

गोंय विद्यापीठ ताळगांव पठार गोंय - ४०३ २०६ फोन: +९१-८६६९६०९०४८

(Accredited by NAAC)

GU/Acad -PG/BoS -NEP/2023/184/3

Goa University

Taleigao Plateau, Goa - 403 206 Tel : +91-8669609048 Email : registrar@unigoa.ac.in Website: www.unigoa.ac.in

Date:04.07.2023

CIRCULAR

The University has notified Ordinance OA-35 governing the **Master of Science in Data Science** Programme offered at the Goa Business School, Goa University Campus for implementation from the Academic year 2023-2024 onwards.

The approved Semester I and II Syllabus of the **Master of Science in Data Science** Programme is attached.

The Dean/ Vice-Deans of the Goa Business School are requested to take note of the above and bring the contents of the Circular to the notice of all concerned.

ande

(Sanket Gaude) Offg. Assistant Registrar – Academic-PG

Τo,

- 1. The Dean, Goa Business School, Goa University.
- 2. The Vice-Deans, Goa Business School, Goa University.

Copy to:

- 1. The Chairperson, Board of Studies in Computer Science and Technology (PG).
- 2. The Programme Director, M.Sc Data Science, Goa University.
- 3. The Controller of Examinations, Goa University.
- 4. The Assistant Registrar, PG Examinations, Goa University.
- 5. Directorate of Internal Quality Assurance, Goa University for uploading the Syllabus on the University website.

M.Sc. in Data Science to be effective from Academic Year 2023-24

M.Sc in Data Science Programme is aimed at imparting the following core skills to the students -

1. Core Programming Skills and Techniques, including designing and coding applications, and the important principles of code design and development.

2. Data science tools and techniques, including the principles of data science, data analysis, visualisation and interpretation, and the use of "big data".

3. The application of Data Science knowledge in Research and Industry

Pathway

Fundamentals (Mathematics and Problem Solving, Programming) \rightarrow Core Courses (AI, Machine Learning, Deep Learning, etc.,) \rightarrow Specialization (Natural Language Processing, Computer Vision) \rightarrow Research and Dissertation

As per the above pathway vision, the structure for programme has been designed as follows

M.Sc. in Data Science to be effective from Academic Year 2023-24			
SEMESTER I			
Discipline Specific Core(DSC) Courses			
Course Code	Course Title	Credits	
<u>CSD-500</u>	Fundamentals of Data science (Theory)	2	
<u>CSD-501</u>	Fundamentals of Data science (Practical)	2	
<u>CSD-502</u>	Machine learning (Theory)	2	
<u>CSD-503</u>	Machine learning (Practical)	2	
<u>CSD-504</u>	Mathematical Foundations for Data Science (Theory)	2	
<u>CSD-505</u>	Mathematical Foundations for Data Science (Practical)	2	
<u>CSD-506</u>	Fundamentals of Artificial Intelligence (Theory)	2	
<u>CSD-507</u>	Fundamentals of Artificial Intelligence (Practical)	2	
	Total Credits for DSC	16	
	Discipline Specific Elective(DSE) Courses – any one to be opted	d	
Course Code	Course Title	Credits	
<u>CSD-521</u>	Domain specific Predictive Analytics	4	
<u>CSD-522</u>	Design thinking for Data-Driven App Development	4	
	Total Credits for DSE	4	
	SEMESTER II		
	Discipline Specific Core(DSC) Courses		
Course Code	Course Title	Credits	
<u>CSD-508</u>	Reinforcement learning (Theory)	2	
<u>CSD-509</u>	Reinforcement learning (Practical)	2	
<u>CSD-510</u>	Optimization techniques	4	
<u>CSD-511</u>	MLOps (Theory)	2	
<u>CSD-512</u>	MLOps (Practical)	2	
<u>CSD-513</u>	Software Engineering for AI Enabled systems (Theory)	2	
<u>CSD-514</u>	Software Engineering for AI Enabled systems (Practical)	2	
	Total Credits for DSC	16	
Discipline Specific Elective(DSE) Courses – any one to be opted			
Course Code	Course Title	Credits	
<u>CSD-523</u>	Signal processing	4	
<u>CSD-524</u>	Regression Analytics and Predictive Models	4	
	Total Credits for DSE	4	

SEMESTER III				
Research Specific Elective(RSE) Courses – any two to be opted				
Course Code	Course Title		Credits	
CSD-600	Speech Processing		4	
CSD-601	Natural Language Processing		4	
CSD-602	Simulation and Modelling		4	
CSD-603	Deep Learning Models		4	
CSD-604	Data Engineering		4	
CSD-605	Sensors, Actuators and Signal Conditioning		4	
CSD-606	Cloud Computing		4	
	Total Credits for RSE		8	
	Generic Elective(GE) Courses - total 12 credits to be	opted		
Course Code	Course Title		Credits	
CSD-621	Corporate Skills		4	
CSD-622	Research Methodology		4	
	To be opted from Courses from other Disciplines		4	
	Total Credits for GE Courses		12	
	SEMESTER IV			
One Researc	ch Specific Elective(RSE) Course to be opted from the R	SE list in c	onsultation	
	with the Mentor. It can be completed in Semeste	er 3.		
Course Code	Course Title	Credits		
CSD-607	Financial Machine Learning		4	
CSD-608	Data Science for Atmospheric Science		4	
CSD-609	Pragmatic Al		4	
CSD-610	AI for Medical Specialization		4	
CSD-611	Recommender Systems		4	
CSD-612	Text Mining and Sentiment Analysis		4	
	Total Credits for RSEC4			
Dissertation Type Credits		Credits		
CSD-651	Research Project in Academic or Research Institutes		16	
CSA-652	Industry Internship / Software Project Development			
	Total Credits for Dissertation 16			

SEMESTER I

Name of the Programme: MSc. in Data Science Course Code: CSD-500 Title of the Course: Fundamentals of Data Science (Theory) Number of Credits: 2(2L-0T- 0P) Effective from AY: 2023-24

Prerequisites	Statistics and probability theory and python programming	
for the course		
Objectives	To get started with basics of data science and learn all aspects of data	
	science in its entirety	
Content	Introduction: Typology of problems - Data science in a big data world:	4 hours
	Benefits and uses of data science and big data-Facets of data-The data	
	science process-The big data ecosystem and data science-The data	
	science process: Overview of the data science process- Defining	
	research goals and creating a project charter- Retrieving data-Cleansing,	
	integrating, and transforming data-Exploratory data analysis-Build the	
	models- Presenting findings and building applications on top of them.	
	Mathematics for Data Science – A quick Review: Importance of linear	6 hours
	algebra, statistics and optimization from a data science perspective;	
	Structured thinking for solving data science problems. Linear Algebra:	
	Matrices and their properties (determinants, traces, rank, nullity, etc.);	
	Eigenvalues and eigenvectors; Matrix factorizations; Inner products;	
	Distance measures; Projections; Notion of hyperplanes; half-planes.	
	Probability, Statistics and Random Processes: Probability theory and	
	axioms; Random variables; Probability distributions and density	
	functions (univariate and multivariate); Expectations and moments;	
	Covariance and correlation; Statistics and sampling distributions;	
	Hypothesis testing of means, proportions, variances and correlations;	
	Confidence (statistical) intervals; Correlation functions; White-noise	
	process. Data clearing (EDA)	
	Introduction to Data Science Methods: Linear regression as an exemplar	4 hours
	function approximation problem; Linear classification problems-PCA	
	Handling large data on a single computer - The problems you face when	4 hours
	handling large data-General techniques for handling large volumes of	
	data-General programming tips for dealing with large data sets - Case	
	study 1: Predicting malicious URLs - First steps in big data-Distributing	
	data storage and processing with frameworks	
	Introduction to NoSQL	4 hours
	The rise of graph databases	
	Introducing connected data and graph databases	
	Introducing Neo4j: a graph database	
	Data visualization to the end user	4 hours
	Data visualization options	
	Cross filter, the JavaScript MapReduce library	4 hours
	Creating an interactive dashboard with dc.js	
	Dashboard development tools	
Pedagogy	Lectures/ Tutorials/Hands-on assignments/Self-study	
References /	1. Practical statistics for data science by peter bruce and andrew bruce	
Readings	2. Naked statistics by charles wheelon	
	3. Business data science by matt taddy	
	4. Elements of statistical learning by Trevor Hastie, Robert and jerome	
	5. Python for data analysis	
	Data science and big data analytics -EMC2	

Course	1.	Understanding of fundamental concepts and techniques in data science.
Outcomes	2.	Proficiency in data manipulation, analysis, and visualization using tools like
		Python or R.
	3.	Introduction to machine learning algorithms and evaluation methods.
	4.	Awareness of ethical considerations and responsible practices in data science.

Name of the Programme: M.Sc. in Data Science Course code:CSD-501 Title of course: Fundamentals of Data Science (Practical) Number of credits: 2(0L-0T-2P)

Prerequisites	Basic programming skills, Statistics	
for the course		
Objectives	• To introduce Basic process of data science, Python and Jupyter notebo	ooks.
	• To understanding how to manipulate and analyse uncurated datasets	
	• To learn basic statistical analysis and machine learning methods and e	ffectively
	visualize results	-
Content	Jupyter and Numpy: Jupyter notebooks are one of the most commonly	10 hours
	used tools in data science as they allow you to combine your research	
	notes with the code for the analysis. After getting started in Jupyter,	
	we'll learn how to use numpy for data analysis. numpy offers many	
	useful functions for processing data as well as data structures which	
	are time and space efficient.	
	Pandas: Pandas, built on top of numpy, adds data frames which offer	10 hours
	critical data analysis functionality and features.	
	Visualization: When working with large datasets, you often need to	10 hours
	visualize your data to gain a better understanding of it. Also, when you	
	reach conclusions about the data, you'll often wish to use visualizations	
	to present your results.	
	Mini Project: With the tools of Jupyter notebooks, numpy, pandas, and	10 hours
	Visualization, you're ready to do sophisticated analysis on your own.	
	You'll pick a dataset we've worked with already and perform an	
	analysis for this first project.	
	Machine Learning: To take your data analysis skills one step further,	10 hours
	we'll introduce you to the basics of machine learning and how to use	
	sci-kit learn - a powerful library for machine learning.	
	Working with Text and Databases: You'll find yourself often working	5 hours
	with text data or data from databases. This week will give you the skills	
	to access that data. For text data, we'll also give you a preview of how	
	to analyse text data using ideas from the field of Natural Language	
	Processing and how to apply those ideas using the Natural Language	
	Processing Toolkit (NLTK) library.	
	Final Project: These weeks let you showcase all your new skills in an	5 hours
	end-to-end data analysis project. You'll pick the dataset, do the data	
	munging, ask the research questions, visualize the data, draw	
	conclusions, and present your results.	
Pedagogy	Tutorials/ Lab assignments/ Project work	
References/	1. Practical statistics for data science by Peter bruce and andrew bruce	
Readings	2. Naked statistics by charles wheelon	
	3. Business data science by matt taddy	
	4. Elements of statistical learning by Trevor Hastie, Robert and jerome	
	5. Python for data analysis	
	6. Data science and big data analytics -EMC2	
Course	1. Practical data analysis skills using data science tools.	
Outcomes	2. Hands-on experience with real-world data projects.	
	3. Collaboration and teamwork in interdisciplinary settings.	
	4. Ethical considerations and responsible practices in data science Experi	mentation
	and evaluation of data science techniques.	

Name of the Programme: M.Sc. in Data Science Course Code:CSD-502 Title of the Course: Machine Learning (Theory) Number of Credits: 2(2L-0T-0P) Effective from AY: 2023-24

Prerequisites	Familiarity with linear algebra, statistics & probability theory	
for the course:		
Objectives:	This course provides students with	
	• In-depth introduction to three main areas of Machine Learning:	
	supervised and unsupervised and reinforcement learning.	
	• This course will cover some of the main models and algorithms for	
	regression, classification, clustering and Markov decision processes.	
	Topics will include linear and logistic regression, regularisation,	
	SVMs and kernel methods, ANNs, clustering, and dimensionality	
	reduction ,sequential learning Like HMM and deep learning CNN	
	and RNN	
Content:	1. Introduction: well posed learning problem, designing a learning	3 hours
	system, perspectives and issues in machine learning- types of learning -	
	supervised, unsupervised and reinforcement learning	
	2. Concept learning: concept learning task , notation, inductive	3 hours
	learning hypothesis, concept learning as search, version space and	
	candidate elimination algorithm, decision tree, random forest.	
	3. Linear regression: logistic regression-Support vector machine	3 hours
	kernel, Model selection and feature selection-Ensemble methods:	
	Bagging, boosting, Evaluating and debugging learning algorithms.	
	4. Continuous Latent Variables: Principal Component Analysis,	3 hours
	Maximum variance formulation, Minimum error formulation,	
	Applications of PCA, PCA for high-dimensional data.	21
	5. Neural Networks: -Feed-forward Network, Functions, perceptron, -	3 hours
	Weight-space symmetries, Network Training, Parameter optimization,	
	Local quadratic approximation, Use of gradient information, Gradient	
	function derivatives. Efficiency of backpropagation, Evaluation of effor-	
	6 Doop loarning: Doop Foodforward Networks Gradient Based	1 hours
	Learning Hidden Units Architecture Design CNN and RNN (simple	4 110013
	RNN and ISTM)	
	7. Unsupervised learning: Clustering K-means, FM.Mixture of	4 hours
	Gaussians.	
	8. Sequential Data: Markov Models, Hidden Markov Models, Maximum	4 hours
	likelihood for the HMM, The forward-backward algorithm, The sum-	
	product algorithm for the HMM, Scaling factors, -The Viterbi algorithm.	
	9. Reinforcement learning: introduction- learning task-Q learning, non-	3 hours
	deterministic rewards and actions-temporal difference learning.	
Pedagogy:	lectures/ tutorials/assignments/self-study/lab assignment/ project	
	work	
References/	Main Reading:-	
Readings	1. James, Gareth, et al. An introduction to statistical learning. Vol. 112.	New York:
	springer, 2013.	
	2. Alpaydin, Ethem. Introduction to machine learning. MIT press, 2020.	
	J. Hart, Peter E., David G. Stork, and Richard O. Duda. Pattern cla	issification.
	TODOKEN: WITEY, 2000.	that make
	sense of data. Cambridge University Pross 2012	пас паке

	5. Bishop, Christopher M. "Pattern recognition and machine learning: springer New
	York." (2006).
	6. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
	2016.
	7. Mitchell, Tom, and Machine Learning McGraw-Hill. "Edition." (1997).
	8. machine learning and AI online google course by cassie kozyrkov
Course	1. Develop an appreciation for what is involved in learning from data.
Outcomes	2. Understand a wide variety of learning algorithms.
	3. Understand how to apply a variety of learning algorithms to data.
	4.Understand how to perform evaluation of learning algorithms and model
	selection and Have a basic understanding of deep learning.

Name of the Programme: M.Sc. in Data Science Course Code:CSD-503 Title of the Course: Machine Learning(Practical) Number of Credits: 2(0L-0T-2P) Effective from AY: 2023-24

Prerequisites	Machine learning theory and programming in python	
for the		
course:		
Objective:	This course provides students with	
	Aimed at imparting implementation of machine learning algorithms	
	using python and its APIs	
Content:	Suggested Lab assignments/work with respect to the following using	
	python (scikit /keras libraries) /amazon sage maker/matlab toolbox -	
	each assignment with duration of 4 hrs. and 8 hrs. for project work	
	1. Write a program to implement version space.	5 hours
	2. Write a program to implement a decision tree for given data.	5 hours
	3. Write a program to implement linear regression for given data.	5 hours
	4. Write a program to implement logistic regression.	5 hours
	5. Write a program to implement SVM.	5 hours
	6. Write a program to implement perceptron.	5 hours
	7. Write a program to implement a multilayer perceptron.	5 hours
	8. Write a program to implement RNN.	5 hours
	9. Write a program to implement CNN.	5 hours
	10. Write a program to implement HMM.	5 hours
	Capstone Mini Project work to assess the overall learning.	10 hours
Pedagogy:	Lab Assignments / Mini Project	
References/	Main Reading:-	
Readings	1. James, Gareth, et al. An introduction to statistical learning. Vol. 112.	New York:
	springer, 2013.	
	2. Alpaydin, Ethem. Introduction to machine learning. MIT press, 2020.	
	3. Hart, Peter E., David G. Stork, and Richard O. Duda. Pattern cla	ssification.
	Hoboken: Wiley, 2000.	
	4. Flach, Peter. Machine learning: the art and science of algorithms	that make
	sense of data. Cambridge University Press, 2012.	
	 Bishop, Christopher M. "Pattern recognition and machine learning: sp York." (2006). 	ringer New
	6. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning.	MIT press,
	2016.	
	7. Mitchell, Tom, and Machine Learning McGraw-Hill. "Edition." (1997).	
	8. machine learning and AI online google course by cassie kozyrkov	
Course	1. Practical implementation skills of machine learning algorithms.	
Outcomes	2. Model development, evaluation, and feature engineering techniques.	
	3. Interpretability and explainability of machine learning models.	
	4. Awareness of ethical considerations in machine learning.	

Name of the Programme: M.Sc. in Data Science Course code: CSD-504 Title of course: Mathematics foundation for Data Science (Theory) Number of credits: 2 (2L-0T-0P)

for the course•Objectives•To build a strong foundation in maths required for learning computer science/data science subjects.•To understand fundamental concepts and tools in calculus, linear algebra etc. with emphasis on their applications to computer science in particular data science/machine learningContentIntroductionImportance of mathematics and their applications for computer science/machine learning/data science/deep learning Functions, variables, equations, graphs revision5 hoursProbability and Statistics: Probability Rules & Axioms, Bayes' Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization5 hours
Objectives• To build a strong foundation in maths required for learning computer science/data science subjects.• To understand fundamental concepts and tools in calculus, linear algebra etc. with emphasis on their applications to computer science in particular data science/machine learning5 hoursContentIntroduction Importance of mathematics and their applications for computer science/machine learning/data science/deep learning Functions, variables, equations, graphs revision5 hoursProbability and Statistics: Probability Rules & Axioms, Bayes' Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization5 hours
computer science/data science subjects.• To understand fundamental concepts and tools in calculus, linear algebra etc. with emphasis on their applications to computer science in particular data science/machine learningContentIntroductionImportance of mathematics and their applications for computer science/machine learning/data science/deep learning Functions, variables, equations, graphs revision5 hoursProbability and Statistics: Probability Rules & Axioms, Bayes' Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization5 hours
 To understand fundamental concepts and tools in calculus, linear algebra etc. with emphasis on their applications to computer science in particular data science/machine learning Content Introduction Importance of mathematics and their applications for computer science/machine learning/data science/deep learning Functions, variables, equations, graphs revision Probability and Statistics: Probability Rules & Axioms, Bayes' Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization Calculus S hours
algebra etc. with emphasis on their applications to computer science in particular data science/machine learning5 hoursContentIntroduction5 hoursImportance of mathematics and their applications for computer science/machine learning/data science/deep learning Functions, variables, equations, graphs revision5 hoursProbability and Statistics: Probability Rules & Axioms, Bayes' Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization5 hours
science in particular data science/machine learningContentIntroduction5 hoursImportance of mathematics and their applications for computer science/machine learning/data science/deep learning Functions, variables, equations, graphs revision5 hoursProbability and Statistics: Probability Rules & Axioms, Bayes' Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization5 hours
ContentIntroduction5 hoursImportance of mathematics and their applications for computer science/machine learning/data science/deep learning Functions, variables, equations, graphs revision5 hoursProbability and Statistics: Probability Rules & Axioms, Bayes' Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization5 hours
Importance of mathematics and their applications for computer science/machine learning/data science/deep learning Functions, variables, equations, graphs revision5 hoursProbability and Statistics: Probability Rules & Axioms, Bayes' Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization5 hours
science/machine learning/data science/deep learning Functions, variables, equations, graphs revision5 hoursProbability and Statistics: Probability Rules & Axioms, Bayes' Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization5 hoursCalculus5 hours
Functions, variables, equations, graphs revision5 hoursProbability and Statistics: Probability Rules & Axioms, Bayes' Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization5 hoursCalculus5 hours
Probability and Statistics:5 hoursProbability Rules & Axioms, Bayes' Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization5 hoursCalculus5 hours
Probability Rules & Axioms, Bayes' Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization5 hours
Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization5 hoursCalculus
Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization5 hoursCalculus
Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization5 hoursCalculus
Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization5 hoursCalculus5 hours
Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test, Linear regression, regularization5 hoursCalculus5 hours
A/B testing-ANOVA, t-test, Linear regression, regularization5 hoursCalculus5 hours
Calculus 5 hours
Overview of Differential and Integral Calculus, Partial Derivatives
Product and chain rule-Taylor's series, infinite series
summation/integration concepts-Fundamental and mean value-
theorems of integral calculus, evaluation of definite and improper
integrals-Beta and Gamma functions,
Functions of multiple variables, limit, continuity, partial derivatives-
Basics of ordinary and partial differential equations -Applications of
Calculus
Linear Algebra: 5 hours
Systems of Linear Equations-Matrices-Solving Systems of Linear
Equations-Vector Spaces-Linear Independence-Basis and Rank-Linear
Mappings
Affine Spaces
Analytic Geometry 5 hours
Norms-(Inner Products-Lengths and Distances
Angles and Orthogonality-Orthonormal Basis
Dreiostione Detatione) – Figen value decomposition and SVD
Projections-Rotations) - Eigen value decomposition and SVD
Differentiation of University Eurotions Partial Differentiation and
Gradients Gradients of Vester Valued Eurotions Gradients of Matrices
Useful Identities for ComputingGradients Backpropagation and
Automatic Differentiation Higher Order Derivatives Linearization and
Multivariate Taylor Series, Gradient Descent, Constrained Ontimization
Lagrange Multipliers-Convey Optimization
Pedagogy Problem solving approach and carrying out small project work using
matlah tools
References/ 1. Statistics Written, Robert S. Witte and John S. Witte

Readings	2. Barron's AP Statistics, 8th Edition, Martin Sternstein, PhD.
	3. Statistics for Business and Economics by- James T. McClave, P. George Benson and Terry T Sincich
	4. Naked Statistics: Stripping the Dread from the Data, Charles Wheelan
	5. Introduction to Linear Algebra, Gilbert Strang
	6. Linear Algebra and Its Applications, David C. Lay
	7. No bullshit guide to Linear algebra, Ivon Savov
	8. Functions and Graphs by I M Gelfand
	9. Cartoon guide to calculus, Larry Gonick
	10. Optimization Methods in Business Analytics — edX, MIT
Course	1. Strong understanding of mathematical concepts relevant to data science,
Outcomes	including linear algebra, calculus, probability theory, and statistics.
	2. Ability to apply mathematical principles to solve data science problems, such as dimensionality reduction, optimization, and uncertainty modeling.
	3. Proficiency in mathematical modeling techniques and algorithms used in data science, such as regression, clustering, and classification.
	4. Development of mathematical reasoning and problem-solving skills for analyzing and interpreting data, formulating mathematical solutions, and communicating results.

Name of the Programme: M.Sc. in Data Science Course code: CSD-505 Title of course: Mathematical foundation for Data Science (Practical) Number of credits: 2 (0L-0T-2P)

Prerequisites	Mathematical foundation theory and programming background	
for the course		
Objectives	The lab assignment are aimed at demonstration of the following	
	regarding statistics	
Content	Recap of following –	3 hours
	A. NumPy is a third-party library for numerical computing, optimized	
	for working with single- and multi-dimensional arrays. Its primary	
	type is the array type called ndarray. This library contains many	
	routines for statistical analysis.	
	B. SciPy is a third-party library for scientific computing based on	
	NumPy. It offers additional functionality compared to NumPy,	
	including scipy.stats for statistical analysis.	
	C. Pandas is a third-party library for numerical computing based on	
	Numpy. It excels in handling labelled one-dimensional (1D) data	
	with series objects and two-dimensional (2D) data with Data Frame	
	Objects.	
	in combination with NumPy SciPy and Pandas	
	Assignment 1 - Write program to implement the EDA concents using	3 hours
	nython libraries -Numny Pandas mathlotlib seaborn sciny scrany and	5 110013
	beautiful soun and tensor flow keras and pytorch etc	
	Assignment -2 - Sampling Variables in Statistics Frequency	6 hours
	Distributions, Generate frequency distribution tables, Generate	onours
	grouped frequency distribution tables and -Visualizing Frequency	
	Distributions -Generate bar plots, pie charts, and histograms .Employ	
	bar plots, pie charts and histograms.	
	Assignment-3-Comparing Frequency Distributions -grouped bar plots-	6 hours
	step-type histogram-kernel density estimate plots- strip plots and box	
	plots	
	Assignment-4 -Multidimensional image operations, Solving differential	6 hours
	equations and the Fourier transform using scipy	
	Assignment-5 -Optimization algorithms using scipy.	6 hours
	Assignment - 6 - Linear algebra using scipy	6 hours
	Assignment- 7-Program in python to implement the concepts such as	6 hours
	Vector space, subspace, span, column space, row space, null space,	
	left-null space, rank, basis, orthogonal matrix, symmetric matrix.	
	Assignment -8 – Implement Eigen value decomposition in python.	6 hours
	Assignment-9 – implement SVD using python.	6 hours
	Assignment -10 – implements some of optimization algorithm using the python library	6 hours
Pedagogy	lah assignments /Project	
· C446069		

D. (4 Charles Matters Delever C. Mitters and take C. Mitters
References/	1. Statistics written, Robert S. Witte and John S. Witte
Readings	2. Barron's AP Statistics, 8th Edition, Martin Sternstein, PhD.
	3. Statistics for Business and Economics by- James T. McClave, P. George Benson and Terry T Sincich
	4. Naked Statistics: Stripping the Dread from the Data, Charles Wheelan
	5. Introduction to Linear Algebra, Gilbert Strang
	6. Linear Algebra and Its Applications, David C. Lay
	7. No bullshit guide to Linear algebra, Ivon Savov
	8. Functions and Graphs by I M Gelfand
	9. Cartoon guide to calculus, Larry Gonick
	10. Optimization Methods in Business Analytics — edX, MIT
Course	1. Practical application of mathematical concepts in data science.
Outcomes	2. Proficiency in using mathematical software and tools for data analysis.
	3. Hands-on experience in data analysis and modeling using mathematical
	techniques.
	4. Collaborative teamwork on data science projects involving mathematical
	foundations.

Name of the Programme: M.Sc. in Data Science Course code: CSD-506 Title of course: Fundamentals of AI (Theory) Number of credits: 2(2L-0T-0P) Effective from AY: 2023-24

Prerequisites	Programming back programming and probability and statistics and	
for the course	linear algebra	
Objectives	To develop a basic understanding of	
	Problem solving	
	Knowledge representation	
	Reasoning and learning methods of AI.	
Content	Artificial Intelligence	5 hours
	Introduction -Intelligent Agents, Problem-solving Solving Problems by	
	Searching -Search in Complex Environments - Adversarial Search and	
	Games- Constraint Satisfaction Problems Knowledge, reasoning, and	
	planning	
	Knowledge Representation-First-Order Predicate Logic - Unification	
	Forward and Backward Chaining - Resolution - Ontological	
	Engineering	
	Categories and Objects - Events-Mental Events and Mental Objects -	
	Reasoning Systems for Categories - Reasoning with Default	
	Information Uncertain knowledge and reasoning	
	Quantifying Uncertainty - Probabilistic Reasoning - Probabilistic	4 hours
	Reasoning over Time Probabilistic Programming -Making Simple	
	Decisions - Making Complex Decisions -Multiagent Decision Making	
	Machine Learning, Learning from Examples - Learning Probabilistic	4 hours
	Models - Deep Learning - Reinforcement Learning Communicating,	
	perceiving, and acting	-
	Natural Language Processing - Deep Learning for Natural Language	5 hours
	Processing - Computer Vision - Robotics.	
	Artificial Intelligence applications Language Models - Information	4 hours
	Retrieval - Information Extraction	4 1
	Natural Language Processing - Machine Translation - Speech	4 nours
	Recognition Repetics Hardware and Software for Repets - Planning and	4 hours
	Percention	4 110015
	Explainable AL - Definitions and concents such as black-box models	
	transparency interpretable machine learning and evplanations	
	Decision-making and decision support Human-Computer Interaction	
	(HCI) and AL - Explainable AL - Methods for Explainable AL -	
	Applications and examples Trust and acceptanceEvaluation	
	methods and metrics Ethical, legal and social issues of explainable	
	AI. Contemporary issues in AI- Philosophy, Ethics, and Safety of AI -	
	The Future of AI	
Pedagogy	Tutorials / Hands-on-assignments / Self-study	
References/	1. A Classical Approach to Artificial Intelligence, M.C. Trivedi, Khanna E	Book
Readings	Publishing, 2019.	
	2. Artificial Intelligence: A modern approach by Stuart Russel, Pearson	Education,
	2010.	
	3. Artificial Intelligence by Rich and Knight, The McGraw Hill, 2017.	
	4. Artificial Intelligence: A new synthesis by Nils and Nilson, Elsevier, 19	97.
	5. Artificial Intelligence by Luger, Pearson Education, 2002.	
	6. Artificial Intelligence by Padhy, Oxford Press, 2005.	

	7.	https://www.edx.org/course/artificial-intelligence-ai
	8.	https://www.udemy.com/course/artificial-intelligence-az
Course	1.	Understand the basic concepts and techniques of Artificial Intelligence.
Outcomes	2.	Apply AI algorithms for solving practical problems.
	3.	Apply basics of Fuzzy logic and neural networks.
	4.	Explain Expert System and implementation.

Name of the Programme: M.Sc. in Data Science Course Code: CSD-507 Title of the Course: Fundamentals of Artificial Intelligence (Practical) Number of Credits: 2 (0L-0T-2P) Effective from AY: 2023-24

Prerequisit	Artificial Intelligence theory, probability and statistics , linear	
es for the	algebra and Python programming	
course:		
Objectives:	 To develop a basic understanding of Problem solving Knowledge representation Reasoning and learning methods of AI Implement AI algorithms 	
Content:	Assignment-1 -Real-world path planning for pedestrians. In the first part, students implement A* over a map that includes roads/paths as well as elevations. In the second part, students collect actual data through walking around the real world, and the cost model is then learned via regression techniques.	10 hours
	Assignment-2 -Solve maze via search -this assignment involves formulating maze-solving as a search problem, image processing (via OpenCV) as a step in maze-solving, as well as guided performance/quality analysis of representational parameters	10 hours
	Assignment 3-Within the context of an artificial intelligence course, students are taught to identify ethical issues within technical projects and to engage in moral problem solving with regard to such issues.	10 hours
	Assignment 4-Neural network for face recognition using tensor flow - build feedforward neural networks for face recognition using TensorFlow. Students then visualize the weights of the neural networks they train. The visualization allows students to understand feedforward one-hidden layer neural networks in terms of template matching, and allows students to explore overfitting.	10 hours
	Assignment -5 -Organic path finding -Students develop a "human- like" pathfinding technique by specializing a generic search algorithm with custom action cost and heuristic cost functions. Students apply classical search algorithms and reflect on example organic paths to achieve "human-like" pathfinding.	10 hours
	Assignment - 6 -Implement a genetic algorithm in Python to evolve strategies for Robby the Robot to collect empty soda cans that lie scattered around his rectangular grid world. And also Compare the performances of a brute-force search and a search employing the Minimum Remaining Values (MRV) heuristic in solving Sudoku puzzles.	10 hours
Pedagogy:	lectures/practical/ tutorials/assignments/self-study	

References	1. A Classical Approach to Artificial Intelligence, M.C. Trivedi, Khanna Book
/Readings:	Publishing, 2019.
	2. Artificial Intelligence: A modern approach by Stuart Russel, Pearson Education,
	2010.
	3. Artificial Intelligence by Rich and Knight, The McGraw Hill, 2017.
	4. Artificial Intelligence: A new synthesis by Nils and Nilson, Elsevier, 1997.
	5. Artificial Intelligence by Luger, Pearson Education, 2002.
	6. Artificial Intelligence by Padhy, Oxford Press, 2005.
	7. https://www.edx.org/course/artificial-intelligence-ai
	8. https://www.udemy.com/course/artificial-intelligence-az/
Course	1. The students need to understand and extend an existing implementation of the
Outcomes:	back-propagation algorithm and use it to recognize static hand gestures in images.
	2.Students learn about feedforward neural networks and the backpropagation
	algorithm by implementing a perceptron network for AND and XOR Boolean
	functions
	3 given an implementation of a feedforward network learn digit recognition using
	5. given an implementation of a recuror ward network, ream digit recognition using
	4.In this assignment students extend a Tic Tac Toe program to Ultimate Tic Tac Toe
	and implement a different search strategy than the example code.

Semester II Name of the Programme: M.Sc. in Data Science Course Code: CSD-508 Title of the Course: Reinforcement Learning(Theory) Number of Credits: 2(2L-0T-0P) Effective from AY: 2023-24

Prerequisites Linear algebra, multivariable calculus for the course Basic machine learning knowledge Objectives To enable the student to understand • The reinforcement learning paradigm Identify when an RL formulation is appropriate • Understand the basic solution approaches in RL Implement and evaluate various RL algorithms. Review of ML fundamentals - Classification, Regression. Review of 2 hours Content probability theory and optimization concepts. RL Framework; Supervised learning vs. RL; Explore-Exploit Dilemma; 2 hours Examples. MAB: Definition, Uses, Algorithms, Contextual Bandits, Transition to 2 hours full RL, Intro to full RL problem Intro to MDPs: Definitions, Returns, Value function, Q-function. 2 hours Bellman Equation, DP, Value Iteration, Policy Iteration, Generalized 2 hours Policy Iteration. Evaluation and Control: TD learning, SARSA, Q-learning, Monte Carlo, 2 hours TD Lambda, Eligibility Traces. Maximization-Bias & Representations: Double Q learning, Tabular 2 hours learning vs. Parameterized, Q-learning with NNs Function approximation: Semi-gradient methods, SGD, DQNs, Replay 2 hours Buffer. Policy Gradients: Introduction, Motivation, REINFORCE, PG theorem, 3 hours Introduction to AC methods Actor-Critic Methods, Baselines, Advantage AC, A3C Advanced Value-3 hours Based Methods: Double DQN, Prioritized Experience Replay, Dueling Architectures, Expected SARSA. Advanced PG/A-C methods: Deterministic PG and DDPG, Soft Actor-4 hours Critic (SAC) HRL: Introduction to hierarchies, types of optimality, SMDPs, Options, HRL algorithms POMDPS: Intro, Definitions, Belief states, Solution Methods; History-based methods, LSTMS, Q-MDPs, Direct Solutions, PSR. Model-Based RL: Introduction, Motivation, Connections to Planning, 4 hours Types of MBRL, Benefits, RL with a Learnt Model, Dyna-style models, Latent variable models, Examples, Implicit MBRL. Case study on design of RL solution for real-world problems. Hands-on assignments / tutorials / peer-teaching / flip classroom/ Pedagogy presentations. **References**/ 1. Reinforcement learning -Introduction by Richard sutton and Andrew barto, Readings 2nd edition, MIT press. 2. Algorithms for reinforcement learning by Csaba Szepesvari, Ronald Brachman, et al,2010. Course 1. Understanding of fundamental concepts and algorithms in reinforcement Outcomes learning. 2. Proficiency in implementing and evaluating reinforcement learning algorithms. 3. Application of reinforcement learning to real-world problems.

4. Critical analysis and research skills in the field of reinforcement learning.

Name of the Programme: M.Sc. in Data Science Course Code: CSD-509 Title of the Course: Reinforcement Learning(Practical) Number of Credits: 2 (0L-0T-2P) Effective from AY: 2023-24

Prerequisites	Linear algebra, multivariable calculus, Basic machine learning	
for the course	knowledge and programming background.	
Objectives	To understand the theory by carrying out the lab assignment based on	
	the key ideas of reinforcement learning.	
	1. RL task formulation (action space, state space, environment	7 hours
Content	definition)	
	2. Tabular based solutions (dynamic programming, Monte Carlo,	7 hours
	temporal-difference)	
	3. Function approximation solutions (Deep Q-networks)	7 hours
	4. Policy gradient from basic (REINFORCE) towards advanced topics	7 hours
	(proximal policy optimization, deep deterministic policy gradient,	
	etc.)	
	5. Model-based reinforcement learning	7 hours
	6. Imitation learning (behavioral cloning, inverse RL, generative	7 hours
	adversarial imitation learning)	
	7. Meta-learning	8 hours
	8. Multi-agent learning, partial observable environments	10 hours
Pedagogy	Lab assignments/ mini project	
References/	1. Richard S. Sutton and Andrew G. Barto, "Reinforcement learning: An	
Readings	introduction", Second Edition, MIT Press, 2019.	
	2. Li, Yuxi. "Deep reinforcement learning." arXiv preprint arXiv:1810.06	339 (2018).
	3. Wiering, Marco, and Martijn Van Otterlo. "Reinforcement learning."	
	Adaptation, learning, and optimization 12 (2012): 3.	
	4. Russell, Stuart J., and Peter Norvig. "Artificial intelligence: a modern	
	approach."Pearson Education Limited, 2016.	
	5. Goodfellow, Ian, YoshuaBengio, and Aaron Courville. "Deep learning.	" MIT
	press, 2016.	
	6. David Silver's course on Reinforcement Learning (link).	
Course	1. Practical implementation of reinforcement learning algorithms in lab	exercises.
Outcomes	2. Experimental evaluation and analysis of reinforcement learning algorithms and analysis of reinforcement learning algorithms are also as a second s	rithms.
	3. Application of reinforcement learning techniques to real-world problem	ems.
	4. Systematic problem-solving approach in reinforcement learning.	

Name of the Programme: M.Sc. in Data Science Course Code:CSD-510 Title of the Course: Optimization Techniques Number of Credits: 4(2L-2T-0P) Effective from AY: 2023-24

Prerequisites	NIL	
for the course		
Objectives	• To familiarize the students with some basic concepts of	
	optimization techniques and approaches.	
	• To formulate a real-world problem as a mathematical programming	
	model.	
	• To develop the model formulation and applications are used in	
	solving decision problems.	
	• To solve specialized linear programming problems like the	
	transportation and assignment problems.	
Content:	Introduction to Operations Research	4 hours
	Introduction-Mathematical models of Operation Research - Scope and	
	applications of Operation Research - Phases of Operation Research	
	study - Characteristics of Operation Research - Limitations of	
	Operation Research.	
	Linear Programming	4 hours
	Introduction – Properties of Linear Programming-Basic assumptions-	
	Mathematical formulation of Linear Programming-Limitations or	
	constraints-Methods for the solution of LP Problem-Graphical analysis	
	of LP-Graphical LP Maximization problem-Graphical LP Minimization	
	problem.	
	Linear Programming Models	4 hours
	Simplex Method-Basics of Simplex Method - Formulating the Simplex	
	Method-Simplex Method with two variables - Simplex Method with	
	more than two variables - Big M Method.	
	Dual Linear Programming	4 hours
	Introduction- Primal and Dual problem - Dual problem properties-	
	Solution techniques of Dual problem - Dual Simplex method-Relations	
	between direct and dual problem-Economic interpretation of Duality.	
	Iransportation and Assignment Wodels	4 nours
	Introduction: Transportation problem - Balanced - Unbalanced -	
	Assignment problem Hungarian Method	
	Assignment problem-Hungarian Methou.	E hours
	Pasic concents Construction of Network Bules and procedutions CDM	Shours
	and PEPT Notworks Obtaining of critical path. Probability and cost	
	consideration Advantages of Network	
	Theory of Games	5 hours
	Introduction-Terminology-Two Person Zero-Sum game-Solution of	5 110015
	games with saddle points and without saddle points-2X2 games-	
	dominance principle – $mX2$ and $2Xn$ games-Graphical method.	
Tutorial	Case Studies and Mini Projects based on concepts covered during	2 * 15 =
Sessions	theory lectures	30 hours
Pedagogy:	Assignment / Quiz / invited talks on current issues/ Research and	
	Analytical problems on various applications of the industrial issues.	
References/	Text Book(s)	I
Readings	HamdyTaha, Operations Research, 10th edition, Prentice Hall India. 2	2019.
	P. K. Gupta and D. S. Hira, Operations Research, S. Chand & co., 2007	.2

	Reference Books
	• S.D. Sharma (2000), Operations Research, Nath& Co., Meerut.
	• Maurice Solient, Arthur Yaspen, Lawrence Fridman, (2003), OR methods and
	Problems, New Age International Edition.
	• J K Sharma (2007), Operations Research Theory & Applications, 3e, Macmillan
	India Ltd.
	• P. Sankaralyer, (2008), Operations Research, Tata McGraw-Hill.
	• A Ravindran, Don T Philips and James J Solberg, Operations Research: Principles
	and practice, 2nd edition, John Wiley and sons, 2007
Course	1.Apply operations research techniques like linear programming problem in
Outcomes	industrial optimization problems.
	2.Solve allocation problems using various OR methods.
	3.Understand the characteristics of different types of decision making
	environment and the appropriate decision making approaches and tools to be
	used in each type.
	4.Recognize competitive forces in the marketplace and develop appropriate
	reactions based on existing constraints and resources.

Name of the Programme: M.Sc. in Data Science Course Code: CSD-511 Title of the Course: MLOps(Theory) Number of Credits: 2(2L-0T-0P) Effective from AY: 2023-24

Prerequisites	Familiarity with linear algebra, probability theory, machine learning,	
for the course	familiarity with python.	
Objectives	This course is aimed at anyone who wishes to	
	Explore deep learning from scratch.	
	• This course offers a practical hand on exploration of deep learning,	
	avoiding mathematical notation, preferring instead to explain	
	quantitative concepts through programming using python API	
Content	Introduction to MLOps Rise of the Machine Learning Engineer and	3 hours
	MLOps-What Is MLOps?-DevOps and MLOps-An MLOps Hierarchy of	
	Needs-Implementing DevOps-Configuring-Continuous Integration with	
	GitHub Actions-DataOps and Data Engineering-Platform Automation-	
	MLOps	
	MLOps Foundations-Bash and the Linux Command Line-Cloud Shell	
	Development Environments-Bash Shell and Commands-List Files Run	3 hours
	Commands Files and Navigation-Input/output-Configuration-Writing a	
	Script-Cloud Computing Foundations and Building Blocks-Getting	
	Started with Cloud Computing- minimalistic python revision-	
	Descriptive Statistics and Normal Distributions-Optimization-Machine	
	from Zoro	
	MIOns for Containers and Edge Devices Containers-Container	3 hours
	Runtime-Creating a Container Running a Container-Best Practices-	5 11001 5
	Serving a Trained Model Over HTTP-Edge Devices-Coral Azure Percent-	
	TEHub-Porting Over Non-TPU Models-Containers for Managed MI	
	Systems-Containers in Monetizing MLOps-Build Once, Run Many	
	MLOps Workflow	
	Continuous Delivery for Machine Learning Models-Packaging for ML	3 hours
	Models-Infrastructure as Code for Continuous Delivery of ML Models-	
	Using Cloud Pipelines-Controlled Rollout of Models-Testing	
	Techniques for Model Deployment	
	AutoML and Kaizen ML-Auto ML-MLOps Industrial Revolution-Kaizen	3 hours
	Versus Kaizen ML-Feature Stores-Apple's Ecosystem-Apple's AutoML:	
	Create ML-Apple's Core ML Tools or Google's AutoML and Edge	
	Computer Vision or Azure's AutoML or AWS AutoML-Open Source	
	AutoML Solutions-Ludwig-FLAML-Model Explainability	
	Monitoring and Logging-Observability for Cloud MLOps-Introduction	3 hours
	to Logging-Logging in Python-Modifying Log Levels-Logging Different	
	Applications-Monitoring and Observability-Basics of Model	
	Wonitoring-Wonitoring Drift with AWS Sagewaker-Wonitoring Drift	
	MICHAZUTE ML	2 hours
	Services-MI Ons on AW/S-MI Ons Conkhook on AW/S-CI I Tools-Elask	5 110015
	Microservice-AWS Lambda Recipes-AWS Lambda-SAM Local-AWS	
	Lambda-SAM Containerized Deploy-Applying AWS Machine Learning	
	to the Real World	
	Machine Learning Interoperability-Why Interoperability Is Critical-	3 hours
	ONNX: Open Neural Network Exchange-ONNX Model Zoo-Convert	
	PyTorch into ONNX -Convert TensorFlow into ONNX-Deploy ONNX to	
	Azure-Apple Core ML-Edge Integration.	

	Building MLOps Command Line Tools and Microservices-Python	3 hours
	Packaging-The Requirements File-Command Line Tools-Creating a	
	Dataset Linter Modularizing a Command Line Tool-Microservices-	
	Creating a Serverless Function-Authenticating to Cloud Functions-	
	Building a Cloud-Based CLI-Machine Learning CLI Workflows	
	Machine Learning Engineering and MLOps Case StudiesUnlikely	3 hours
	Benefits of Ignorance in Building Machine Learning Models-MLOps	
	Projects at Sqor Sports Social Network-Mechanical Turk Data Labeling-	
	Influencer Rank-Athlete intelligence (AI product)-The perfect	
	techniques versus the real world-critical challenges in MLops- Ethical	
	and unintended consequences-lack of operational excellences- focus	
	on prediction accuracy vs the big picture	
Pedagogy	Lectures/ tutorials/lab assignments/self-study	
References/	Main Reading :-	
Readings	 Practical MLops – Noah Gift and AlfredoDeza 	
	 Introduction to MLOps – Noah Gift and AlfredoDeza 	
Course	1. Integration of machine learning and software engineering for	production
Outcomes	systems.	
	2. Automation of model development, training, and deployment proces	ses.
	3. Scalable and reliable infrastructure design for machine learning appli-	cations.
	4. Monitoring and maintenance of deployed machine learning systems.	

Name of the Programme: M.Sc. in Data Science Course Code: CSD-512 Title of the Course: MLOps(Practical) Number of Credits: 2(0L-0T-2P) Effective from AY: 2023-24

Prerequisites	Machine Learning and programming	
for the course		
Objectives	Aimed at imparting the knowledge required to deploy ML models	
Content	Perfect Project Structure – Cookiecutter& readme.so	6 hours
	• Speed Exploratory Data Analysis to Minutes – Pandas Profiling,	6 hours
	SweetViz	
	• Track Data Science Projects with CI, CD, CT, CM –Data Version	6 hours
	Control (DVC)	
	Explainable AI / XAI – SHAP, LIME, SHAPASH	6 hours
	Deploy ML Projects in minutes – Docker, FastAPI	6 hours
	End to End Machine Learning – MLflow	6 hours
	Building Production Ready ML Pipelines - Model Registry, Feature	6 hours
	Store (Feast, ButterFlow)	
	 Big Data using Python, instead of PySpark – DASK 	6 hours
	 Build a Chat bot and Deploy it (open-source) 	6 hours
	FaaS Framework implementation – Apache OpenWhisk, OpenFaas	6 hours
Pedagogy	Lab Assignments / mini project	
References/	1. Machine Learning Engineering By AndriyBurkov Publisher : True Posi	itive Inc. (8
Readings	September 2020)	
	2. ML Ops: Operationalizing Data Science By David Sweenor, DevKa	annabiran,
	Thomas Hill, Steven Hillion, Dan Rope and Michael O'Connell-O'Reilly	,
	3. Building Machine Learning Pipelines By HannesHapke, Catherine Nels	son
	4. Practical MLOps by Noah Gift, Alfredo Deza. O'Reilly	
	5. Introducing MLOps By Mark Treveil&Dataiku Team	
	6. Beginning MLOps with MLFIow: Deploy Models in AWS SageMake	er, Google
Courses	Cioud, and Microsoft Azureby Sridhar Alia, SumankaiyanAdari, O'Reill	iy
Course	1. Hands-on experience with IVILOps tools and technologies.	
Outcomes	 Building end-to-end machine learning pipelines. Donloyment and management of infractivity for machine learning. 	modele
	Collaboration and adoption of DovOps practices in MLOps	models.
	4. Conaboration and adoption of DevOps practices in MLOps.	

Name of the Programme: M.Sc. in Data Science Course code: CSD-513 Title of course: Software Engineering for AI Enabled Systems (Theory) Number of credits: 2 (2L-0T-0P)

Effective from AY: 2023	3-24
-------------------------	------

Prerequisites	Programming & Data Structures, Python	
for the course		
Objectives	• Gain an in-depth understanding of Software Engineering including	
	its importance.	
	• Learn Scrum, Kanban, Agile, Waterfall, Prototyping, Incremental,	
	RAD and Spiral Software Process Models.	
	• Learn to perform systematic Software Requirement Engineering.	
	 Applying SE approach to developing AI solutions 	
Content	Software Engineering: Software Processes, SDLC, agile approaches to	5 hours
	SE	
	Requirements Engineering: elicitation techniques, specification.	5 hours
	SCRUM and user stories.	
	Test Driven Development: Refactoring and Unit testing	5 hours
	Use of frameworks and APIS and handling of big data	5 hours
	Configuration management, continuous integration, and automated	5 hours
	software engineering	
	Cloud based software development, DevOps	5 hours
Pedagogy	Classroom/hands-on instructions, assignments, mini projects	
References/	1. Hands-On Software Engineering with Python: Move beyond basic pro	ogramming
Readings	and construct reliable and efficient software with complex code, Br	ian Allbee,
	Packt Publishing.	
	2. A concise Introduction to Software Engineering, Pankaj Jalote-2008n-	Springer.
	3. Agile Estimating and Scrum, Mike Cohn, Prentice Hall.	
Course	1. Application of SE principles for AI and Data Science projects	
Outcomes	2. How to work in self organizing teams	
	3. Use of tools and techniques for automating	
	4. managing software development	

Name of the Programme: M.Sc. in Data Science Course code: CSD-514 Title of course: Software Engineering for AI Enabled Systems(Practical) Number of credits: 2 (0L-0T-2P) Effective from AY: 2023-24

Encedive nom Al	· 2023-24	
Prerequisites	Programming & Data Structures, Python	
for the course		
Objectives	Applying SE approach to developing AI solutions	
	Use of modern software engineering tools and frameworks	
Content	1 Version Control Tools- Git and Github	12 hours
	2 TDD – Unit testing and refactoring with Python	12 hours
	3 Working with Python libraries and frameworks	12 hours
	4 Use of testing tools- selenium, Jmeter	12 hours
	5 Cloud based software development & DevOps	12 hours
Pedagogy	Lab sessions and projects	
References/	1. Hands-On Software Engineering with Python: Move beyond basic pro	gramming
Readings	and construct reliable and efficient software with complex code, Brian Allbee,	
	Packt Publishing.	
	2. A concise Introduction to Software Engineering, Pankaj Jalote-2008n-	- Springer.
	3. Agile Estimating and Scrum, Mike Cohn, Prentice Hall.	
Course	1. Application of SE principles for AI and Data Science projects	
Outcomes	2. How to work in self-organizing teams	
	3. Use of tools and techniques for automating	
	4. managing software development	

Semester I Name of the Programme: M.Sc. in Data Science Course Code: CSD-521 Title of the Course: Domain Specific Predictive Analytics Number of Credits: 4(2L-2T-0P)

Prerequisites	Data science fundamentals and programming background	
for the course		
Objectives	It introduces theoretical foundations	
	Algorithms, Methodologies for analysing data in	
	various domains such Retail, Finance, Risk and Healthcare.	
Content for	Retail Analytics	4 hours
Theory	Understanding Customer: Profiling and Segmentation, Modelling	
	Churn. Modelling Lifetime Value, Modelling Risk, Market Basket	
	Analysis.	
	Risk Analytics	4 hours
	Risk Management and Operational Hedging: An Overview, Supply	
	Chain Risk Management, A Bayesian Framework for Supply Chain Risk	
		1 hours
	Financial Data Analytics	4 nours
	events impact market sentiment. Relating news analytics to stock	
	returns	
	Financial Time Series Analytics	4 hours
	Financial Time Series and Their Characteristics. Common Financial	Thous
	Time Series models. Autoregressive models. Markov chain models.	
	Time series models with leading indicators, Long term forecasting	
	Introduction Healthcare Analytics	4 hours
	An Introduction to Healthcare Data Analytics, Electronic Health	
	Records, Privacy-Preserving Data Publishing Methods in Healthcare,	
	Clinical Decision Support Systems	
	Healthcare Data Analytics	4 hours
	Natural Language Processing and Data Mining for Clinical Text: Core	
	NLP Components, Information Extraction and Named Entity	
	Recognition, Social Media Analytics for Healthcare: Tracking of	
	Infectious Disease Outbreaks, Readmission risk Prediction	
	Genomic Data Analytics	6 hours
	Microarray Data, Microarray Data Analysis, Genomic Data Analysis for	
	Personalized Medicine , Patient Survival Prediction from Gene	
Contoutfor	Expression Data , Genome Sequence Analysis	2 h a
Content for	Finance: Shadk Market Dradiction: Develop a gradictive model to ferroret	3 nours
practical to be	a) Stock Market Prediction: Develop a predictive model to forecast	
during the	stock prices based on historical data, using techniques such as	
Tutorial Slots	b) Crodit Pick According Build a model to prodict the	2 hours
	b) Credit Risk Assessment. Build a model to predict the	Shours
	relevant financial and non-financial factors to assess default	
	probabilities.	
	c) Fraud Detection: Create an algorithm to identify fraudulent	3 hours
	transactions or activities in financial systems by analysing	
	patterns, anomalies, and historical data.	

	Medical Science:	3 hours
	a) Disease Diagnosis: Develop a predictive model to diagnose	
	diseases based on patient symptoms, medical history, and test	
	results, using techniques like classification algorithms and medical	
	data analysis.	
	b) Patient Readmission Prediction: Build a model to predict the	3 hours
	likelihood of a patient being readmitted to the hospital within a	
	certain time frame, considering factors such as demographics,	
	medical conditions, and treatment history.	
	c) Drug Effectiveness Prediction: Create a model to predict the	3 hours
	effectiveness of a particular drug for a specific patient or group of	
	patients, utilizing genetic information, clinical data, and treatment	
	outcomes.	
	Genomic Science:	3 hours
	Predictive analytics in the domain of genomics can be highly	
	beneficial for various applications, such as disease prediction, drug	
	discovery, personalized medicine, and genetic engineering. Here	
	are a few examples of predictive analytics techniques that can be	
	applied in genomics	
	a) Disease Risk Prediction: By analyzing an individual's genomic data,	
	predictive analytics can be used to assess the risk of developing	
	specific diseases. Machine learning algorithms can identify	
	patterns and genetic markers associated with various diseases,	
	allowing for early detection and preventive measures. For	
	example, predictive models can be built to predict the risk of	
	developing conditions like cancer, cardiovascular diseases, or	
	genetic disorders.	
	b) Pharmacogenomics: Predictive analytics can aid in predicting an	3 hours
	individual's response to specific drugs based on their genetic	
	makeup. By analyzing genomic data along with clinical	
	information, machine learning models can predict drug efficacy,	
	potential side effects, and optimal dosage. This information can	
	be used to develop personalized treatment plans and improve	
	patient outcomes.	
	c) Genomic Variant Interpretation: Genomic variants play a crucial	3 hours
	role in determining an individual's susceptibility to diseases.	
	Predictive analytics can be used to interpret the functional	
	consequences of these variants. Machine learning algorithms can	
	predict the impact of genetic mutations on protein structure and	
	function, helping researchers and clinicians understand the	
	underlying mechanisms of diseases and develop targeted	
	therapies.	
	d) Gene Expression Analysis: Predictive analytics can analyze gene	3 hours
	expression data to identify patterns and correlations between	
	genes and specific traits or diseases. By using machine learning	
	algorithms, it is possible to predict gene expression levels based	
	on genomic features and environmental factors. This can provide	
	valuable insights into gene regulatory networks and help in	
	understanding disease mechanisms and identifying potential	
	therapeutic	
Pedagogy	Lectures/ tutorials/assignments/self-study	
References/	1 Chris Chanman Elea McDonnoll Eait "P for Markoting Bos	arch and
Readings	Analytics", Springer, 2015.	

	2. Olivia Parr Rud "Data Mining Cookbook: Modeling Data for Marketing, Risk,		
	and Customer Relationship Management", Wiley, 2001.		
	3. Chandan K. Reddy, Charu C. Aggarwal "Healthcare Data Analytics", CRC Press,		
	2015. 4. Rene Carmona "Statistical Analysis of Financial Data in R", Springer, 2014.		
	5. James B. Ayers "Handbook Of Supply Chain Management" Auerbach		
	Publications, 2006.		
	6. PanosKouvelis, Lingxiu Dong, OnurBoyabatli, Rong Li "The Handbook of		
	Integrated Risk Management in Global Supply Chains", Wiley, 2012.		
Course	1.Retail Analytics and Risk Analytics		
Outcomes	2. Financial Data Analytics, Financial Time Series Analytics,		
	3.Healthcare Analytics, Healthcare Data Analytics and		
	4. Genomic Data Analytics.		

Name of the Programme: M.Sc. in Data Science Course Code: CSD-522 Title of the Course: Design Thinking for Data-Driven App Development Number of Credits: 4(4L-0T-0P) Effective from AY: 2023-24

Prerequisites	None	
for the course		
Objectives	This course helps you learn	
	 The basics of Design Thinking in an experiential way. 	
	• This course aims at an empathy-led data-driven app development	
	approach for data scientists.	
	• The learners will launch a fully functioning app in a real app store at	
	the end of the course.	
Content	Introduction to Design Thinking – Course outline and projects, Intro to	15 hours
	the Design of Everyday Things, Intro to Design Thinking in software	
	apps, Project management. Empathize phase (Iteration #1)	
	Emotional and intellectual map of the user stories from interviews,	
	User story creation and Customer Journey Mapping	
	Analyse phase (Iteration #1) - Stated needs and unsaid/latent needs,	15 hours
	Root cause analysis, Multiple perspectives of customers and	
	manufacturers, Frame conflicts from popular movies. Solve phase	
	(Iteration #1)Structured and unstructured creativity, Dynamics of	
	group thinking, Optimal conditions of creativity, Natural creativity,	
	Concept creation via group activities, Silent brainstorming, inventive	
	principles and concept consolidation	
	Test phase (Iteration #1)/ Empathize phase (Iteration #2) - Basics of	15 hours
	prototyping, Assumptions in creation of new concepts, Features	
	rather than ideas. Basics of Digital Marketing, User Experience Design,	
	Website Development	
	Analyse phase (Iteration #2)	15 hours
	Solve phase (Iteration #2) - Introduced problems via the solution from	
	iteration #1, the subsequent ideation process in iteration #2, apply	
	solutioning and analysis tools in iteration #2, subsequent testing and	
	field trial skills required for iteration #3, analytical tools and data	
	oriented tools on iteration #3. Test (Iteration #2) / Empathize	
	(Iteration #3) - Basics of obtaining insights from feedback from a live	
	audience. Analyse (Iteration #3). Test phase (Iteration #3) - Launch of	
	the App.	
Pedagogy	Hands-on assignments / Tutorials / Peer-teaching / Presentations	
References/	1. Design of everyday things by Don A. Norman. 2013.	1
Readings	2. This is Service Design thinking- basics, tools and cases by Marc Stic	ckdorn, 1st
	edition, John Wiley & Sons Inc., 2012.	
Course	1.Recall the basics of Design Thinking	
Outcomes	2.Apply Agile method to developing software	
	3.Design an App using the principles of Design Thinking	
	4.Develop an App for Android and Collaborate with other developer	s using git
	version control method	

Semester II

Name of the Programme: M.Sc. in Data Science

Course Code: CSD-523

Title of the Course: Signal Processing

Number of Credits: 4(2L-2T-0P)

Prerequisites	1. Linear algebra,	
for the course	2. Calculus and multivariable calculus,	
	3. At least high school math on trigonometry,	
	4. Complex number	
	5. A little bit familiarity with programming, especially for	
	numerical computation, such as GNU Octave.	
Objectives	1. To study various types of signals and its characteristics.	
	2. To study various operations on the signals.	
	3. To analyse the signals using Fourier transform and Laplace	
	Transform.	
	4. To learn the fundamentals of robotics and sensor technology.	
	5. To understand the controlling applications of robotics using sensor	
	responses.	
Content for	Module:1 Introduction to Signals Continuous-time and Discrete-time	4 hours
Theory	Signals: Representation of signals, Signal classification, Types of	
	Signals, Operations on signals - Scaling, Shifting	
	Module: 2 Fourier Analysis of Continuous-time Signals Introduction	4 hours
	to Fourier series, Gibbs Phenomenon, and Continuous-time Fourier	
	transform (CTFT), Existence, Magnitude and phase response,	
	Parseval's theorem, Inverse Fourier transform. Relation between	
	Laplace and Fourier transforms, Laplace Transform, Magnitude and	
	phase response	
	Module: 3 signal conditioning Sensing - Pre-processing - Noise	4 hours
	reduction, enhancement of details. Signal Conversion –Sampling,	
	Quantization, Encoding	
	Wodule:4 Data Acquisition and sensing in Robotics Data Acquisition:	4 nours
	Analogy and digital data acquisition, single channel and multi-channel	
	Introduction to computer vision Doint operators Linear Filters More	
	neighbourbood operators Equirier transforms Dyramids and	
	wavelets Geometric transformations	
	Module: 5 Fundamentals of Robotics Basic components of robotic	1 hours
	system Basic terminology- Accuracy Repeatability Resolution	4 Hours
	Degree of freedom. Mechanisms and transmission. End effectors.	
	Grippers-different methods of gripping. Mechanical grippers-Slider	
	crank mechanism. Screw type, Rotary actuators. Cam type gripper.	
	Magnetic grippers, Vacuum grippers, Air operated grippers;	
	Specifications of robot.	
	Module: 6 Drive Systems and Sensors in Robotics Drive system-	4 hours
	hydraulic, pneumatic and electric systems. Sensors in robot – Touch	
	sensors, Tactile sensor, Proximity and range sensors, Robotic vision	
	sensor, Force sensor, Light sensors, and Pressure sensors.	
	Module: 7 Signal processing application in Robotics Robot	6 hours
	applications: Application of robots in surgery, Manufacturing	
	industries, space and underwater. Humanoid robots, Micro robots,	
	Social issues and Future of robotics.	

Content for	• To find Discrete Fourier Transform and Inverse Discrete Fourier	3 hours	
Practicals	Transform of given digital signal using MATLAB software.		
Tutorial:	 To obtain Linear Convolution of two finite length sequences using MATLAB software. 	3 hours	
	 To compute auto correlation between two sequences using MATLAB software. 	3 hours	
	• AIM: To find frequency response of a given system in differential equation form using MATLAB software.	3 hours	
	• AIM: To find the FFT of a given sequence using MATLAB software.	3 hours	
	 Determination of Power Spectrum of a given signal using MATLAB software. 	3 hours	
	• To implement LP FIR filter for a given sequence using MATLAB software.	6 hours	
	• To implement HP FIR filter for a given sequence using MATLAB software.	6 hours	
Pedagogy	ISA/Assignments/seminar		
References/	Text Book(s)		
Readings	1. Signals and Systems, second edition-P. Rama Krishna Rao and Shank	ar Prakriya-	
	Mc-Graw Hill, 2013.		
	2. Groover. M.P. Industrial Robotics, technology, programming and	application	
	Mc-Graw Hill 2012.	AcCrown Hill	
	s. s. R.Deb, Robotics technology and nexible automation, rata in nublishing company limited 1994		
	publishing company limited, 1994.		
	1. Signals and systems, second edition-Alan. V. Oppenheim, Alan.	S. Willsk,S.	
	Hamid Nawab, PHI learning Pvt ltd, 1997	,	
	2. Signals and systems, second edition - Simon Haykin, Barry VanV	een, Wiley,	
	Wiley India, 2007.		
	3. S. K. Saha, "Introduction to Robotics", Tata McGraw-Hill Publishin	ig Company	
	Ltd. (2008). A. Baman Ballas Arany, John C. Wahstor, "Sonsars and Signal Conditi	oning" Ind	
	4. Ramon Pallas-Aleny, John G. Webster, Sensors and Signal Condition	oning , zhu	
	Mode of Evaluation: Assignments / Assignments / Quiz		
Course	1. To differentiate continuous and discrete time signals and To analyse t	the sensor	
Outcomes	response using Fourier transform		
	2.To analyse the trajectory of sensor signal using Laplace transform and	d To	
	understand the signal conditioning and acquisition mechanism		
	3. To learn the fundamentals and peripherals of robots and To explore	sensor	
	responses in controlling robots		
	4 To explore various real-time application of sensor signal in robotics		

Name of the Programme: M.Sc. in Data Science Course Code: CSD-524 Title of the Course: Regression Analytics and Predictive Models Number of Credits: 2 (2L-2T-0P) Effective from AY: 2023-24

Prerequisites	Probability Theory and Distributions	
Objectives	 Develop an understanding of regression analysis and model 	
	building.	
	 Provide the ability to develop relationship between variables 	
	 Investigate possible diagnostics in regression techniques 	
	Formulate feasible solutions using a regression model for real-life	
	problems.	
Content	Simple Regression Analysis	4 hours
(Theory)	methods. Simple linear regression model, using simple regression to	
	describe a linear relationshin. Fitting a linear trend to time series data	
	Validating simple regression model using t E and n test	
	Developing confidence interval. Precautions in interpreting regression	
	results.	
	Multiple Regression Analysis	4 hours
	Concept of Multiple regression model to describe a linear relationship,	
	Assessing the fit of the regression line, inferences from multiple	
	regression analysis, problem of over fitting of a model, comparing	
	two regression model, prediction with multiple regression equation.	
	Fitting Curves and Model Adequacy Checking	4 hours
	Introduction, fitting curvilinear relationship, residual analysis, PRESS	
	statistics, detection and treatment of outliers, lack of fit of the	
	regression model, test of lack of fit, Problem of autocorrelation and	
	Transformation techniques	4 hours
	Introduction variance stabilizing transformations transformations to	4 110013
	linearize the model Box Cox methods transformations on the	
	repressors variables. Generalized and weighted least squares. Some	
	practical applications.	
	Multicollinearity	4 hours
	Introduction, sources of multicollinearity, effects of multicollinearity.	
	Multicollinearity diagnostics: examination of correlation matrix,	
	variance Inflation factors (VIF), Eigen system analysis of X1X. Methods	
	of dealing with Multicollinearity: collecting additional data, model re-	
	specification, and ridge regression.	
	Generalized Linear Models	4 hours
	Generalized linear model: link functions and linear predictors,	
	estimation with the GLM Residual Analysis and concent of over	
	dispersion	
	Model building and Nonlinear Regression	
	Variable selection, model building, model misspecification. Model	6 hours
	validation techniques: Analysis of model coefficients, and predicted	-
	values, data splitting method. Nonlinear regression model, nonlinear	
	least squares, transformation to linear model, parameter estimation	
	in nonlinear system, statistical inference in nonlinear regression.	
Content for	1. Linear Regression	2 hours

Practicals	2. Minimum Least Square Method	2 hours
during the	3. Calculating coefficients values	2 hours
Tutorial	4. Ascombe's Quartet	2 hours
Slots:	5. Regression Equations- x on y & y on x	2 hours
	6. Predicting mom's height based on daughter's height	2 hours
	7. Regression-Solved problem-2	2 hours
	8. Probable Error- Calculating correlation coefficient of POPULATION	2 hours
	9. Predictive modelling project for credit card fraud detection	4 hours
	Any two Projects from below -	
	10. Predictive modelling project for customer value prediction	5 hours
	11. Predictive modelling project for stock market forecasting	5 hours
	12. Predictive modelling project for corporate bankruptcy prediction	5 hours
Pedagogy	Lectures/ tutorials/assignments/self-study	
References/	1. Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining, Ir	troduction
Readings	to Linear Regression Analysis, Third Ed., Wiley India Pvt. Ltd., 2016. Norman R.	
	2. Draper, Harry Smith; Applied Regression Analysis, WILEY India Pvt.	. Ltd. New
	Delhi; Third Edition, 2015.	
	3. Johnson, R A., Wichern, D. W., Applied Multivariate Statistical Ana	alysis, Sixth
	Ed., PHI learning Pvt., Ltd., 2013.	
	4. Iain Pardoe, Applied Regression Modeling, John Wiley and Sons, Inc,	2012.
Course	1.Develop in-depth understanding of the linear and nonlinear regression	n model.
Outcomes	2.Demonstrate the knowledge of regression modelling and mode	l selection
	techniques.	
	3.Examine the relationships between dependent and independent varia	bles.
	4.Estimate the parameters and fit a model.	

(Back to top)