989 .<br>3. Wil<br>4. K.T | Yariv, "Optical Electronics", 4th Edition by, HRW publication, 1991.<br>Ghatak and K. Tyagarajan, "Optical Electronics", by Cambridge University<br>liam T. Silfvast, "Laser fundamentals", 2 <sup>nd</sup> Edition, Cambridge University<br>hyagarajan, and Ajoy Ghatak, Lasers: Fundamentals and Applications (G<br>kts in Physics), Springer publication, 2012. | Press, 2008 |

5. L. Tarasov, "Laser Physics and application", Mir Publication, 1987

## Course Code: ELE-622 Course Title: Data Science and Machine Learning Number of Credits: 04 Effective from AY: 2022-23

**Total Marks: 100** 

#### Prerequisites for the course Should have the basic knowledge of linear algebra and Python programming language. **Objectives of Course** This course is intended to: Introduce the mathematical foundations required for Data Science and Machine learning. • Introduce the statistical and probabilistic concepts. • Learn the data analysis and processing. To study different machine learning and deep learning techniques. **Course Content** Unit I Introduction 05 Hours Introduction to Data Science, Data Science Process, Fundamentals of linear algebra Unit II **Foundations of Data Science 08 Hours** Python for Data Science- Programming basics, libraries – Numpy, SciPy, Scikit-Learn, Tensor flow, Keras, Py-tourch, Pandas, Matplotlib, Seaborn. Statistical concepts - Descriptive and Inferential Statistics, Probability Data Visualization, Exploration and Manipulation Unit III 12 Hours Types of Data, Visualization, Exploratory Data Analysis, Data Cleansing, Data Manipulation, Feature Extraction and Feature Selection **Regression and Classification** Unit IV **10 Hours** Linear Regression, Logistic Regression, Multivariate Regression, Support Vector Machine, Decision Tree, Random Forest, Naive Bayes, Regularization, Goodness of fit Unit V Machine Learning **15 Hours** Machine Learning Process Flow, Overfitting and under fitting, Bias-Variance, Types of machine learning, Dimensionality Reduction-Principal Component Analysis, K-Nearest Neighbour, Clustering- K-means **Deep Learning 10 Hours** Unit VI Neural Networks, Convolutional Neural Networks, Transfer Learning, Reinforcement learning, **Recurrent Neural Networks** case studies 1. Implement data cleansing and manipulation operations 2. Implement Support Vector Machine algorithm for multiclass classification 3. Implement clustering algorithm 4. Demonstrate the overfitting and under fitting conditions 5. Face recognition using deep convolutional neural network and using transfer learning. Pedagogy lectures/ Experiential Learning **Course Outcome** The students will: 1. Understand the fundamental concepts of data science and machine learning.

2. Perform data processing technique using python.

### 3. Explain and implement the machine learning methods.

- 1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, 'The Elements of Statistical Learning -Data Mining, Inference, and Prediction', Springer New York, 2013
- 2. Joel Grus, 'Data Science from Scratch First Principles with Python', 2nd Edition, O'Reilly Media, 2019.
- 3. Cathy O'Neil and Rachel Schutt, 'Doing Data Science Straight Talk From The Frontline', O'Reilly. 2013.
- 4. Laura Igual, Santi Seguí, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio Escalera, Francesc Dantí, Lluís Garrido, 'Introduction to Data Science A Python Approach to Concepts, Techniques and Applications', Springer International Publishing, 2017
- 5. Samir Madhavan, 'Mastering Python for Data Science', Packt Publishing, 2015
- 6. Ian Goodfellow, Yoshua Bengio, Aaron Courville, 'Deep Learning', MIT Press, 2016
- 7. Zhi-Hua Zhou, 'Machine Learning', Springer Nature Singapore, 2021

### Course Code: ELE-623 Course Title: Electric Vehicle Technology Number of Credits: 04 Total Hours: 60 Effective from AY: 2022-23

**Total Marks: 100** 

Prerequisites for the course Should have graduate level knowledge in Basic Electrical and Electronics **Objectives of Course** This course is intended to: Introduce Hybrid & Electric Vehicle Cover various types of Electric Drives and energy • Modelling and Characteristics of EV/HEV Powertrains Components Matlab Simulink modeling of Electric Vehicle **Course Content Introduction to Hybrid Electric Vehicle** Unit I 5 Hours Review of Conventional Vehicle, Introduction to Hybrid Electric Vehicles, Types of EVs, Hybrid Electric Drive-train, Tractive effort in normal driving Unit II **Electric Drives 10 Hours** Energy consumption Concept of Hybrid Electric Drive Trains, Architecture of Hybrid Electric Drive Trains, Series Hybrid Electric Drive Trains, Parallel hybrid electric drive trains, Electric Propulsion unit, Configuration and control of DC Motor drives, BLDC, Induction Motor drives, Permanent Magnet Motor drives, switched reluctance motor Unit III **Energy Storage** 8 Hours Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles:- Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Hybridization of different energy storage devices. Sizing the drive system, Design of Hybrid Electric Vehicle and Plug-in Electric Vehicle Unit IV **Energy Management System** 8 Hours Energy Management Strategies, Automotive networking and communication, EV charging standards, V2G, G2V, V2B, V2H Unit V **Mobility and Connectors** 8 Hours Connected Mobility and Autonomous Mobility- case study E-mobility Indian Roadmap Perspective. Policy: EVs in infrastructure system, integration of EVs in smart grid, social dimensions of EVs. Connectors- Types of EV charging connector, North American EV Plug Standards, DC Fast Charge EV Plug Standards in North America, CCS (Combined Charging System), CHAdeMO, Tesla, European EV Plug Standards Unit VI Modelling of Vehicle Performance Parameter 7 Hours Modelling Vehicle Acceleration - Acceleration performance parameters, modeling the acceleration of an electric scooter, modeling the acceleration of a small car. Unit VII **Modelling of Battery Electric Vehicles** 7 Hours Electric Vehicle Modelling - Tractive Effort, Rolling resistance force, Aerodynamic drag, Hill climbing force, Acceleration force, Total tractive effort, Modelling Electric Vehicle Range -Driving cycles, Range modelling of battery electric vehicles, Constant velocity range modelling, Range modelling of fuel cell vehicles, Range modelling of hybrid electric vehicles UNIT VIII **Drivetrain Characteristics** 7 Hours Modelling and Characteristics of EV/HEV Powertrains Components- ICE Performance Characteristics, Electric Motor Performance Characteristics - Battery Performance Characteristics-Transmission and Drivetrain Characteristics-Regenerative Braking Characteristics-Driving Cycles Modelling and Analysis of Electric and Hybrid Electric Vehicles Propulsion and Braking - Longitudinal Dynamics Equation of Motion - Vehicle Propulsion Modelling and Analysis - Vehicle Braking Modelling and Analysis

### **Case studies**

1. Explore Electric Powertrain Architectures

2. Tune Regenerative Braking Algorithms

3. Modify Suspension Design

4.Optimize Vehicle-Level Performance

- 5. Model Inverters, Traction Motors, and Develop Motor Control Software
- 6. Model Batteries and Develop Battery management System(BMS)

### Pedagogy

### Lectures/Experiential Learning

Course Outcome Students will,

- To understand about basics of hybrid electric vehicle
- To understand about drives and control.
- Select battery, battery indication system for EV applications
- Design battery charger for an EV
- Modelling of Electric Vehicle in MATLAB

- Emadi, A. (Ed.), Miller, J., Ehsani, M., Boca Raton, "Vehicular Electric Power Systems" CRC Press, 2003
- 2. Husain, I. Boca Raton, "Electric and Hybrid Vehicles", CRC Press, 2010.
- 3. Larminie, James, and John Lowry, "Electric Vehicle Technology Explained" John Wiley and Sons, 2012
- 4. Tariq Muneer and Irene IllescasGarcía, ,"The automobile, In Electric Vehicles: Prospects and Challenges", Elsevier, 2017
- 5. Sheldon S. Williamson, "Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles", Springer, 2013
- 6. Amir Khajepour, Saber Fallah and Avesta Goodarzi, "Electric and Hybrid Vehicles Technologies, Modelling and Control: A Mechatronic Approach" John Wiley & Sons Ltd, 2014.
- 7. Antoni Szumanowski, "Hybrid Electric Power Train Engineering and Technology: Modelling, Control, and Simulation" IGI Global, 2013.

# Prerequisites for the course Graduate level knowledge in analog and digital electronics. **Objectives of Course** This course is intended to: • Introduce fundamentals of biomedical instrumentation and measurements Introduce concepts of biotelemetry and non-invasive diagnostic imaging Cover noise reduction technique in electronics systems • **Course Content** Unit I Introduction to biomedical instrumentation 10 Hours Components of Man-Measurement system, Physiological system of body, problems encountered in measuring a living System, Basic transducer principle, Source of Bioelectric Potential, Skin contact Impedance, Electrodes: ECG, EEG, EMG, Microelectrodes. Unit II Noise reduction technique in electronics systems 10 Hours Introduction, cabling, grounding, balancing and filtering, shielding, contact protection, Intrinsic Noise Source, Active device Noise, and Electrostatic discharge. Unit III Cardiovascular measurements. 8 Hours Heart and cardiovascular system, characteristics of blood flow, Electrocardiography, measurement for Blood Pressure, photo-plethysmography, Functional NIR for brain oxygenation. Unit IV Non-invasive diagnostic imaging 8 Hours X-Ray, CT, MRI, fMRI, PET and SPECT, ULTRASOUND, Optical Tomography Unit V **10 Hours** Biotelemetry Introduction to Biotelemetry, Physiological parameters Adaptable to Biotelemetry, The components of Biotelemetry System, Implantable Units, and Applications of telemetry in-Patient care.

| Unit<br>VI     | Instrumentation for clinical laboratory                                                                                                                                                                                                                                                                                                                            | 6 Hours               |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| The Bl         | ood, Test for Blood cells, chemical Tests, Automation of chemical Test                                                                                                                                                                                                                                                                                             |                       |
| Unit<br>VII    | Applications in biomedical field                                                                                                                                                                                                                                                                                                                                   | 8 Hours               |
| applic         | ble devices: activity trackers, hearing aid, Electromyogram band. Laser<br>ations in biomedical fields: Ophthalmology, dermatology, urology, Phot<br>graphy.                                                                                                                                                                                                       | oacoustic             |
| Case S         | tudies                                                                                                                                                                                                                                                                                                                                                             |                       |
| 2. Si<br>3. Si | G wave analysis using simulator<br>gnal condition for EMG<br>gnal condition for photoplethysmography<br>plementation of noise reduction techniques                                                                                                                                                                                                                 |                       |
| Pedag          | ogy                                                                                                                                                                                                                                                                                                                                                                |                       |
| lectur         | es/ Experiential Learning                                                                                                                                                                                                                                                                                                                                          |                       |
| Course         | e Outcome                                                                                                                                                                                                                                                                                                                                                          |                       |
| The st         | udent will:<br>Understand Fundamentals of medical instrumentation, Bioelectric por<br>electrodes<br>Understand concepts of biotelemetry<br>Understand application of laser in biomedical field<br>Implement Noise reduction technique in electronics systems                                                                                                       | tential,              |
| Refere         | ences/Readings                                                                                                                                                                                                                                                                                                                                                     |                       |
| 2.<br>2014.    | Leslie Cromwell, Fred J. Weibell, and Erich A. Pfeiffer, "Biomedical instru<br>and Measurements" Prentice Hall India, 2011.<br>R. S, Khandpur, "Handbook of Biomedical instrumentation", Tata Mc GR<br>Henry W. Ott, "Noise reduction Technique in Electronic systems", Wiley<br>Paul Suetens, "Fundamentals Of Medical Imaging", 3 <sup>rd</sup> Edition, Cambrid | AW Hill,<br>v & sons, |

### **SEMESTER IV**

### Course Code: ELE-603 Course Title: Optical Communication Systems Number of Credits: 04 Total Hours: 60 Effective from AY: 2022-23

Total Marks: 100

#### Prerequisites for the course

Should have knowledge of Electro statics and electromagnetics. Also, a basic understanding of analog and digital communication is preferable.

#### **Objectives of Course**

This course is intended to:

- Highlight the importance of optical communication over existing copper cable and microwave communication.
- Elaborate on electromagnetic spectrum usage for various applications, from telephone to satellite communication.
- Create a strong theoretical base to understand the difference between the ray theory and wave theory approach for the passage of signals in optical fibers.
- Discuss the estimation of Noise in optical detection in detail.
- Emphasizes the industrial needs in cabling technique and type of cable used.
- Discuss different techniques of optical fiber manufacturing and their characteristic

### **Course Content**

| Unit I                                                                                                                                                                                                                                                                 | Light Propagation in Optical Fiber                                                                                                                                                                                | 14 Hours         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
| Introduction & Evolution of Fiber optics system;<br>Geometric picture, Pulse spread due to material dispersion, loss mechanism, Theory of<br>Optical waveguides, methods of waveguides analyses, modes in steps and graded index<br>fiber, new types of optical fibers |                                                                                                                                                                                                                   |                  |  |
| Unit II                                                                                                                                                                                                                                                                | Fiber Optics Technology                                                                                                                                                                                           | 08 Hours         |  |
| methods, conn                                                                                                                                                                                                                                                          | Fiber materials & fiber fabrication, cable design, coupling, splicing and connectors, splicing methods, connectors, fiber measurements.<br>Signal Degradation: Attenuation, Losses, Distortion, Pulse broadening. |                  |  |
| Unit III                                                                                                                                                                                                                                                               | <b>Optical Sources &amp; Power Launching</b>                                                                                                                                                                      | 08 Hours         |  |
| LED and LDs, development of Laser diodes structures, transmitter circuits, Coupling efficiency of the source to fiber.<br>Source to fiber power launching, fiber joints, splicing.                                                                                     |                                                                                                                                                                                                                   |                  |  |
| Unit IV                                                                                                                                                                                                                                                                | Optical detectors                                                                                                                                                                                                 | 09 Hours         |  |
| Photoconductiv                                                                                                                                                                                                                                                         | ve detector: biasing circuit, Commercial photocondu                                                                                                                                                               | ctor, Heterodyne |  |

Detection, p-n junction & its Equivalent circuit.

Photodiode: Geometry of p-i-n, Frequency Response of Photodiodes/N ratio, Schottky photodiode. Avalanche diode: Construction, S/R ratio, minimum detection of power. Noise in detectors Unit V **Receiver sensitivity and BER** 05 Hours Receiver design & configuration, Receiver operations, Error sources, Receiver noise Unit VI Communication System design 08 Hours System requirement, System design, Link analyses, Power budgeting, Line coding (NRZ, RZ, Block codes), Unit VII **08 Hours** Advance System TDM, Undersea fiber optics communication system, fibers in a telephone network, WDM, DWDM, OAE techniques, LAN topologies & fail safe fiber optics nodes. **Case Studies** 1. To compute Numerical aperture of a fiber. 2. Launching light in single mode fiber. 3. Computing losses in fiber link. 4. Analysing fiber networks. Pedagogy Lectures/Experiential Learning **Course Outcome** Students will: Have some knowledge of designing a point-to-point optical link for a given situation. Able to choose the right type of components for designing an optical network. • Able to monitor signal losses during signal transmission. **References/Readings** 1. Gerd Keiser , 'Optical Fiber Communication', MGH, 5<sup>th</sup> ED, 2017 2. A. Selvarajan and et al, 'Optical Fiber Communication', TMH, 1<sup>st</sup> ED, 2002 3. A. Yariv, 'Optical Electronics', HRW publication, 4<sup>th</sup> ED, 1991 4. P. Chakrabarti, 'Optical fiber Communication' MGH, 2015 5. Reinhold Noé, 'Essentials of Modern Optical Fiber Communication', Springer, 2<sup>nd</sup> ED, 2016 6. Govind P. Agrawal, 'Fiber-Optic Communication Systems', Wiley, 5<sup>th</sup> ED, 2021 (Back to index)

| Course Code: ELE-604            |                 |
|---------------------------------|-----------------|
| Course Title: Digital Image Pro | cessing         |
| Number of Credits: 04           | Total Hours: 60 |
| Effective from AY: 2022-23      |                 |
| Broroquisitos for the source    |                 |

Total Marks: 100

| Prerequisites for the course                         |                                                               |                     |
|------------------------------------------------------|---------------------------------------------------------------|---------------------|
| Concepts of Digital Signal Processing                |                                                               |                     |
| Objectives of Course                                 |                                                               |                     |
| Learn                                                | fundamentals of digital image processing.                     |                     |
| <ul> <li>To stu</li> </ul>                           | dy image processing techniques such as image enhancemen       | t, reconstruction,  |
| segme                                                | entation, morphing and representation                         |                     |
| Course Conte                                         | nt                                                            |                     |
| Unit I                                               | Introduction                                                  | 10 Hours            |
| Digital image                                        | fundamentals, Sampling and quantization, Pixel relationship   | , Imaging geometry, |
| Image transfo                                        | orms                                                          |                     |
| Unit II                                              | Image Enhancement                                             | 10 Hours            |
| Spatial domai                                        | n- Gray level transformations, Histogram processing, Smoot    | hing and sharpening |
| Spatial filterin                                     | g. Frequency domain- Fourier Transform, Smoothing and sh      | arpening, Highpass  |
| and lowpass f                                        | ilters                                                        |                     |
| Unit III                                             | Image Restoration and Segmentation                            | 10 Hours            |
| Image Restor                                         | ation - Degradation/Restoration process, Noise model, Resto   | pration approach,   |
| Inverse filteri                                      | ng, Weiner filtering. Segmentation - Detection of discontinui | ties, Edge linking  |
| and boundary                                         | detection, Region based segmentation                          |                     |
| Unit IV                                              | Color Depth and Image Processing Across Spectrum              | 10 Hours            |
| Color Image P                                        | rocessing - Color models, Color transformations, Smoothing    | and sharpening,     |
| Segmentation                                         | n. Depth Imaging processing – RGBD image processing, filling  | holes. Image        |
| Processing ac                                        | ross spectra- Multi-spectral imaging, Hyperspectral Imaging,  | Image feature       |
| extraction, fu                                       | sion.                                                         |                     |
| Unit V                                               | Morphological Image Processing and Image                      | 10 Hours            |
|                                                      | Compression                                                   |                     |
| Morphologica                                         | I Image Processing – Dilation and Erosion, Hit or Miss transf | orm, Morphological  |
| algorithms. In                                       | nage Compression – Lossy and Lossless compression, Image      | compression         |
| standards.                                           |                                                               |                     |
| Unit VI                                              | <b>Object Representation, Description and Recognition</b>     | 10 Hours            |
| Representatio                                        | on, Boundary descriptors, Regional descriptor, Patterns and I | Pattern classes,    |
| Matching                                             |                                                               |                     |
| Case studies                                         |                                                               |                     |
| 1. Image enhancement in spatial and frequency domain |                                                               |                     |
| 2. Implementing degradation and restoration of image |                                                               |                     |
| 3. Implement feature extraction algorithms           |                                                               |                     |
| 4. Object detection from the image                   |                                                               |                     |
| 5. Spatio-spectral image fusion                      |                                                               |                     |
| Pedagogy                                             |                                                               |                     |
| Lectures/ Experiential Learning                      |                                                               |                     |
| Course Outcome                                       |                                                               |                     |

The Students will:

- 1. Understand the fundamentals of digital image processing.
- 2. Operate on images using the techniques such as smoothing, sharpening and enhancement.
- 3. Explain the concept of image restoration, segmentation and Morphological image processing algorithms.
- 4. Explain object representation along with the pattern matching.

- 1. Rafael C Gonzalez and Richard E Woods, 'Digital Image Processing', 4th Edition, Pearson, 2018
- 2. Anil K Jain, 'Fundamentals of Digital Image Processing', Prentice Hall India Learning Private Limited, 1994
- 3. William K Pratt, 'Digital Image Processing', 4th Edition, A Wiley-Interscience Publication, 2006
- 4. Edward R. Dougherty, 'Digital Image Processing Methods', CRC Press, 2020
- 5. Kumar Navulur, 'Multispectral Image Analysis Using the Object-Oriented Paradigm', CRC Press, 2020
- 6. Paul L. Rosin, Yu-Kun Lai, Ling Shao, Yonghuai Liu, 'RGB-D Image Analysis and Processing', Springer International Publishing, 2020
- 7. D. Sundararajan, 'Digital Image Processing A Signal Processing and Algorithmic Approach', Springer Nature Singapore, 2017

Course Code: ELE-605 Course Title: Neuromorphic Computing Number of Credits: 04 Total Hours: 60 Effective from AY: 2022-23

Total Marks: 100

### Prerequisites for the course

Graduate level knowledge in analog and digital electronics. Preferable to have exposure to programming.

#### **Objectives of Course**

This course is intended to:

- Introduce Neuromorphic computing and spiking neural networks (SNN).
- Introduce operational principles and learning models for Artificial Neural Networks and Spiking Neural Networks
- Cover various Neuromorphic computing architectures

#### **Course Content**

Unit I Introduction

7 Hours

Basics of brain-inspired computing and history of neural computing, Comparison of neuromorphic and conventional computing, Basics of linear algebra and probability theory needed for modelling of neural networks.

| Unit | Shallow neural networks | 17    |
|------|-------------------------|-------|
| II   |                         | Hours |

Deep learning techniques using convolutional neural networks( AlexNet, VGG, Inception Net, GoogLeNet, and ResNet), Python programming preliminaries and Software development tools for Deep Neural Net (DNN), Shallow neural networks – Perceptron, Hopfield network, Boltzmann machine, Recurrent neural network, and Kohonen's self-organizing map

| Unit | Operational principles and learning models | 17 Hours |
|------|--------------------------------------------|----------|
| ш    |                                            |          |

Operational principles and learning models for Artificial Neural Networks and Spiking Neural Networks(SNN) such as spike timing dependent plasticity (STDP), Q-learning, actorcritic reinforcement learning, supervised learning, and back-propagation algorithms.

| Unit | Neuromorphic computing architectures | 11 Hours |
|------|--------------------------------------|----------|
| IV   |                                      |          |

Neuromorphic computing architectures- Loihi, TrueNorth, Neurogrid, Brainchip and SpiNNaker, Commercial hardware acceleration platforms such as NVDIA's graphics processing unit (GPU), Google's tensor processing unit (TPU), and Intel's vision processing unit (VPU) and FPGA accelerators.

8 Hours

| Unit | Applications and Emerging technologies |
|------|----------------------------------------|
| V    |                                        |

Application-specific VLSI chips capable of STDP learning, actor/critic reinforcement learning, and Q-learning, Emerging technologies in neuromorphic circuits such as memristors, spin transfer torque devices, and photonic devices.

## **Case Studies**

- 1. Setup of python environment for implementation of Spiking neural network(SNN)
- 2. Implementation of SNN for Image classification
- 3. Implementation of SNN for pattern recognition.
- 4. Handwritten digit recognition Using STDP

## Pedagogy

lectures/ Experiential Learning

## Course Outcome

Students will,

- Apply concepts of neuromorphic computing in research as well as industry in various applications such as computer vision, speech processing, pattern recognition etc.
- The student will be able to pursue research in development of neruromorphic hardware.

- 1. Nan Zheng and Pinaki Mazumder, "Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design", John Wiley & Sons, USA, 2019.
- 2. Aaron C. Courville, Ian Goodfellow, and Yoshua Bengio, "Deep Learning", MIT Press, 2015.
- 3. Pinaki Mazumder, Yalcin Yilmaz, Idongesit Ebong, "Neuromorphic Circuits for Nanoscale Devices", River Publishing, 2019.

#### Prerequisites for the course

Understanding of Electronics in the area such as Embedded programming, Machine learning, Signals & System, IoT, Robotics.

### **Objectives of Course**

### This course is intended to:

- Course train students to develops conceptual design and implementation.
- Hands on experience in H/W and S/W integration.
- Train students to plan and execute the projects and tasks.
- Train students to work in groups
- Hands on exposure to work of Technology development

### Methodology

The Project course will commence at beginning of the I<sup>st</sup>/III<sup>rd</sup> semester.

If student wishes to take up project in industry/Academic institution/organization, such projects can be taken over six-month period in such case the student has to complete 4(four) credit RSOC course prior to II<sup>nd</sup> /IV<sup>th</sup> semester. Such student will have to associated with the mentor from industry/Academic institution/organization who will liaison with local supervisor from parent institution.

This course is basically to apply the knowledge they have acquired during the course of study and apply them for designing a gadget/interface/module required for an electronic industry/Research & Academic Institutions.

The progress of the project is monitored by the local supervisor/guide/discipline members over the period of a month for the I<sup>st</sup>/III<sup>rd</sup> semester and fortnightly for II<sup>nd</sup>/IV<sup>th</sup> semester for internal evaluation. There will be final evaluation of the projects. The scheme of evaluation will be decided by the school discipline members.

Pedagogy

Presentation /Experiential Learning/Practical implementation

**Course Outcome** 

### Students will:

- The student will be exposed to the different kinds of working environments in electronic industries.
- Should able to understand product development cycle, team work, research survey, technical writing.

(back to Index)