

गोंय विद्यापीठ ताळगांव पठार गोंय - ४०३ २०६ फोन: +९१-८६६९६०९०४८

Goa University

Taleigao Plateau, Goa - 403 206 Tel : +91-8669609048 Email : registrar@unigoa.ac.in Website: www.unigoa.ac.in

(Accredited by NAAC)

GU/Acad –PG/BoS -NEP/2023/91/1

Date:31.05.2023

Ref : GU/Acad –PG/BoS -NEP/2022/339/17 dated 18.08.2022

CIRCULAR

In supersession to the above referred Circular, the updated approved Syllabus with revised Course Codes of the **Master of Sciences in Biotechnology** Programme is enclosed.

The Dean/ Vice-Deans of the School of Biological Sciences and Biotechnology is requested to take note of the above and bring the contents of the Circular to the notice of all concerned.

(Ashwin Lawande) Assistant Registrar – Academic-PG

Τo,

- 1. The Dean, School of Biological Sciences and Biotechnology, Goa University.
- 2. The Vice-Deans, School of Biological Sciences and Biotechnology, Goa University.

Copy to:

- 1. The Chairperson, Board of Studies in Biotechnology.
- 2. The Programme Director, M.Sc. Biotechnology, Goa University.
- 3. The Controller of Examinations, Goa University.
- 4. The Assistant Registrar, PG Examinations, Goa University.
- 5. Directorate of Internal Quality Assurance, Goa University for uploading the Syllabus on the University website.

Goa University ANNEXURE I <u>M.Sc. Biotechnology</u>

Preamble

The M.Sc. Biotechnology was started at Goa University in 2013 with the objective of developing manpower in the field of Biotechnology. The students are imparted training and skills and empowering them to undertake the challenges in the field of Biotechnology.

The eligibility for the program is B.Sc. Degree under 10+2+3 in any branch of Science such as Physical, Chemical Biological, Agricultural, Fisheries, Pharmaceutical Medicine Engineering, or Technology, and the admission is based on the GUART ranking test

M.Sc. Biotechnology Proposed Scheme M.Sc. Biotechnology (effective from 2022 - 23)

SEMESTER I		
Course Codes	Course Title	Credits
	Discipline Specific Core courses (16 credits)	
<u>GBT-500</u>	Microbiology	3
<u>GBT-501</u>	Lab I: Techniques in Microbiology.	3
<u>GBT-502</u>	Immunology	3
<u>GBT-503</u>	Lab II: Techniques in Immunology	2
<u>GBT-504</u>	Biophysical Principles & Analytical Techniques	2
<u>GBT-505</u>	LAB III: Biochemical and analytical techniques	3
	Discipline Specific Elective courses (Any 4 credits)
<u>GBT-521</u>	Concepts in Biochemistry	2
<u>GBT-522</u>	Biostatistics	2
<u>GBT-523</u>	Mathematics for Biologists	2
<u>GBT-524</u>	Biology of the Extremophilic Organisms	2
	SEMESTER II	
	Discipline Specific Core courses (16 credits)	
<u>GBT-506</u>	Environmental Biotechnology	3
<u>GBT-507</u>	Stem Cell Biology and regenerative medicine	1
<u>GBT-508</u>	Genetics and Molecular Biology	3
<u>GBT-509</u>	Lab IV: Genetics and Molecular Biology	2
<u>GBT-510</u>	Cell and Developmental Biology	3
<u>GBT-511</u>	Bioinformatics	2
<u>GBT-512</u>	Lab V: Plant and Animal Tissue Culture	2
Discipline-Specific Elective courses (Any 4 credits)		
<u>GBT-525</u>	Bio entrepreneurship	2
<u>GBT-526</u>	Lab VI: Lab in Bioinformatics	2
<u>GBT-527</u>	Nanotechnology	2
<u>GBT-528</u>	Vaccine Technology	2

SEMESTER III			
	Research Specific Elective Courses (Any 8 credits)		
<u>GBT-600</u>	Recombinant DNA Technology	3	
<u>GBT-601</u>	Lab VII: Recombinant DNA Technology	2	
<u>GBT-602</u>	Bioprocess Technology	3	
<u>GBT-603</u>	Lab VIII: Bioprocess technology	2	
<u>GBT-604</u>	Lab IX : Environmental Biotechnology	2	
	Generic Elective Course (Any 12 credits)		
<u>GBT-621</u>	Solid Waste Management	3	
<u>MBT-621</u>	IPR, Biosafety & Bioethics	3	
<u>GBT-622</u>	Food Technology	2	
<u>GBT-623</u>	Virology	2	
<u>GBT-624</u>	Genomics & Proteomics	2	
<u>GBT-625</u>	Emerging trends in wastewater treatment	2	
<u>GBT-652</u>	Internship	2	
	SEMESTER IV		
	Research-specific elective courses (Any 4 credi	ts)	
<u>GBT-605</u>	Research Methodology	2	
<u>GBT-606</u>	Synthetic Biology	2	
<u>GBT-607</u>	Plant and Animal Biotechnology	2	
<u>MBT-602</u>	Scuba Diving	2	
<u>GBT-608</u>	Field trip	2	
	Discipline-specific dissertation		
GBT-651	Dissertation	16	

Course Code: GBT-500

Title of the Course: MICROBIOLOGY

Number of Credits: 3

Pre-requisites	No prerequisite is required.	
for the Course:		
Course	The objective of this course is to provide information about	
Objectives:	1) the types of microbes, their growth characteristics.	
	2) their nutrition, general characteristics and classification.	
Content:		No. of hours
	MODULE I	
	· A brief history of microbiology: discovery of the microbial	15
	world, controversy over spontaneous generation, the role	
	of microorganisms in the causation of disease,	
	development of pure enrichment culture methods.	
	 Modern /contemporary microbiology in the 21st century 	
	\cdot An overview of the organization and cell structure of	
	Prokaryotes and Archaea: i) cell wall ii) outer membrane iii)	
	cytoplasmic membrane iv) flagella & specialized	
	movements in microbes v) cell inclusions iv) differences	
	among the groups.	
	MODULE II	
	Microbial nutrition: i) autotrophic & heterotrophic modes,	
	ii) defining culture media to support growth, iii) Selective	15
	and differential culture media.	15
	Bacterial growth kinetics: i) growth curve, the	
	mathematical expression of growth & measurement of	
	growth ii) synchronous growth iii) factors affecting growth	
	iv) chemostat & turbidostat.	
	Microbial taxonomy: i) nomenclature ii) polyphasic	
	identification, traditional & molecular, iii) Bergey's manual.	
		l

	MODULE III	<i>.</i> -
	 Structure & classification. Algae Fungi Cyanobacteria Bacteria Viruses Viroids & prions 	15
	2. Specialized microorganisms:	
	Marine microbes.	
	 Extremophiles: barophiles, psychrophiles, thermophiles, halophiles, acidophiles 	
	Anaerobes	
Pedagogy:	Lectures, tutorials, assignments	
References/		
Readings:	 Atkins, de Paula. Physical Chemistry for the Life Scie Edition). W.H. Freeman, 2011. 	nces (2nd
	 R.M. Atlas, Microbiology: Fundamentals and Applications. Publisher, 1989. 	World Cat
	 Collins, Granje J., Lyne, P. M. Falkenheim J. Microbiology Hodder Arnold Publication, 2004. 	y Methods
	4. T E. Ford, Aquatic Microbiology: An ecological approach. Scientific Publication, 1993.	. Blackwell
	5. G. Reed, Prescott & Dunn. Industrial Microbiology CBS 1 1987.	Publishers.
	 R.A. Harvey, C.N. Cornelisse, Lippincott Illustrated Microbiology (Lippincott Illustrated Reviews Series) LWW 2012. 	
	 M. Madigan, K.M. Bender, D. Buckley, W. Sattley, D St Biology of Microorganisms. Pearsons, 2018. 	ahl. Brock
	8. M. Madigan, Martinko & Parker, J. Rock's B microorganisms. Pearson Prentice Hall, 2010.	iology of
	9. M.J. Pelczar, E.C.S. Chan and Krige. Microbiology Tata Mac 2004.	cgrw Hill,
	 G. Rheinhemer. Aquatic Microbiology Wiley and sons, 198 R.Y. Stanier, J.L. Ingraham General Microbiology. Macmillan, 1999. 	
	12. G. Tortora, B. Funke, C. Case. Microbiology: An Int Pearson, 2018.	roduction.
	13. J. Willey, L. Sherwood, C.J. Woolverton. Prescott's Mic	crobiology.

	Mcgraw Hill, 2016.
Course	After completing this course, students would be able to
Outcomes:	 Distinguish different types of microorganisms. Understand the morphology, nutrition and classification of various microbes. Analyse the growth characteristics of different microorganisms. Gain a basic understanding on the diversity of microorganisms in different extreme environments and their application.

Programme: M. Sc. Biotechnology

Course Code: GBT-501

Title of the Course: Lab I: TECHNIQUES IN MICROBIOLOGY

Number of Credits: 3

Prerequisites	No prerequisite is required.	
for the course:		
Course	This course involves	
objective:	1) learning techniques to culture microbes in the lab	
	2) understanding the application in microbiological res	earch studies.
		No. of hours
Content:	1. Sterilization and disinfection.	
	2. Preparation of solid & liquid media:	45
	 Isolation and maintenance of organisms: Streaking, slants and stabs cultures, storage of microorganisms. 	
	4. Differential and Selective media	
	5. Enumeration: serial dilution methods, plating.	
	 Isolation of bacteria from seawater /sediments samples 	
	7. Study of morphology and cultural characteristics	
	8. Biochemical characterization of bacteria.	
	 a. Sugar utilization test (minimal medium + sugar) b. Sugar fermentation test c. IMViC d. Enzyme detection – Gelatinase, Catalase, Oxidase e. Oxidative-fermentative test 	

	 10. Bacteriological tests for portability of water a. MPN, Confirmed and Completed test. b. Membrane filter technique (Demonstration) 	45
	11. Staining methods: Gram staining, Endospore staining, Metachromatic granules, Cell wall staining.	
	12. Motility in bacteria using: Hanging drop method and swarming growth method.	
	13. Antimicrobial sensitivity test: Agar cup and Disc Diffusion methods.	
	14. Drug resistance: comparative studies of different drugs/ disinfectants.	
	 15. Cultivation of fungi: a. Slide b. chunk c. coverslip techniques d. Wet mounts of fungal cultures 	
Pedagogy:	lectures/ tutorials assignments/practical	
References/Rea dings	 W. Giltner, Laboratory Manual in General Microbiolo Media Partners, LLC, 2017. E.F. Harrigan, M.E. McCance. Laboratory M Microbiology, Academic Press, 2014 A.S. Karwa, M.K. Rai, H.B. Singh. Handbook of Ter Microbiology: A Laboratory Guide to Microbes, 2012. 	lethods in
Learning Outcomes	 Key hands-on experience of converting and applying theoretical knowledge to laboratory. Application of the varied interactions /reactions to be utilized in research. Students become familiar with microbiology techniques that are used in many scientific disciplines as well as clinical medicine. Hands-on experience with basic microbiological instruments to be used in future research studies. 	

Course Code: GBT-502

Title of the Course: IMMUNOLOGY

Number of Credits: 3

Pre-requisites	No prerequisite is required	
for the Course:		
Course Objectives:	 To provide basic knowledge and appreciate the compornument immune response that work together to protect the concept of immune-based diseases deficiency of components or excess activity as hypersensities. To gain an insight into the mechanisms that lead to immune responses, immune disorders, and immune-defice. To understand the principles of immunodiagnostic terminume system related diseases. 	ne host. as either a tivity. o beneficial tiencies.
Content:		No. of hours
	MODULE I	
	Concepts and Basics	15
	 Introduction – History and scope of immunology 	
	 Innate immunity:- factors, features, processes 	
	Acquired:- the Specificity, memory, recognition of self	
	from non-self.	
	 Cells of the immune system: Hematopoiesis and 	
	differentiation, Lymphoid and Myeloid lineage,	
	lymphocyte trafficking, B lymphocytes, T lymphocytes,	
	macrophages, dendritic cells, natural killer and	
	lymphokine-activated killer cells, eosinophils and mast	
	cells, lymphocyte subpopulations and CD markers.	
	Organization of lymphoid organs MALT, GALT, SALT	
	 Phagocytosis: oxygen-dependant/ independent killing intracellularly. 	
	Major histocompatibility complexStructure of MHC	
	molecules, basic organization of MHC in human ,	
	haplotype-restricted killing.	
	 Nature and biology of antigens and superantigens: 	
	haptens, adjuvants, carriers, epitopes, T dependant	
	and T independent antigens	

	MODULE II	15
	Defence Components: Constituents of immune system	
	and response	
	 Theories of antibody formation and resolution of antibody structure 	
	 Humoral immunity: cells, antibody formation, primary 	
	and secondary response.	
	 Immunoglobulins – structure, distribution and function. 	
	 Antigen – Antibody interactions: forces, affinity, 	
	avidity, valency and kinetics.	
	The basics of Immuno-diagnostics.	
	MODULE III	
	Defence Strategies and Pitfalls: Effector mechanisms of	
	immune responses	15
	 Complement system: mode of activation, classical, 	15
	alternate and MBL pathways. Structures of key	
	components.	
	Cell mediated immune responses: cell activation, cell-	
	cell interaction and cytokines.	
	 Cell-mediated cytoxicity: Mechanism of T cell and NK 	
	cell mediated lysis, antibody-dependant cell-mediated	
	cytoxicity.	
	 Hybridoma technology and monoclonal antibodies. 	
	 Hypersensitivity: An introduction to the different 	
	types.I introduction to autoimmune diseases.	
	types. Introduction to autoinmune diseases.	
Pedagogy:	Lectures, tutorials, assignments	
References/	1. D. R. Burton, P. J. Delves, S. J. Martin, I. M. Roitt. Roit	t's Essential
Readings:	Immunology, Includes Desktop Edition. United Kingdom: \	Viley, 2011.
	2. J. Brostoff, D.K. Male, I.M. Roitt. Immuno	logy. United
	Kingdom: Mosby, 2001.	
	3. M. Luttmann, K. Bratke, M. Kupper, & D. Myrtek, Immuno	logy, 2006.
	4. R.A. Goldsby, T.J. Kindt, B.A Osbrne and J. Kuby, Immunolo	ogy, 2007.
Course	1. The course will enable student to understand the fund	amentals of
Outcomes:	basic immunological processes in human system	
	2. Application of the knowledge of immune system and p	processes to
	pursue research in field of immunology.	

	students to handle competitive entrance exams.
4.	Knowledge of principles of immunodiagnostics would enable them to
	upskill effectively for research and development in the field.
5.	The basic overview of Immunology strengthens their foundations for
	a career in Biotechnology.

Course Code: GBT 503

Title of the Course: LAB II: TECHNIQUES IN IMMUNOLOGY

Number of Credits: 2

Pre-requisites	No prerequisite is required.	
for the Course:		
Course	This course involves	
Objectives:	1)learning techniques to understand the principles of antigen-a	intibody
	reactions 2) identifying immune reactions in the lab to form the	e basis for
	application in immunodiagnostics.	
Content:	MODULE I	No. of hours
	 Determination of Antibody titre using Double Immuno- diffusion assay. 	30
	2. Assessment of Similarity between antigens using	
	Ouchterlony's Double Diffusion Test.	
	3. Estimation of Antigen Concentration using Radial Immuno	
	Diffusion.	
	4. Quantitative Precipitation Assay	
	MODULE II	
	5. DOT ELISA	30
	6. Latex Agglutination	
	7. Immunoelectrophoresis	
	8. Rocket Immunoelectrophoresis	
	9. Slide / Tube agglutination Tests	
Pedagogy:	Lectures/ tutorials-assignments/hands-on practica	I
References/	1. G.P. Talwar, S.K Gupta. A Handbook Of Practical A	nd Clinical
Readings:	Immunology Vol I CBS Publishers, 2017.	
	2. K.R. Joshi, N.O. Osama, Immunology. 5 th Edition, Agrobios Ltd, India, 2012.	
	 F.C. Hay, O. M.R. Westwood, Practical Immunology, 4 2008. 	th edition,
	4. B. Detrick, R.G. Hamilton, J.D. Folds, et al. eds. Manual of and Clinical Laboratory Immunology. 7th ed. Washingtor	
	Press, 2006. 5. C.A. Janeway, P. Travers, M. Walport, M. Shlomchik, Immu The Immune Surtem in Lealth and Disease. Carland Bubli	•••
	The Immune System in Health and Disease. Garland Publis 2001.	sning, USA,

Course	1. Hands-on experience of applying theoretical knowledge to laboratory.
Outcomes:	 Application of the varied interactions /reactions to be utilized in research. Students become familiar with immunologic techniques that are used in clinical medicine as well as immunology research laboratories. Students will develop interest towards functionality of various immunodiagnostic kits and its application in health & disease related
	research.

Course Code: GBT-504

Title of the Course: BIOPHYSICAL PRINCIPLES & ANALYTICAL TECHNIQUES

Number of Credits: 2

Pre-requisites	No prerequisite is required.	
for the Course:		
Course	The course is designed to provide a	
Objectives:	1)broad exposure to basic techniques used in Modern Biology r	esearch.
	2) to impart a basic conceptual understanding of the princip	oles of these
	techniques and emphasize the biochemical utility of the same.	
	3) clear understanding of all analytical techniques such that the	ne barrier to
	implementing the same is abated.	
Content:		No. of hours
	MODULE I	
	Description of Macromolecular Structure, Intermolecular	
	and Intramolecular forces in protein, DNA and other	
	biomolecules.	
	 Diffusion, Brownian motion and sedimentation, 	15
	determination of molecular weight from sedimentation	15
	and diffusion.	
	 Concept and application of Chemical and Physical 	
	equilibria in biological system	
	 Nature and Role of Ionic, Covalent and Noncovalent 	
	Interaction in molecular confirmation, scaffolding and	
	packaging of protein and DNA	
	Thermodynamics of protein folding: Protein folding	
	kinetics, Misfolding and aggregation.	
	Physical biochemistry of cell: Chemical forces translation	
	and rotation, diffusion, directed movements,	
	biomolecules as machines, work, power and energy,	
	thermal, chemical and mechanical switching of biomolecules,	
	 Biochemical and biophysical characterizations of biomolecules: Fluorescence from GFP), UV-VIS absorption 	
	and emission spectra resulting from intrinsic Tryptophan	
	and GFP chromophores, Fluorescence quenching and	

	polarization studies, Unfolding and refolding studies using CD. protein 15 hours 11 diffusion, dynamics by
	fluorescence correlation spectroscopy.
	MODULE II
	 Spectroscopy: Electromagnetic radiations in spectroscopic 15 techniques. Beer-Lambert law, UV/Visible spectroscopy, Fluorescence spectroscopy, Emission, excitation, Quenching, Quantum Yield. Nuclear magnetic resonance Spectroscopy. Electron spin resonance spectroscopy. Centrifuge: Basic concepts of centrifugation. Calculation of g value from RPM. Types of rotors used, Differential centrifugation, Density gradient centrifugation. Rate-zonal centrifugation, Isopycnic centrifugation. Microscopy: Abbey's law, Resolution, Magnification, Phase-contrast microscopy, Confocal microscopy, High resolution microscopy, Nanoscopy: Atomic force Microscopy, Scanning tunneling Microscopy and Cryo-electron microscopy X-ray
	diffraction.
Pedagogy:	Lectures/ tutorials/assignments.
References/	1. C.R. Cantor and P.R. Schimmel, Biophysical Chemistry, 2nd Edn., 1982.
Readings:	 M.A. Subramaniam, Biophysics: Principle & techniques. MJP Publishers, 2021. K. Salman, and Z. Diaz, Principal and Techniques of Bioinstrumentation. Intelliz Publisher, 2016. J. Frank, Three-Dimensional Electron Microscopy of Macromolecular Assemblies. Academic Press., 2006. I. Tinoco, K. Sauer, J. Wang, and J. Puglisi, Physical Chemistry: Principles and Applications in the Biological Sciences. Prentice Hall, Inc. 2013 P. Atkins, Physical Chemistry for the Life Sciences (2nd Revised Edition), 2015. A. Cooper, Biophysical Chemistry. Royal Society of Chemistry, 2011. K. E. Van-Holde, C. Johnson, Principles of Physical Biochemistry, 3rd Edn. Prentice Hall, 2010.
Course	1. Students will learn to combine previously acquired knowledge of physics
Outcomes:	and chemistry to understand the biochemical processes in the cell.2. This course will offer them a broad idea of instruments/techniques used in biological science laboratories.

3.	Students will achieve knowledge that will be helpful to use and handle
	research lab instruments.
4.	After completion of this course students will have a clear idea of the
	industrial applications of bioinstrumentation that will be advantageous
	for their job /research prospects in Industries and academics.

Course Code: GBT-505

Title of the Course: LAB III: BIOCHEMICAL AND ANALYTICAL TECHNIQUES

Number of Credits: 3

Pre-requisites	No prerequisite is required		
for the Course:			
Course	The objective of this laboratory course is to		
Objectives:	 introduce students to experimentation in Biochemistry. teach the utility of these experimental methods in a 	nrohlem.	
	oriented manner.	problem	
Content:		No	of
	1. UV-Visible spectroscopic analysis.	hours	
	Estimation of proteins by the Lowry/Bradford's method		
	3. Estimation of reducing sugars	45	
	4. Enzyme assay		
	5. Ammonium sulfate precipitation and dialysis		
	 Specific activity, fold purification, percentage yield of enzyme 		
	 Protein subunit molecular weight determination by SDS-PAGE 		
	8. Thin-layer chromatography		
	 Column chromatographic techniques: ion exchange/Affinity/Gel filtration 		
	10. Biochemical assays using ELISA plate reader.		
	11. Compound and Fluorescence microscopy demonstration	45	
	12. Analysis of a biological specimen by SEM		
	13. Fluorescence imaging of fixed stained and live cells		
	14. Demonstration of fluorescence spectroscopy.		
	15. Density gradient ultracentrifugation		

Pedagogy:	Hands-on experiments in the laboratory, Demonstrations, videos, tutorials
References/ Readings:	 A. de Paula. Physical Chemistry for the Life Sciences (2nd Edition). W.H. Freeman, 2011. A. de Paula., Physical Chemistry for the Life Sciences (3rd Edition). W. H. Freeman, 2015. R. Boyer, Modern experimental biochemistry. Pearson Education India, 2000. L. Friedrich and J. W. Engels, Bioanalytics: Analytical Methods and Concepts in Biochemistry and Molecular Biology. Wiley-VCH publisher, 2018. J.F. James , An Introduction to practical laboratory optics, Cambridge University press, 2017. J. Jayaraman, Laboratory Manual of Biochemistry. New Age International Private Limited, 2011. G. John Biological Centrifugation CRC Press, 2020. K. E. van Holde, C. Johnson, P. S. Ho., Principles of Physical Biochemistry, 2nd Edn., Prentice Hall, 2005. P. Mu, & D. T. Plummer, Introduction to practical biochemistry. Tata McGraw-Hill Education, 2001. B. S. Prakash, Bisen, Laboratory Protocols in Applied Life Sciences., Taylor and Francis Publisher, 2014. S. W. Tinoco, and Puglisi. Physical Chemistry: Principles and Applications in the Biological Sciences. Prentice Hall, Inc., 2013. K. Ulrich, Fluorescence microscopy: From Principle to application, Wiley Int., 2017. K. Wilson, J. Walker, (Eds)., Principles and techniques of biochemistry and molecular biology. Cambridge university press, 2010.
Course Outcomes:	 Students will be able to understand and apply the biochemistry knowledge gained to analyze biochemical samples. Students will get familiarize with basic laboratory instruments and understand principles underlying measurements and using those instruments for experiments in biochemistry. Students will be able to use various instruments to analyze structure of biochemical molecules.

4	. Students will be able to use the experimental methods to
	design biochemical experiments for the research purpose.

Course Code: GBT-521

Title of the Course: CONCEPTS IN BIOCHEMISTRY

Number of Credits: 2

Pre-requisites	No prerequisite is required.	
for the		
Course:		
Course	The primary objective of this course is to	
Objectives:	1)build upon the knowledge of basic biochemical princip	les with an
	emphasis on different metabolic pathways and their integrati	on.
	2)understand the structure-function relationships of biomole	cules.
Content:		No. of
	MODULE I	hours
	Biochemistry: the molecular logic of life.	
	 Amino acids, proteins, nucleic acids, carbohydrates, and lipids. 	15
	Vitamins and hormones.	
	 Forces that stabilize biomolecules: electrostatic and 	
	Vander Waal's interaction, hydrogen bonding.	
	Interactions with solvents, Hydrophobic effect.	
	Basic Thermodynamics: Laws of thermodynamics.	
	Concepts of ΔG , ΔH , and ΔS .	
	Chemical kinetics: Concepts of Order and	
	molecularity of a chemical reaction. Derivation of	
	first and second-order rate equation, measurement	
	of rate constants. Concept of activation energy.Enzymology: Introduction and classification of	
	• Enzymology. Introduction and classification of enzymes. Types of enzymatic reaction mechanisms,	
	Enzyme kinetics, enzyme inhibition, Regulatory	
	enzymes. Isozymes, Zymogen and Ribozyme.	
	Examples of enzymatic reactions.	
L		

	<u>MODULE II</u>	
	 Basic concepts and design of metabolism - glycolysis, gluconeogenesis Pyruvate oxidation, Citric acid cycle Oxidative phosphorylation; the importance of electron transfer in oxidative phosphorylation; F₁-F₀ ATP Synthase; shuttles across mitochondria; regulation of oxidative phosphorylation, inhibitors of electron transport chain. Glyoxylate cycle The pentose phosphate pathway Fatty acid synthesis, β-oxidation; biosynthesis of membrane lipids and sterols with specific emphasis on cholesterol metabolism and the mevalonate pathway Amino acid metabolism; nucleotide metabolism Photosynthesis and photorespiration 	15
Pedagogy:	Lectures, tutorials, assignments.	
References/ Readings:	 Lectures, tutorials, assignments. E. E. Abali, S. D. Cline, D. S. Franklin, S. M. Viselli, Lippincott Illustrated Reviews: Biochemistry Wolters Kluwer publisher, 2021. R. L. Miesfeld, M. M. McEvoy, Biochemistry. Worldwide publisher, 2020. R.K. Murray, et al. Harper's Illustrated Biochemistry McGraw Hill publisher, 2022. D.L. Nelson, Lehninger Principles of Biochemistry. W.H. Freeman & Co., 2017. D. Papachristodoulou, A. Snape, W. H. Elliott, and D. C. Elliott, Biochemistry and Molecular Biology. Oxford University publisher, 2018. L. Stryer, J. Berg, J. Tymoczko, G.Gatto. Biochemistry New York, Freeman publisher.,2019. D. Voet, J.G. Voet, W.P.Charlotte, Principles of Biochemistry. Wiley publisher, 2012. D. Voet, J.G. Voet, W.P.Charlotte, Fundamentals of Biochemistry. Life at the molecular level. Wiley publisher, 2018. The students will be able to: 	

Course	1. gain fundamental knowledge in biochemistry
Outcomes:	2. draw molecules and reaction mechanisms perfectly.
	3. acquire knowledge of biomolecules and their significance
	4. understand the role of enzymes in the regulation of metabolic
	pathways.

Name of the Programme: M.Sc. Biotechnology Course Code: GBT-522 Title of the Course: BIOSTATISTICS Number of Credits: 2 Effective from AY: 2022-23

Pre-requisites	No prerequisite is required.	
for the		
Course:		
Course	This course aims to introduce students	
Objectives:	1)to statistical methods and help them understand underlying	5
	principles	
	2) to understand practical guidelines of "how to do it" and "h	ow to
	interpret" statistical data.	
Content:	MODULE I	No. of hours
		nours
	 Scope of Biostatistics Brief description and tabulation of data and its graphical representation, and frequency distributions. Measures of Central Tendency and dispersion: mean, median, mode, range, standard deviation, variance, coefficient of variation, skewness, kurtosis Displaying data: Histograms, stem and leaf plots, box plots Probability analysis: axiomatic definition, axioms of probability: addition theorem, multiplication rule, conditional probability, and applications in biology. 	15
	 MODULE II Counting and probability, Bernoulli trials, Binomial distribution, and its applications, Poisson distribution Normal distribution, z, t, and chi-square tests, levels of significance Testing of hypotheses: null and alternative 	15

	hypotheses, Type I and Type II errors		
	Simple linear regression and correlation		
	Analysis of variance		
Pedagogy:	Lectures, tutorials, assignments.		
References/	1. P.N. Arora and P.K. Malhan, Biostatistics. Himalaya Publishing		
Readings:	House., 2006.		
	 C. R. Kothari, Quantitative Techniques, Vikas Publishing House, 2013. 		
	3. B.K. Mahajan, Methods in Biostatistics: for Medical Students and Research Worker. Jaype Brothers, 2018.		
	 S. Rao K, Biostatistics for Health and Life Sciences, Himalaya Publishing House, 2010. 		
	 V. B Rastogi, Fundamentals of Biostatistics. Ane Books Pvt Ltd. ,2009. 		
	6. S, J.A. Witmer Statistics for the Life Sciences. Prentice Hall, 2016.		
Course	Upon completing this course, students would be able to –		
Outcomes:	1. understand how to summarize statistical data;		
	2. apply appropriate statistical tests based on an understanding		
	of the study question, type of study, and type of data;		
	3. organize and interpret the results of statistical tests.		
	 use the theoretical statistics knowledge to apply it to statistical software 		

Course Code: GBT-523

Title of the Course: MATHEMATICS FOR BIOLOGISTS

Number of Credits: 2

Pre-requisites	No prerequisite is required.	
for the		
Course:		
Course	1) To give conceptual exposure to essential contents of	mathematics
Objectives:	2) To enable them to perform quantitative analysis in b	iology.
Content:		No of
	MODULE I	hours
	 Linear equations, functions: slopes-intercepts, forms of two-variable linear equations; Constructing linear models in biological systems. Quadratic equations (solving, graphing, features of, interpreting quadratic models, etc.) Introduction to polynomials, graphs of binomials and polynomials; Symmetry of polynomial functions, Basics of trigonometric functions, Pythagorean theory. Graphing and constructing sinusoidal functions, imaginary numbers, complex numbers, adding-subtracting-multiplying complex numbers, Basics of vectors, introduction to matrices. 	15
	 MODULE II Images as 2D/3D Functions, Functions and its derivatives, Computing Derivatives of Curves, Rules for Calculating Derivatives. Curvature and Second Derivative Plotting Curves, Numerical Calculation of Derivatives., Function, Derivatives and Series Expansion Differential calculus (limits, derivatives), integral calculus (integrals, sequences, and series, <i>etc.</i>). Population dynamics; oscillations, circadian rhythms, 	15

Pedagogy:	 developmental patterns, Symmetry in biological systems, fractal geometries, size limits & scaling in biology, Modelling chemical reaction networks and metabolic networks Lectures, tutorials, assignments 		
References/ Readings:	 S.K. Aggarwal, Bio Mathematics. Alps Book Publishers, 2008. M. Aitken, B. Broadhursts, S. Haldky, Mathematics for biological scientists. Garland Science, 2009. N. Bairagi, Introductory Mathematical Biology. U. N. Dhur and Sons Private Limited Publisher, 2021. P.C. Foster, Easy mathematics for biologists. Taylor and Francis, 1999. R. Robeva, Mathematical concepts and methods in modern, Biology using Modern Discrete Models. Academic Press, 2013. K. A. Stroud, D. J. Booth. Foundation Mathematics. Palgrave Macmillan, 2009 		
Course Outcomes:	 Will be able to apply the concepts of mathematics in Biology Will recognize the importance and value of mathematical thinking. Use of mathematics to describe biological processes and their use in problem-solving. Able to apply math skills to understand the diverse phenomena that exist in biological system. 		

Course Code: GBT-524

Title of the Course: BIOLOGY OF THE EXTREMOPHILIC ORGANISMS

Number of Credits: 2

Pre-requisites	No prerequisites required	
for the		
Course:		
Course	1) To obtain knowledge regarding the existence of extreme habitats.	
Objectives:	2) To understand how the strategies are adopted to overcome	
	extreme conditions.	
Content:		No of
	MODULE I	hours
	Thermophiles: Tree of life	
	Types of Extreme habitats based on environmental	15
	variables/sources:	
	 Low Temperatures: Polar regions (Antarctica and 	
	Arctic).	
	High temperatures: Deserts, Hot springs, hydrothermal	
	vents, Deserts.	
	 Pressure: Deep-sea environments, Subsurface rocks, Mariana Trench. 	
	Vacuum: Space station, space habitation.	
	 Desiccation: extreme hypersaline environments, deserts. 	
	 Hypersaline: coastal lagoons, salt and soda lakes, 	
	salterns, deep-sea brine pools, brine channels in sea	
	ice, and fermented foods and pickling brines.	
	 pH: Acidic [Solfataric fields (sulfuric volcanic fields), 	
	geysers, sulfuric acid pools, acid minedrainages from	
	coal and metal mining waste] or Alkaline (Soda lakes	
	and soda deserts).	
	• Low oxygen: Low or depleted oxygen level in water	
	bodies (anthropogenic activities, pollution,	
	eutrophication, algal growth)	
	• Methane: Natural wetlands, freshwater lakes, streams,	
	rivers, estuarine and coastal areas, termite, and wild	

	geothermal vents, gas hydrates, and methane produced from biomass combustion (i.e., wildfires).	
	Anthropogenic sources agriculture, with cattle and rice cultivation as the largest contributors, fossil fuels, waste (ex. landfills, sewage), and biomass/biofuel burning.	
	 Categories of extremophiles: Thermophile, Halophile, Psychrophile, Alkaliphile, Acidophile, Piezophile or barophile, Xerophiles, Anaerobic, methanogenic, metal resistant, radiation resistant, endoliths. 	
	MODULE II	
	 Homeostasis, enantiosis (physiological/biochemical) Thermogenesis, exothermic, endothermy molecular mechanisms (stability of proteins, catalytic rates) Stress proteins: heat shock, chaperonins, SAPKs Freeze avoidance/tolerance: antifreeze proteins, ice nucleation, frost (cold) hardiness, Membrane 	15
	 structures, and temperature. Life under pressure: barophilic bacteria, metazoan, Deep diving penguins, mammals 	
	 Energy metabolism – the role of oxygen (normoxia, hypoxia, anoxia) physiological adaptations (hibernation, torpor, estivation) Photosynthesis - physiological and biochemical 	
	 adaptations to extreme light and temperature Ionizing radiation - mechanism of radiation resistance Life with limited water - arthropods, reptiles 	
	 Hot, dry environments - mammalian physiological adaptations Mechanisms to avoid osmotic stress acid and alkaline environments 	
	environmentsOvercoming heavy metal and toxin tolerances,Biotechnological application of extremophiles	
Pedagogy:	Lectures, tutorials, assignments	

References/	1. R.P. Anitori, Extremophiles: Microbiology and Biotechnology. Caister
Readings:	Academic Press, 2012.
	2. R.V. Durvasula, and D.V. Subba Rao, Extremophiles: From Biology to
	Biotechnology. CRC Press, 2018.
	3. J. Elster, G. Prisco, A.H.L Huiskes, H.G.M. Edwards, Life in Extreme
	Environments., Insights in Biological Capability. Cambridge University
	Press, 2020.
	4. N. Gunde-Cimerman, A. Oren, A. Plemenitaš (Ed) Adaptation to Life at
	High Salt Concentrations in Archaea, Bacteria, and Eukarya. Springer
	Publisher, 2005.
	5. S. Richa and S. Vivek, Physiological and Biotechnological Aspects of
	Extremophiles. Academic Press, 2020.
	6. V. Singh Om, Extremophiles: Sustainable Blackwell, 2012.
	7. D.A. Wharton. Life at the Limits: Organisms in Extreme Environments
	Cambridge Press, 2002.
Course	1. Students will be able to understand and distinguish between various
Outcomes:	types of extreme environments.
	2. Students shall gain knowledge about specialised features exhibited
	by extremophilic organisms.
	3. Students shall be able to understand the mechanisms of adaptation
	adopted by different organisms in extreme habitats.
	4. Students shall be able to understand the bioprospecting of the
	extremophiles for biotechnological applications.

SEMESTER II

Name of the Programme: M.Sc. Biotechnology

Course Code: GBT–506

Title of the Course: ENVIRONMENTAL BIOTECHNOLOGY

Number of Credits: 3

Pre-requisites	No prerequisite is required	
for the Course:		
Course	The objective of this course is to	
Objectives:	 impart knowledge on Biotechnological applications. 	
	2) Understand the steps to tackle environmental iss	ues emerging
	due to industrialization and globalization.	
Content:		No. of hours
	MODULE I	
	 Introduction to environmental biotechnology: 	15
	 Basic concept of environment and its components. 	
	Biotechnology for environment; definitions and facts.	
	 Environment pollution: Sources of pollution and their 	
	environmental impact. Hazardous wastes: Definition,	
	sources and characteristics, categorization,	
	generation, collection, transport, treatment and	
	disposal. Municipal solid wastes: Collection,	
	segregation and transport of solid wastes, handling	
	and segregation of wastes at source.	
	 Monitoring environmental pollution: Air, water and soil 	
	sampling, Analyses of samples. Physical, chemical,	
	biological and molecular methods for the measurement	
	of pollution. Robust techniques and innovative new	
	concepts for identifying and screening of toxins and	
	pathogens in the environment (genetic and biochemical	
	kits and reagents, CRISPR–Cas technology, and cellular	
	models).	
	• Nucleic acid based techniques for analyses of diversity,	
	structure and dynamics of microbial community in	
	wastewater treatment, Concept of biomarkers.	
	• Environmental impact assessment, Biodiversity and its	
	conservation.	

MODULE II

 the sewage sludge with liquid wastes such as septage, Novel composting methods (such as terra preta of the sludge (biomass). MODULE III Resource management and environment conservation: Basic concept of saving of resources and energy through biotechnology; Prevention of eutrophication using macroalgae; biological control of mosquitos. 	15
 Bioresource technology for clean environment: Integrated waste management: Biomass (wood waste, agricultural waste, municipal solid waste, manufacturing waste, and Sewage sludge) as source of energy and biofuels. Microalgae as a source for Biodiesel. Biodegradable plastic. Environmental Pollution control: concepts of 	

References/	1. A. K. Chatterjee, Introduction to environmental biotechnology. PHI,
Readings:	India, 2000.
	2. M. Colin, Marine Microbiology: Ecology and applications. Second
	edition. Garland science, 2011.
	3. R. B. King, J. K. Sheldon, and G. M. Long, Practical Environmental
	Bioremediation: The Field Guide, Lewis Publishers. CRC Press, 2019.
	4. S. M. Meena, and M. M. Naik, Eds., Advances in Biological Science Research: a practical app. Elsevier, 2019.
	5. H. J. Rehm, and G. Reed, Eds), Biotechnology, a comprehensive
	treatise, 1999.
	6. T. Satyanarayana, B. Johri, and T. Anil, Eds., Microorganisms in
	Environmental Management. Springer Publishers, 2012.
	7. A. Scragg, Environmental Biotechnology. Pearson Education Limited,
	Oxford University Press, 2005.
	8. J. M. Willey, L. M. Sherwood, C. J. Woolverton, Prescott,s
	Microbiology. Mcgraw-Hill Education, 2017.
Course	1. Students will be able to apply their knowledge to analyse
Outcomes:	environmental pollution.
	2. Student will be able to evaluate the environmental pollution and
	decide about treatment methods.
	3. Students will be able to relate the apply the biotechnology knowledge
	to environmental issues.
	4. Students will be able to apply their knowledge for the application of
	biotechnological processes and find solutions for betterment of
	environment and sustainable development of the society.

Course Code: GBT-507

Title of the Course: STEM CELL BIOLOGY AND REGENERATIVE MEDICINE

Number of Credits: 1

Pre-requisites	Basic understanding of cell biology - cell types, growth media, cell	division,
for the Course:	cell growth, and cell differentiation.	
Course Objectives:	The aim of the course is to bring together cellular, biochemical, anatomical, histologic 	cal,
	 physiological and evolutionary medical views of stem cells 2) to obtain a coherent picture of stem cell and their use in exp and clinical context 	perimental
Content:	MODULE I	o. of hours
	 Definition, stem cell origins and plasticity, classification and source of stem cells; Stem cell differentiation; Stem cells cryopreservation, iPS technology; microRNAs and stem cell regulation, Tumor stem cells, Overview of embryonic and adult stem cells for therapy. Human stem cells research: Ethical considerations; Stem cell based therapies: Pre-clinical regulatory consideration and patient advocacy. 	15
Pedagogy:	Lectures/tutorials/assignments	
References/ Readings:	 A.D. Hoffman, Stem Cell Transplantation Biology Process Ther VCH, 2006. J. Collins, Stem cells: From basic to advanced principles, Hayle 2017. R. Lanza, Essential of Stem Cell Biology, Academic Press, 2006 R. Lanza, Essential stem cell methods, Elsevier, 2009. R. Lanza, Principle of Tissue Engineering, AP publisher, 2011. 6. R. Lanza, Essential of Stem cell Biology, Elsevier publisher, 2011. 	e Medical,

Course	1. Student will get theoretical and practical knowledge of stem cells.		
Outcomes:	2. This course will provide them knowledge and scope of emerging		
	medical applications in regenerative medicine		
	3. Course will provide knowledge of scope of animal cell culture and		
	animal models in medical industries		
	4. This course will offer student to think toward medical		
	entrepreneurship.		

Course Code: GBT-508

Title of the Course: GENETICS AND MOLECULAR BIOLOGY

Number of Credits: 3

Pre-requisites	No prerequisite is required.	
for the		
Course:		
Course	The aim of this course is to	
Objectives:	 obtain and understand the fundamental knowledge of n cellular processes such as RNA transcription, protein syr mutation, epigenetic modification and gene regulation. Understand the organization of the genome and gene tr prokaryotes 	ithesis,
Content:		No of
	MODULE I	hours
	 Mendelian Genetics and Population genetics Structure of DNA - A,B, Z and triplex DNA; Organization of bacterial genome and eukaryotic chromosomes Heterochromatin and Euchromatin DNA melting and buoyant density; Tm; DNA reassociation kinetics (Cot curve analysis) Repetitive and unique sequences; Satellite DNA; DNase I hypersensitive regions; DNA methylation & epigenetic effects. Structure and function of prokaryotic and eukaryotic mRNA, tRNA (including initiator tRNA), rRNA and ribosomes. Processing of eukaryotic hnRNA: 5'-Cap formation; 3'-end processing of RNAs and polyadenylation; loop model of translation; Splicing of mRNA. Gene transfer in bacteria-Conjugation, transformation and transduction. DNA mutation and repair, Transposons 	15
	MODULE II	
	Prokaryotic and eukaryotic transcription -RNA	15

	nolymoroso (s and sizes factors]
	 polymerase/s and sigma factors, Transcription unit, Prokaryotic and eukaryotic promoters, Promoter recognition, Initiation, Elongation and Termination (intrinsic, Rho and Mfd dependent) Gene regulation: Repressors, activators, positive and negative regulation, Constitutive and Inducible, small molecule regulators, operon concept: <i>lac, trp</i>operons, attenuation, anti-termination, stringent control, translational control. Eukaryotic transcription - RNA polymerase I, II and III mediated, General eukaryotic transcription factors; TATA binding proteins (TBP) and TBP associated factors (TAF); assembly of pre-initiation complex for nuclear enzymes, interaction of transcription factors with the basal transcription machinery and with other regulatory proteins, mediator, TAFs. ; Silencers, insulators, enhancers, mechanism of silencing and activation. 	
	MODULE III	
	 Translation in prokaryotes and eukaryotes, Regulatory RNA and RNA interference mechanisms, miRNA, non-coding RNA; Families of DNA binding transcription factors: Helix-turnhelix, helix-loop-helix, homeodomain; 2C 2H zinc finger, multi cysteine zinc finger, basic DNA binding domains (leucine zipper, helix-loop-helix), nuclear receptors. Interaction of regulatory transcription factors with DNA: properties and mechanism of activation and repression including Ligand-mediated transcription regulation by nuclear receptors. DNA replication. DNA recombination. 	15
Pedagogy:	Lectures/tutorials/assignments	
References/ Readings:	 D. P. Clark, N. J. Pazdernik and M. R. McGehee, Molecular Biology (3rd) Elsevier Inc, 2019. W. Klug, M. Cummings and C. Spencer, Concepts of Genetics (12ed), Pearson publishers, 2019. E. S. Goldstein, T. Stephen, J. Kilpatrick and J. Krebs, Lewin's genes XII, Bartlett Publishers, 2017. 	

	4. H. F. Lodish, A. Berk, C. Kaiser, M. Krieger and A. Bretscher, Molecular
	Cell Biology (8 ed) Freeman MacMillan publisher, 2016.
	5. P. J. Russell, iGenetics: A Molecular Approach, Pearson publisher,
	2016.
	6. G. Karp, J. Iwasa and W. Marshall, Karp's Cell and Molecular Biology:
	Concepts and Experiments, (8 ed) Wiley Publisher, 2016.
	7. M. Strickberger, Genetics, (3 ed) by Pearson publishers, 2015.
	8. M. J. Simmons and P. Snustad, Principles of Genetics (7 ed), Wiley
	Student Edition, 2015.
	9. J. D. Watson, T A Baker, S P Bell, A Gann, M Levine and R Losick,
	Molecular Biology of the Gene, Cold Spring Harbor Laboratory Press,
	New York, 2014.
	10. R. F. Weaver, Molecular Biology (5th ed) McGraw Hill Higher
	Education publisher, 2012.
Course	1. The students should be able to explain and summarize the scientific
Outcomes:	principles of the molecular biology of DNA, RNA and understand the
	role played in the overall functioning of the cell.
	2. Will be able to understand the various molecular mechanisms of
	gene regulation.
	3. Will appreciate the role of noncoding RNA in regulation and their
	application in molecular biology
	4. Understand the importance of repeat sequences and DNA repair
	systems

Course Code: GBT-509

Title of the Course: LAB IV: GENETICS AND MOLECULAR BIOLOGY

Number of Credits: 2

Pre-requisites	None	
for the		
Course:		
Course	The objective of this course is	
Objectives:	1)to provide students with experimental knowledge of molecul	ar biology
	and genetic engineering.	
	2) understand the concept of mutation and gene transfer proce	esses
Content:		No. of hours
	1. UV/Chemical mutagenesis and survival curve.	
	2. Isolation of amino acid auxotroph by replica plating.	30
	3. Phage infection and burst size; types of plaque	
	formation	
	4. Transduction	
	5. Genetic Transfer-Conjugation, gene mapping.	
	6. Genomic DNA isolation	
	7. DNA quantification and gel electrophoresis	
	8. RNA isolation	30
	9. RNA denaturing gel electrophoresis.	50
	10. Mitosis.	
	11. Meiosis	
Pedagogy:	Hands-on experiments in the laboratory, video, online data	1
References/	1. R.K. Sharma and S.P.S Sangha, Basic Techniques in Biochemi	stry and
Readings:	Molecular Biology Dream Tech Press, 2020.	
	2. S. K. Gakhar, M. Miglani and A Kumar, Molecular Biology: A	Laboratory
	Manual. Rupa Publications, 2019.	
	3. Hofmann, Wilson and Walkers Principles and Techniques Of	
	Biochemistry And Molecular Biology, Cambridge University	v Press,
	2018.	Manual
	 R. Green and J. Sambrook, Molecular Cloning: A Laboratory (Fourth Edition): Three-volume set, 2012. 	ivianuai
	5. S. John Vennison, Laboratory Manual for Genetic Engineerir	a 1ct
	Edition, PHI Learning, 2009.	ig Tor

Course	Students will be able to	
Outcomes:	1. create mutants using mutagenesis and screen them	
	2. Purify and check DNA quality for molecular biology experiments.	
	3. Understand the concept of phage titre and screen phage infection	
	4. Understand the various stages of cell division	

Course Code: GBT–510

Title of the Course: CELL AND DEVELOPMENTAL BIOLOGY

Number of Credits: 3

Pre-requisites	No prerequisite is required.	
for the		
Course:		
Course Objectives:	The cells being "the fundamental building blocks of all organisms", a comprehensive understanding of the cell and cellular function is essential for all biologists. This course will hence provide	
	 a conceptual overview of a cellular system and its fun animals. a conceptual outline of developmental patterns using from different model systems regulatory networks in highlighted, aiming to project the molecular basis of deve patterns. 	g examples volved are
Content:		No. of
	MODULE I	hours
	 Biochemical organization of the cell; diversity of cell size and shape; cell theory, and the emergence of modern Cell Biology. 	15
	 Principles underlying microscopic techniques for the study of cells. Structure and diversity of biological membranes; 	
	mechanisms of membrane transport. Self-assembly of lipids, micelle, biomembrane organization - sidedness and function; membrane assembly.	
	 The plant cell wall; extracellular matrix in plants and animals Cell lysis and subcellular fractionation 	
	 Centrysis and subcendial fractionation Structural organization and functions of cell organelles: nucleus, mitochondria, Golgi bodies, endoplasmic reticulum, lysosomes, Chloroplast, peroxisomes, vacuoles. Cytoskeletons structure and motility function 	

c a ju	Cellular communication: General principles of cell communication, cell adhesion and roles of different adhesion molecules, tight junctions, communicating unctions, integrins, neurotransmission, and its egulation.	
	MODULE II	
	Protein localization – synthesis of secretory and nembrane proteins, import into nucleus, nitochondria, chloroplast, and peroxisomes, receptor- nediated endocytosis. Proteasomes; structure and function Cell division and cell cycle: Mitosis and meiosis, their egulation, Cell cycle, and its regulation, Apoptosis, Necrosis, and Autophagy. Cell signalling Cell fusion techniques Molecular chaperones: types, characteristics, and unctional significance Cell transformation and cancer, oncogenes and proto- oncogenes, tumor suppressor genes, metastasis.	15
	MODULE III	
C n s d a P s c g	Potency, commitment, specification, induction, competence, determination and differentiation; norphogenetic gradients; cell fate and cell lineages; tem cells; genomic equivalence and the cytoplasmic determinants; imprinting; mutants and transgenics in analysis of development. Production of gametes, cell surface molecules in perm-egg recognition in animals; zygote formation, cleavage, blastula formation, embryonic fields, gastrulation, and formation of germ layers in marine animals.	15
a o e	Cell aggregation and differentiation in <i>Dictyostelium</i> ; exes and pattern formation in <i>Drosophila</i> , amphibia; organogenesis – vulva formation in <i>Caenorhabditis</i> elegans, eye lens induction, limb development and egeneration in vertebrates; differentiation of	

	neurons, post-embryonic development- larval formation, metamorphosis; environmental regulation of normal development; sex determination.
Pedagogy:	Lectures, tutorials, assignments
References/ Readings:	 A. Amon, M. Krieger, H. Lodish, , A. Bretscher , C. A. Kaiser, A.Berk , K. C. Martin, H. Ploegh, Molecular Cell Biology. United Kingdom: W. H. Freeman, 2016. C. Smith, Wood Cell Biology, Chapman Hall, 2005. G. M. Cooper and R. E. Hausman, The Cell: A Molecular Approach. United States: Sinauer Associates, 2013. S. F. Gilbert, Developmental biology. Sinauer Associates, Inc, 2010. J.D. Watson, M. Levine, T. A. Baker, A. Gann, S. P. Bell, R.L. Watson, Molecular Biology of the Gene, Pearson Education, 2014. G. Karp, J. Iwasa, W. Marshall, Cell Biology Global Edition. United States: Wiley, 2018. S. T. Kilpatrick, Krebs, J. E., Goldstein, E. S., Lewin, GENES XII. Japan: Jones; Bartlett Learning, 2017. H. Lodish, and B. Arnold, Molecular Cell Biology, W.H. Freeman & Company, 2000. T. D.Pollard, , W. C. Earnshaw, J. Lippincott-Schwartz, G. Johnson , Cell biology E-book. Elsevier Health Sciences, 2016. J. M. W. Slack, Essential Developmental Biology. Germany: Wiley, 2009. Smith & Wood., Cell Biology, Chapman & Hall London, 2005. M. A. Subramanian, Developmental Biology. India: MJP Publisher, 2022. B. M. Turner, Chromatin and gene regulation: molecular mechanisms in epigenetics. John Wiley; Sons, 2008. L. Wolpert, Developmental Biology: A Very Short Introduction. OUP Oxford, 2011.
Course Outcomes:	 Students will be able to understand major concepts in cell and Developmental biology with an awareness of experimental approaches and how they are applied in cell biology research. Students will be able to understand the structures and purposes of basic components of prokaryotic and eukaryotic cells, especially macromolecules, membranes, and organelles. Students will be able to summarise how these cellular components are used to generate and utilize energy in cells.

 Students will be able to summarize the molecular and genetic background of animal developmental biology.

Course Code: GBT-511

Title of the Course: BIOINFORMATICS

Number of Credits: 2

Pre-requisites		
for the	None	
Course: Course	The objectives of this course are	
Objectives:	The objectives of this course are	a of the use of
Objectives.	 to provide students with theory and practical experienc common computational tools and databases 	e of the use of
	2) To facilitate the investigation of molecular biology a	and evolution-
	related concepts.	
Content:		No. of hours
	MODULE I	
	Introduction, Primary & Secondary database, Sequence	
	file formats, Introduction to structures, Protein Data	
	Bank (PDb), Molecular Modelling Database (MMDb),	15
	Structure file formats, Collection of sequences,	
	sequence annotation, sequence description.	
	a Evolutionary basis of someoneo alignment optimal	
	 Evolutionary basis of sequence alignment, optimal alignment methods, Substitution scores & gap penalties, 	
	Statistical significance of alignments,	
	Database similarity searching, FASTA, BLAST, Low	
	complexity regions, Repetitive elements, Multiple	
	Sequence Alignment: Progressive alignment methods,	
	Motifs and patterns, Clustal, Muscle; Scoring matrices,	
	Distance matrices.	
	• Alignment, tree building and tree evaluation,	
	Comparison and application of Unweighted Pair Group	
	Method with Arithmetic Mean (UPGMA), Neighbour	
	Joining (NJ), Maximum Parsimony (MP), Maximum	
	Likelihood (ML) methods, Bootstrapping, Jackknife;	
	• Software for Phylogenetic analysis. DNA barcoding:	
	Methods tools and databases for barcoding across all	
	species, Applications and limitations of barcoding,	
	Consortium for Barcode of Life (CBOL)	
	Consortium for Barcode of Life (CBOL)	

	recommendations, Barcode of Life Database (BOLD).
	MODULE II • 3-D structure visualization and simulation, Basic concepts in molecular modeling: different types of computer representations of molecules; External 15 coordinates and Internal Coordinates, Molecular Mechanics, Force fields <i>etc.</i> Secondary structure elucidation using Peptide bond, phi, psi and chi torsion angles, Ramachandran map, anatomy of proteins – Hierarchical organization of protein structure –like CATH (class, architecture, topology, homology), SCOP (Structural Classification of Proteins), FSSP (families of structurally similar proteins).
	 Fundamentals of the methods for 3D structure prediction (sequence similarity/identity of target proteins of known structure, fundamental principles of protein folding <i>etc.</i>) Homology/comparative modeling, fold recognition, threading approaches, and ab initio structure prediction methods; CASP (Critical Assessment of protein Structure Prediction); Computational design of promoters, proteins & enzymes.
	 Chemical databases like NCI/PUBCHEM; Fundamentals of Receptor-ligand interactions; Structure-based drug design: Identification and Analysis of Binding sites and virtual screening; Ligand based drug design: Structure Activity Relationship– QSARs & Pharmacophore; <i>In silico</i> predictions of drug activity and ADMET. Designing of oligo probes; Image processing and
	normalization; Microarray data variability (measurement ad quantification); Analysis of differentially expressed genes; Experimental designs.
Pedagogy:	Lectures, tutorials, assignments
References/ Readings:	 L. Arthur, Introduction to Bioinformatics. Oxford University Press, 2019. A. D. Baxevanis, G. D. Bader and D. S. Wishart, Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins Wiley Publisher, 2020.

	3. N. Gautham, Bioinformatics databases and algorithms, 2007.
	2. V.R. Srinivas, Bioinformatics: A modern approach, PHI Learning Pvt.
	Ltd., 2005.
	3. S.C. Rastogi, N. Mendiratta and P. Rastogi, Bioinformatics: concepts
	skills and applications, 2004.
	4. J. Xiong, Essential Bioinformatics, by Cambridge University Press, First
	edition, 2007.
	Ltd,2013.
	6. J. Pevsner, Bioinformatics and Functional Genomics, Wiley Blackwell
	Publication, 2015.
	7. P. S. Neelakanta, A Textbook of Bioinformatics: Information-theoretic
	Perspectives of Bioengineering and Biological Complexes, World
	Scientific Publisher, 2020.
	8. W. Even and G. Grant, Statistical methods in Bioinformatics: An
	introduction, 2005.
	9. J. Xiong, Essential Bioinformatics, Cambridge University Press, 2006.
Course	Students should be able to:
Outcomes:	1. develop an understanding of the basic theory of these
	computational tools.
	2. gain working knowledge of these computational tools and methods.
	3. appreciate their relevance for investigating specific contemporary
	biological questions.
	4. Understand the process of drug designing

Course Code: GBT-512

Title of the Course: LAB V: PLANT AND ANIMAL TISSUE CULTURE

Number of Credits: 2

Pre-requisites	No prerequisite is required.	
for the		
Course:		
Course	1) To gain a comprehensive understanding of the growt	h and
Objectives:	development of plants in vitro.	
	2) To understand the fundamentals of animal cell cultur	e, and the
	growth and maintenance of animal cells under asepti	c conditions.
		No. of hours
Content:		
	1. Preparation of starting material (Biosafety cabinet,	
	solutions, media, cell sample etc.).	30
	2. Cell stock preparation (glycerol stock), storage,	
	freezing, thaw and subculture, contamination and	
	precautions.	
	3. Animal cell culture: Secondary cell culture HeLa and	
	non-cancerous cell lines HEK293, COS-7	
	4. Transfection and co-transfection: Calcium-	
	phosphate method and Lipofection	
	5. Cell fixation and staining: Immunolabeling,	
	mounting, fluorescence imaging.	
	1. Tissue culture medium preparation, contamination	
	and precautions in plant tissue culture	
	2. Callus induction from different explants such as rice	30
	and carrot	
	3. Plantlet regeneration.	
	4. Somatic embryogenesis	
	5. Single cell suspension.	
	6. Protoplast isolation	
Pedagogy:	Hands-on experiments in the laboratory, online videos, and	
	demonstrations.	
References/	1. I.R. Freshney and A. Capes-Davis, Freshney's Culture	of Animal
Readings:	Cells: A Manual of Basic Technique and Specialized A	
iteauings.		

	 Wiley Blackwell Publisher, 2021. 2. I.R. Freshney and J.R.W. Masters, Animal cell culture – A Practical Approach Oxford University Press, 2000. 3. H. Sherathiya, Practical manual for Plant Tissue Culture: Basic Techniques of Plant Tissue Culture and Molecular Biology. Grin
	 Verlag, 2013. 4. R. Smith, Plant tissue culture Techniques and experiment. Academic Press, 2012.
Course	1. The students will understand the basic concepts of pluripotency and
Outcomes:	totipotency in plant and animal tissue culture.
	2. They will get a basic understanding of the media and growth
	parameters required for the culture of plant and animal tissues. 3. They shall learn to grow and maintain plant and animal cells/
	explants under aseptic conditions.
	 The students will be exposed to modern techniques of plant propagation through Somatic embryogenesis and cell suspension culture.

Course Code: GBT-525

Title of the Course: BIOENTREPRENEURSHIP

Number of Credits: 2

Pre-requisites	No prerequisite is required.		
for the Course:			
Course	Research and business belong together and both are needed. In a rapidly		
Objectives:	 Research and business belong together and both are needed. In a rapidly developing life science industry, there is an urgent need for people who combine business knowledge with an understanding of science & technology. Bio-entrepreneurship, an interdisciplinary course, revolves around the central theme of how t 1) to manage and develop life science companies and projects. 2) to teach students about concepts of entrepreneurship including identifying a winning business opportunity, gathering funding and launching a business, growing and nurturing the organization and harvesting the rewards. 		
Content:		No. of hours	
	 MODULE I Fundamentals of Entrepreneurship. Mission, vision, entrepreneurial qualities. How to innovate, Design Thinking, Design-Driven Innovation, Systems thinking, Open innovation, How to start a start-up? Statutory and legal requirements for starting a company/venture (IPR, GST, Labor law), E business setup, management. Dos & Donts in entrepreneurship. Business plan: Making a business proposal/Plan for seeking loans from financial institution and Banks; Approach a bank for a loan; Sources of financial assistance; Funds from bank for capital expenditure and for working. Funding new ventures – bootstrapping, crowd sourcing, Angel investors, VCs, debt financing, and due diligence, Incubation and acceleration, 	15	
	Government incentives for entrepreneurship.Budget planning and cash flow management;		

	Negotiations/Strategy With financiers, bankers etc.;	
	Profit & Loss statement, Balance sheet, Cash flow,	
	Cost-volume-profit & Bread-Even analysis, Capital	
	budgeting.	
	MODULE II	
	Norketing menogement.	
	Marketing management: Assessment of market demand for potential 15	
	 product(s) of interest; Market conditions, segments; Prediction of market changes; Identifying needs of customers including gaps in the market, packaging the product; Market linkages, branding issues; Developing distribution channels; Pricing/Policies/Competition; Promotion/ Advertising; Services Marketing Dispute resolution skills Human Resource management in start-ups: Human Resource Development (HRD) Leadership skills; Managerial skills; Organization structure, pros & cons of different structures; Team building, teamwork; Appraisal; Rewards in small scale set up. 	
	External environment/changes; Crisis/ Avoiding/Managing; Broader vision–Global thinking.	
Pedagogy:	Lectures, tutorials, assignments	
References/ Readings:	 D. J. Adams, & J. C. Sparrow, Enterprise for Life Scientists: Developing Innovation and Entrepreneurship in the Biosciences. Bloxham: Scion, 2008. 	
	 A. J. Byrne, World Changers: 25 Entrepreneurs Who Changed Business as We Knew it. New York: Penguin, 2011. 	
	3. Jordan, J. F. Routledge, Companies: Creating Value and Competitive Advantage with the Milestone Bridge. Innovation, Commercialization, and Start-Ups in Life Sciences. London: CRC Press, 2014.	
	 V. Desai, The Dynamics of Entrepreneurial Development and Management. New Delhi: Himalaya Pub. House, 2009. 	
	5. J. Lynn, The Entrepreneur's Almanac: Fascinating Figures, Fundamentals and Facts at your Fingertips. Canada: Entrepreneur	

	Media Inc, 2007.		
	D. Ramsey, Entre Leadership: 20 Years of Practical Business Wisdom		
	from the Trenches. New York: Howard Books, 2011		
	7. C. D. Shimasaki, Biotechnology Entrepreneurship: Starting,		
	Managing, 2014.		
Course	1. Students should be able to gain entrepreneurial skills, understand the		
Outcomes:	various operations involved in venture creation.		
	2. Students will be able to identify the scope for entrepreneurship in		
	biosciences and utilize the schemes promoted through knowledge		
	centers and various agencies.		
	3. The knowledge pertaining to management will help the students to		
	be able to build up a strong network within the industry.		
	4. Students will be able to relate and develop entrepreneurship venture		
	with biotechnological products they studied.		

Course Code: GBT–526

Title of the Course: LAB VI: LAB IN BIOINFORMATICS

Number of Credits: 2

Pre-requisites	NIL	
for the		
Course:		
Course	The aim is	
Objectives:	1) to provide practical training in bioinformatics and statis	tical methods
	2) learn to access and search the major public databases f	or data
	retrieval.	
Content:		No. of hours
	1. Using NCBI and Uniprot web resources.	
	2. Introduction and use of various genome databases.	30
	3. Sequence information resource: Using NCBI, EMBL,	
	Genbank, Entrez, Swissprot/TrEMBL, UniProt.	
	4. Similarity searches using tools like BLAST and	
	interpretation of results.	
	5. Multiple sequence alignment using ClustalW.	
	6. Phylogenetic analysis of protein and nucleotide	
	sequences.	
	7. Use of gene prediction methods	
	(GRAIL/Genscan,/Glimmer).	
	8. Use of various primer designing and restriction site prediction tools.	
	9. Use of different protein structure prediction databases	
	(PDB, SCOP, CATH).	30
	10. Construction and study of protein structures using	50
	RASMOL/Deepview/PyMol.	
	11. Homology modelling of proteins.	
	12. Whole-genome assembly from NGS raw data sequence	
	13. 16S rRNA sequence analysis and use of Bioedit	
	14. Molecular docking	
Pedagogy:	Hands-on experiments in the laboratory, video, online data	
References/	1. A.D. Baxevanis, G.D. Bader, D.S. Wishart, Bioinformatics	: A Practical
Readings:	Guide to the Analysis of Genes and Proteins Wiley Publish	er <i>,</i> 2020.
	2. S. Shui Qing, Bioinformatics: A Practical Approach	(Chapman;

	Hall/CRC Mathematical and Computational Biology), 2007.		
	3. W. Even, and G. Grant, Statistical methods in Bioinformatics: An		
	introduction, 2005.		
	4. N.C. Jones, and P.A. Pevzner; Introduction to Bioinformatics		
	Algorithms; Ane Books, India, 2004.		
	5. D.W. Mount, Bioinformatics: Sequence and Genome Analysis, Cold		
	Spring Harbor Laboratory Press, 2001.		
Course	On completion of this course, students should be able to:		
Outcomes:	1. describe contents and properties of important bioinformatics		
	databases, perform text- and sequence-based searches, analyse		
	and discuss results in the light of molecular biology knowledge;		
	2. explain major steps in pairwise and multiple sequence alignment,		
	explain its principles and execute pairwise sequence alignment by		
	dynamic programming;		
	 3. predict secondary and tertiary structures of protein sequences; 		
	4. perform various statistical tools available to analyse the data.		

Course Code: GBT-527

Title of the Course: NANOTECHNOLOGY

Number of Credits: 2

Pre-requisites	None	
for the		
Course:		
Course	1) To provide a general and broad introduction to the multi	-disciplinary
Objectives:	field of nanotechnology.	
	2) To study the application of nanotechnology	
Content:		No. of hours
	MODULE I	
	 Introduction, concepts, historical perspective; Different formats of nanomaterials and applications with examples for specific cases; Cellular Nanostructures; Nanopores; Biomolecular motors; Bio-inspired Nanostructures, Synthesis, and characterization of different nanomaterials. Thin films; Colloidal nanostructures; Self-assembly, Nanovesicles; Nanospheres; Nanocapsules and their characterization. Nanoparticles for drug delivery, concepts, optimization of nanoparticle properties for suitability of administration through various routes of delivery, advantages. Strategies for cellular internalization and long circulation, strategies for enhanced permeation through various anatomical barriers. 	15
	MODULE II	
	 Nanoparticles for diagnostics and imaging (theranostics); concepts of smart stimuli-responsive nanoparticles, implications in cancer therapy, 	15

	 nanodevices for biosensor development. Nanomaterials for catalysis, development, and characterization of nanobiocatalysts Application of nano scaffolds in synthesis, applications of nanobiocatalysis in the production of drugs and drug intermediates. Introduction to Safety of nanomaterials, Basics of nanotoxicity, Models and assays for Nanotoxicity assessment Fate of nanomaterials in different strata of the environment; Ecotoxicity models and assays; Life cycle assessment.
Pedagogy:	Lectures/ video tutorials/assignment.
References/ Readings:	 K. Chittaranjan, D. S. Kumar, M. V. Khodakovskaya, Plant Nanotechnology Principles and Practices. Springer, 2016. J. GeroDecher, B. Schlenoff., Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, Wiley-VCH Verlag, 2003. D. S. Goodsell, Bionanotechnology: Lessons from Nature, Wiley-Liss, 2004. T. H. Grey, Bioconjugate Techniques, Elsevier, 2013. M. Kuno, Introductory Nanoscience, Physical and Chemical Concepts. Garland Science, 2012. N.H. Malsch, Biomedical Nanotechnology, CRC Press, 2005. J.J. Ramsden, Nanotechnology: An Introduction. Elsevier Amsterdam,. 2012. S. Sanmugam, Nanotechnology. MJP publisher, 2011.
Course Outcomes:	 Students will be able to describe the basic science behind the properties of materials at a nanometre scale. Students will be able to use and apply knowledge gained to synthesize nanoparticles Students will be able to analyse the properties of nanoparticles and decide on its application Students will be able to understand the life cycle nanoparticles and their impact on environment.

Course Code: GBT-528

Title of the Course: VACCINE TECHNOLOGY

Number of Credits: 2

Pre-requisites	Basic concepts in Immunology	
for the		
Course:		
Course	1) To understand the conventional to the latest technology	gy in vaccine
Objectives:	production.	
	2) To understand the immunological effect and strategie	s for vaccine
	design.	
Content:		No. of
	MODULE I	hours
	 Protective immune response in bacterial; viral and 	
	parasitic infections; Primary and Secondary	
	immune responses during infection; Antigen	15
	presentation and Role of Antigen-presenting cells:	
	Dendritic cells in immune response;	
	 Innate immune response; Humoral (antibody- 	
	mediated) responses; Cell-mediated responses:	
	role of CD4+ and CD8+ T cells;	
	 Memory responses: Memory and effector T and B 	
	cells, Generation and Maintenance of memory T	
	and B cells Correlates of protection.	
	 Epitopes, linear and conformational epitopes, 	
	characterization and location of APC, MHC, and	
	immunogenicity	
	 History of vaccines, Conventional vaccines; 	
	Vaccination and immune response;	
	• Different types of Vaccines: Inactivated Vaccine,	
	Attenuated Vaccine, Toxoid Vaccine, Subunit	
	Vaccine, Conjugate Vaccine, Valence Vaccine,	
	Heterotypic Vaccine, mRNA vaccine with Examples	
	• Vaccines based on routes of administration: oral,	
	intranasal, intramuscular. Subcutaneous,	
	intravenous. Case examples of injectable vaccines,	
	and combination vaccines.	

	 Physical method of gene delivery: tattooing, gene gun, electroporation, ultrasound, and laser Maternal Immunization
	 MODULE II Vaccines with and without adjuvants. Different types of adjuvants: oil-based adjuvants such as Freunds, aluminum hydroxide, aluminum phosphate, [AS04] aluminum potassium sulfate monophosphoryl lipid A (MPL) + aluminum salt, [MF59] Oil in water emulsion composed of squalene. [AS01] Monophosphoryl lipid A (MPL) and QS-21, a natural compound extracted from the Chilean soapbark tree, combined in a liposomal formulation, [cpG1018] Cytosine phosphoguanine (CpG), a synthetic form of DNA that mimics bacterial and viral genetic material. Vaccine delivery systems (e.g., emulsion (water- in-oil-in-water multiple emulsions, microemulsions, or nanoemulsions) microparticles, immunestimulating complexes ISCOMs liposomes, nanoparticles, dendrimer and micellar) with examples such as PLGA, Chitosans, polyphosphazene, polyanyhydrides, polymethacrylic acid, liposomes, and their derivatives, virosomes, polymeric nanoparticle delivery system, New emerging diseases and vaccine needs (Ebola, Zika). Quality control and regulations in vaccine research
Pedagogy: References/ Readings:	Lectures, tutorials, assignments 1. C. Barton, "Advances in Vaccine Technology and Delivery", Espicom Business Intelligence, 2009. 2. R.W. Ellis, "New Vaccine Technologies", Landes Bioscience, 2001. 3. C. A. Janeway, Travers, P., Walport, M.; Shlomchik, M. J. Immuno
	 Biology: the Immune System in Health and Disease. USA: Garland Science Pub, 2005. S. H. Kaufmann, Novel Vaccination Strategies. Weinheim: Wiley-VCH, 2004.

5. T. J. Kindt, B. A. Osborne, R. A. Goldsby; Kuby, J. Kuby Immunology.	
New York: W.H. Freeman, 2013.	
6. D. Male, et al., "Immunology", Mosby Publication, 2007.	
1. Understanding the progress in the development of various types of vaccines.	
 Correlating the immunological responses with immunisation/vaccination. 	
 Understanding of vaccine design and strategies for vaccine delivery. 	
 Understand the significance of adjuvant, immunogens, and other ingredients for developing an effective vaccine. 	

SEMESTER III

Name of the Programme: M.Sc. Biotechnology

Course Code: GBT-600

Title of the Course: RECOMBINANT DNA TECHNOLOGY

Number of Credits: 3

Pre-requisites	General concepts in genetics and molecular biolog	V.
for the		
Course:		
Course	The students will understand the use of	
Objectives:	1) various enzymes and techniques for manipulating DNA.	
	2) various DNA vectors and their use in creating recom	binant DNA
	molecules	
	3) recombinant DNA modification techniques and hetero	logous gene
	expression used for creating applications for biologic	cal research
	and biotechnology industries.	
Content:		No. of
	MODULE I	hours
	 Enzymes used in Molecular biology: restriction 	
	endonucleases and methylases; DNA ligase, Klenow	
	enzyme, T4 DNA polymerase, polynucleotide kinase,	15
	alkaline phosphatase; nucleases, Topoisomerase,	
	thermostable polymerase, Terminal deoxynucleotide	
	polymerase and others.	
	 Cohesive and blunt end ligation; linkers; adaptors; 	
	 Homopolymer tailing; labelling of DNA: nick translation, 	
	 Random priming, radioactive and non-radioactive 	
	probes,	
	 Hybridization techniques: northern, southern, south- 	
	western and far-western and colony hybridization,	
	fluorescence in situ hybridization. Plasmids;	
	Bacteriophages; M13mp vectors; pUC19 and	
	pBluescript vectors, phagemids; Lambda vectors;	
	Insertion and Replacement vectors; Cosmids;	
	Artificial chromosome vectors (YACs; BACs);	
	Principles for maximizing gene expression vectors;	
	pMal; GST; pET-based vectors; Protein purification;	
	His-tag; GST-tag; MBP-tag etc.; Intein-based vectors;	

 Inclusion bodies; methodologies to reduce formation of inclusion bodies; mammalian expression and replicating vectors; Baculovirus and Pichia vectors system, Plant based vectors, Ti and Ri as vectors, yeast vectors, shuttle vectors. 	
<section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header>	15
 MODULE III Gene silencing techniques; introduction to siRNA; siRNA technology; Micro RNA; construction of siRNA vectors; principle and application of gene silencing; gene knockouts and gene therapy; Development of transgenic plants; debate over GM crops; introduction to methods of genetic 	15

	 manipulation in different model systems e.g. fruit flies (Drosophila), worms (C. elegans), Frog (Xenopus sp), fish (zebra fish) and chick. Transgenics - gene replacement; gene targeting; creation of transgenic and knock-out mice; disease model; introduction to genome editing by CRISPR- CAS with specific emphasis on Chinese and American clinical trials; Cloning genomic targets into CRISPR/Cas9 plasmids; electroporation of Cas9 plasmids into cells; purification of DNA from Cas9 treated cells and evaluation of Cas9 gene editing; in vitro synthesis of single guide RNA (sgRNA); using Cas9/sgRNA complexes to test for activity on DNA substrates; evaluate Cas9 activity by T7E1 assays and DNA sequence analysis; Applications of CRISPR/Cas9 technology
Pedagogy:	Lectures, tutorials, assignments
References/ Readings:	 T. A. Brown, Gene Cloning and DNA Analysis: An Introduction, Wiley-Blackwell Publishers, 2016. T. A Brown, Genomes, New York: Garland Science Publisher, 2017. J. W. Dale, M. von Schantz and N. Plant, From Genes to Genomes: Concepts and Applications of DNA Technology, Wiley- Blackwell publisher, 2011. H. K. Das, Textbook of Biotechnology, Wiley Publisher, 2017. M. R. Green and J. Sambrook, Molecular Cloning: A Laboratory Manual.CSH Press, 2012. V. Hunter and F. Strickland, Applications of Recombinant DNA Technology. ED-TECH Press, 2018. A. J. Nair, Introduction to Biotechnology and Genetic Engineering. Laxmi Publications Pvt. Ltd, 2008. S. Primrose and R. B. Twyman, Principles of Gene Manipulation and Genomics, Blackwell Publishing Limited, 2006. M. K. Sarwar, I. A. Khan and D. Barp, Applied Molecular Biotechnology: The Next Generation of Genetic Engineering CRC Press, 2016. V. Singh and P Dhar, Genome Engineering via CRISPR-Cas9 System, Elsevier Publisher, 2020.
Course	

Outcomes:	1. create recombinant DNA molecules and evaluate their		
	expression.		
	2. Exploit relevant tool/techniques as well as vector and host for		
	cloning and expression.		
	3. Design experiments for generating applications for use in medical		
	animal and plant biotechnology.		
	4. Devise strategies for creating transgenic and understand CRISPER		
	technology		

Course Code: GBT-601

Title of the Course: LAB VII: RECOMBINANT DNA TECHNOLOGY

Number of Credits: 2

Pre-requisites	A theory course in Recombinant DNA technology	
for the		
Course:		
Course	The students will learn	
Objectives:	1) Understand cloning strategies and expression of foreign	genes
	2) setting up reactions for DNA manipulation.	
	3) to interpret the results of DNA manipulation studies and	luse
	4) appropriate tools for the validation of recombinant DNA	۱.
Content:		No. of
	MODULE I	hours
	• Plasmid DNA isolation (Alkaline lysis, Boiling method,	
	column based method)	30
	 Plasmid DNA quantification. 	
	 Restriction Enzyme digestion of plasmid DNA. 	
	 Polymerase Chain reaction (RAPD/RFLP). 	
	• Real Time PCR.	
	Reverse transcriptase PCR	
	MODULE II	
		30
	 Cloning of insert into a plasmid vector 	
	 Transformation of <i>E.coli</i> with standard plasmids, 	
	Calculation of transformation efficiency.	
	 Confirmation of the insert by Colony PCR and 	
	Restriction mapping	
	• Expression of recombinant protein, the concept of	
	soluble proteins and inclusion body formation in	
	E.coli, SDS-PAGE analysis	
	 Purification of His-Tagged protein on Ni-NTA columns 	
	 Southern blotting hybridization. 	
Pedagogy:	Hands-on experiments in the laboratory, online vide	OS.

References/	1. S. Carson, Manipulation and expression of recombinant, DNA a
Readings:	laboratory manual Elsevier Academic Press, 2006.
	2. M.R Green and J. Sambrook, Molecular Cloning: A Laboratory Manual
	Three-volume CSH Press, 2012.
	3. J.S. Vennison, Laboratory Manual for GENETIC ENGINEERING, PHI
	Learning, 2009.
Course	The student will be able to
Outcomes:	1. Create recombinant DNA molecules.
	2. Conceptualize the various steps in cloning DNA in an appropriate
	vector and evaluate gene expression.
	3. Apply and use the knowledge to create tools in diagnostics, medical
	and forensic science.
	4. Apply and use PCR for diagnostic applications

Course Code: GBT-602

Title of the Course: BIOPROCESS TECHNOLOGY

Number of Credits: 3

Pre-requisites for the Course:	None	
Course Objectives:	 To educate students about fundamental concepts of Bioputechnology 	rocess
objectives.	2) To study and understand related applications.	
Content:	MODULE I	No. of hours
	Basic Principles of Biochemical Engineering and	
	 Fermentation Processes: Isolation, screening, and preservation of industrially important microbes Bioreactor designs Types of fermentors Concepts of basic modes of fermentation: batch, fedbatch and continuous Scale up fermentation processes Media formulation Air and media sterilization. Aeration; agitation in bioprocess. Measurement and control of bioprocess parameters. 	15
	MODULE II Industrial production of chemicals: • Strain improvement for increased field & amp; other desirable characteristics • alcohol (beer) • organic acids (citric acid) • antibiotics (Penicillin) • amino acids (lysine) • Application of microbes in food processing:	15

	manufacture of cheese and monosodium glutamate	
	MODULE III Downstream Processing: Introduction, removal of microbial cells & amp; solids, bio-separation, filtration, centrifugation, sedimentation, flocculation, cell disruption, liquid-liquid extraction. Introduction by chromatographic techniques Drying and crystallization. Storage and Packaging. Effluent treatment & amp; disposal. Immobilization of microbial cells, immobilized reactors & amp; their applications Bioprocess for the production of biomass: yeast and	
Pedagogy	mushrooms	
Pedagogy: References/	Lectures, tutorials, assignments.	
Readings:	 A. Kuila, V. Sharma (Eds.). Principles and Applications of Fermentation Technology. John Wiley & Sons, 2018. A. Wiseman (Ed). Topics in enzyme Fermentation technology. Topics in enzyme and fermentation biotechnology. ACS Publications, 1984. Fomina M., & Gadd G. M. Biosorption: current perspectives on concept, definition and application. Bioresource technology, 160, 3-14, 2014. F. Stanbury, A. Whitaker, J.H. Stephan. Principles of fermentation technology. Butterworth Heinemann Books – Elsevier, 2003. G. Najafpour, Biochemical engineering and biotechnology. Elsevier, 2015. J.M. Coulson & J.F. Richardson. Chemical engineering. Elsevier, 2017. J. S. Dordick (Ed.). Biocatalysts for industry. Science & Business Media, 2013. M.C. Flickinger, Drew, S.W Encyclopedia of Bioprocess technology. Vol 1-5, 1999. M. M. Young (Ed) Comprehensive Biotechnology. Pergamon Press, 2019. P. Prave, V. Fanst, W. Sitting & D.A. Sukatesh, Fundamentals of Biotechnology, 1987. K. K. Prasad & N. K. Prasad, Downstream process technology: a new horizon in Biotechnology. PHI Learning Pvt. Ltd, 2010. 	

	12. Trevan, M.D. Immobilized enzymes: An introduction & application in biotechnology, 1980.
Course	1. Students will gain knowledge regarding various concepts related to
Outcomes:	Biotechnological industrial aspects.
	 Students shall learn about the industrial production of Biotechnologically important products.
	 Students shall be aware of how an industry functions from a biotechnological perspective.
	 Students shall be prepared to meet the challenges of new and emerging areas of biotechnology industry.

Course Code: GBT-603

Title of the Course: LAB VIII: BIOPROCESS TECHNOLOGY

Number of Credits: 2

Course The objectives of this laboratory course is/are: Objectives: 1) To educate students about fundamental concepts of Bioprocess technology 2) To provide hands-on training to students in upstream and downstream unit operations. No. of hours Content: Microbial production of ethanol using yeast sp. 30 • Microbial production of ethanol concentration by Cerric Ammonium nitrate method. Microbial production and estimation of organic acids: Citric acid using Aspergillus sp. 30 • Microbial production of microbial cells: use of alginate. • Fermentation: Batch, Fed-Batch and Continuous. 30 • Use of fermentor with special reference to scale-up operations. Microfiltrations: separation of cells from broth 30	Pre-requisites for the	None	
Objectives: 1) To educate students about fundamental concepts of Bioprocess technology 2) To provide hands-on training to students in upstream and downstream unit operations. No. of hours Content: MODULE I No. of hours • Microbial production of ethanol using yeast sp. 30 • Estimating ethanol concentration by Cerric Ammonium nitrate method. Microbial production and estimation of organic acids: Citric acid using Aspergillus sp. 30 • Microbial production of antibiotics. Immobilization of microbial cells: use of alginate. 30 • Fermentation: Batch, Fed-Batch and Continuous. 30 • Use of fermentor with special reference to scale-up operations. 30 • Microfiltrations: separation of cells from broth 30	Course:		
technology 2) To provide hands-on training to students in upstream and downstream unit operations. Content: MODULE I • Microbial production of ethanol using yeast sp. 30 • Estimating ethanol concentration by Cerric Ammonium nitrate method. 30 • Microbial production and estimation of organic acids: Citric acid using Aspergillus sp. 30 • Microbial production of microbial cells: use of alginate. 4 • Fermentation: Batch, Fed-Batch and Continuous. 30 • Use of fermentor with special reference to scale-up operations. 30 • Microfiltrations: separation of cells from broth 30			
2) To provide hands-on training to students in upstream and downstream unit operations. Content: No. of hours • Microbial production of ethanol using yeast sp. 30 • Estimating ethanol concentration by Cerric Ammonium nitrate method. 30 • Microbial production and estimation of organic acids: Citric acid using Aspergillus sp. 30 • Microbial production of antibiotics. Microbial production of microbial cells: use of alginate. • Fermentation: Batch, Fed-Batch and Continuous. 30 • Use of fermentor with special reference to scale-up operations. 30 • Microfiltrations: separation of cells from broth 30	Objectives:		process
downstream unit operations. No. of hours Content: MODULE I No. of hours • Microbial production of ethanol using yeast sp. 30 • Estimating ethanol concentration by Cerric Ammonium nitrate method. 30 • Microbial production and estimation of organic acids: Citric acid using Aspergillus sp. 30 • Microbial production of antibiotics. Microbial production of microbial cells: use of alginate. • Fermentation: Batch, Fed-Batch and Continuous. 30 • Use of fermentor with special reference to scale-up operations. 30 • Microfiltrations: separation of cells from broth 30			
Content: MODULE I No. of hours • Microbial production of ethanol using yeast sp. 30 • Estimating ethanol concentration by Cerric Ammonium nitrate method. 30 • Microbial production and estimation of organic acids: Citric acid using Aspergillus sp. 30 • Microbial production of antibiotics. Immobilization of microbial cells: use of alginate. • Fermentation: Batch, Fed-Batch and Continuous. 30 • Use of fermentor with special reference to scale-up operations. 30 • Microfiltrations: separation of cells from broth 8 • Bioseperations: Chromatography and extractions 30			nd
MODULE Ihours• Microbial production of ethanol using yeast sp.30• Estimating ethanol concentration by Cerric Ammonium nitrate method.30• Microbial production and estimation of organic acids: Citric acid using Aspergillus sp.30• Microbial production of antibiotics.1000000000000000000000000000000000000		downstream unit operations.	I
 Microbial production of ethanol using yeast sp. Estimating ethanol concentration by Cerric Ammonium nitrate method. Microbial production and estimation of organic acids: Citric acid using Aspergillus sp. Microbial production of antibiotics. Immobilization of microbial cells: use of alginate. Fermentation: Batch, Fed-Batch and Continuous. Module II Use of fermentor with special reference to scale-up operations. Microfiltrations: separation of cells from broth Bioseperations: Chromatography and extractions 	Content:		No. of
 Estimating ethanol concentration by Cerric Ammonium nitrate method. Microbial production and estimation of organic acids: Citric acid using Aspergillus sp. Microbial production of antibiotics. Immobilization of microbial cells: use of alginate. Fermentation: Batch, Fed-Batch and Continuous. MODULE II Use of fermentor with special reference to scale-up operations. Microfiltrations: separation of cells from broth Bioseperations: Chromatography and extractions 		MODULE I	hours
MODULE II 30 • Use of fermentor with special reference to scale-up operations. • Microfiltrations: separation of cells from broth • Bioseperations: Chromatography and extractions		 Estimating ethanol concentration by Cerric Ammonium nitrate method. Microbial production and estimation of organic acids: Citric acid using Aspergillus sp. Microbial production of antibiotics. Immobilization of microbial cells: use of alginate. 	30
operations.Microfiltrations: separation of cells from brothBioseperations: Chromatography and extractions			30
 Manufacture of ginger ale and estimating the alcohol content. Solid State Fermentation: Mushroom cultivation. Food Microbiology: Preparation of an edible fermented product. 		 operations. Microfiltrations: separation of cells from broth Bioseperations: Chromatography and extractions (organic acid & antibiotics) Manufacture of ginger ale and estimating the alcohol content. Solid State Fermentation: Mushroom cultivation. Food Microbiology: Preparation of an edible 	
Pedagogy: Hands-on experiments in the laboratory, online videos.	Pedagogy		

References/	1. A. Moser. Bioprocess technology: kinetics and reactors. Springer
Readings:	Science & Business, 2012.
	2. A. Wiseman (Ed). Topics in enzyme & Fermentation technology.
	British Polymer Journal, Wiley Blackwell, 1984.
	3. B. Ray, & A. Bhunia, Fundamental food microbiology. CRC press,
	2013.
	4. D. Behrens & P. Kramer (Ed), Bioprocess engineering:
	Downstream processing & recovery of bioproducts, safety in Biotechnology and regulations, 1990.
	5. F. Stanbury & A. Whitaker, Principles of fermentation technology.
	Elsevier, 2016.
	6. J.M. Coulson & J.F. Richardso. Chemical engineering. Elsevier,
	2017.
	7. J. P. Tamang (Ed.). Health benefits of fermented foods and
	beverages. CRC Press, 2015.
	8. Khramtsov, N., McDade, L., Amerik, A., Yu, E., Divatia, K.,
	Tikhonov, A., & Henck, S. Industrial yeast strain engineered to
	ferment ethanol from lignocellulosic biomass. Bioresource
	Technology, 102(17), 8310-8313, 2011.
	9. L.E. Cassida, Industrial microbiology. New Age International Pvt
	Ltd Publishers, 1994.
	10. M.C. Flickinger & S.W. Drew (Ed). Encyclopedia of bioprocess
	technology. Vol 1-5. Wiley Blackwell, 1999.
	11. M.D. Trevan, Immobilized enzymes: An introduction & application
	in Biotechnology. Wiley Blackwell, 1980.
	12. M. Young (Ed) Comprehensive Biotechnology. Vol 2- 4. Elsevier,
	1985.
	13. P. Prave, V. Fanst, W. Sitting, D.A. Sukatesh (Ed.) Fundamentals
	of Biotechnology. Saras Publications, 1987.
	14. T. Korzybski, Z. Kowszyk-Gindifer, & W Kurylowicz. Antibiotics:
	origin, nature and properties. Elsevier, 2013.
	15. T. T. Ngo (Ed.). Molecular interactions in bioseparations. Springer
	Science & Business, 2013.

Course	On completing the course, students should be able to:
Outcomes:	1. appreciate relevance of microorganisms from industrial context;
	 carry out stoichiometric calculations and specify models of growth;
	3. give an account of design and operations of various fermenters;
	 present unit operations together with fundamental principles for basic methods in production techniques for bio-based products;
	 calculate yield and production rates in biological production process, and also interpret data;
	give an account of important microbial/enzymatic industrial processes in the industry.

Course Code: GBT-604

Title of the Course: LAB IX: ENVIRONMENTAL BIOTECHNOLOGY

Number of Credits: 2

Pre-requisites		
for the	No prerequisite is required.	
Course:		
Course	1) To impart students with the hands-on experien	ce in basic
Objectives:	experimental analysis and the use of biological agents.	
	2) To understand emerging treatment processes carried	out for the
	wastewater and organic solid waste analysis	
Content:		No. of
	MODULE I	hours
	Analysis of Solid waste	
	 Estimation of Total solids and Volatile solids in organic waste 	30
	2. Biochemical methane potential assay	
	3. Analysis of Biogas using Gas Chromatography	
	4. Vermicomposting of organic waste	
	MODULE II	
	Analysis of wastewater	30
	1. Chemical Oxygen demand of wastewater	
	2. Biological Oxygen demand of wastewater	
	3. Total Phosphorus analysis in wastewater	
	4. Total Kjeldahl Nitrogen analysis in wastewater	
	5. Struvite precipitation from wastewater and its analysis	
	by XRD.	
	6. Microbiological analysis of wastewater	
Pedagogy:	Hands-on experiments in the laboratory, online video	os.
References/	1. APHA. "Standard Methods for Examination of W	
Readings:	Wastewater", American Public Health Association	n WWA,
	Washington, D.C., 2005	
	2. Angelidaki I , Alves M, Bolzonella D, Borzacconi, L. Car	•
	Guwy, A.J., Kalyuzhnyi, S., Jenicek P., and Van Lier, J.B.,	-
	the Biomethane Potential (BMP) of Solid Organic Wa	astes and

	Energy Crops: A Proposed Protocol for Batch Assays. Water Science & Technology, 2009.	
Course	1. The students will be able to analyse municipal wastewater	
Outcomes:	2. The students will be able to analyse solid organic waste.	
	3. Students will understand the process of organic waste treatment.	
	4. Student will be able to relate the knowledge of Environmental	
	Biotechnology with organic waste analysis.	

Course Code: GBT-621

Title of the Course: SOLID WASTE MANAGEMENT

Number of Credits: 3

Pre-requisites	Pasic Knowledge of Microhiology and Environmental Science/		
-	Basic Knowledge of Microbiology and Environmental Science/		
for the	Environmental Technology.		
Course:			
Course	1) To develop required skills in Plan segregation, collection,		
Objectives:	transportation, recycling and disposal of municipal solid waste		
	2) To give an overview of municipal solid waste management,		
	Methods of processing, basic disposal facilities,	treatment	
	options, and the environmental issues of soli	id waste	
	management.		
	3) Provide relevant information about municipal sol	id waste	
	reduction and on hazardous waste management.		
Content:			
	MODULE I		
	 Introduction, Sources and Composition of Municipal 		
	Solid Waste, Sources of solid waste, Types of solid	15	
	waste, Composition of solid waste and its		
	determination, Types of materials recovered from		
	MSW.		
	 Properties of Municipal Solid Waste: Physical, 		
	Chemical, and Biological properties of Municipal		
	Solid Waste, Transformation of Municipal Solid		
	Waste.		
	Solid Waste Generation and Collection: Quantities of		
	Solid Waste, Measurements and methods to		
	measure solid waste quantities, Solid waste		
	generation and collection, Factors affecting solid		
	waste generation rate, Quantities of materials		
	recovered from MSW.		
	MODULE II		
	 Handling, Separation and Storage of Solid Waste: 		
	-Handling and separation of solid waste at site.	15	

separator r separator an separation. -Waste hand and industria -Storage of so -Processing of Storage, con pulping, grav	blid waste at the sources.	
	MODULE III	
Treatment of the	e Municipal Solid Waste:	
		.5
	neration by anaerobic digestion,	
	Mechanical-biological treatment	
	her biochemical Processes.	
	of solid waste at wastewater	
treatment	plants: Advanced methods -	
	o-digestion of the sewage sludge	
with liquid	wastes such as septage, Novel	
composting r	nethods (such as terra-preta of the	
sludge (bioma	ass).	
-Combustion	and energy recovery of municipal	
	effects of combustion, undesirable	
effects of Cor	nbustion.	
-Landfill: C	lassification, planning, sitting,	
permitting, la	andfill processes, landfill design,	
landfill opera	tion, use of old landfill.	
-Differentiate	e sanitary land fill and incineration	
as final dispo	sal system for solid waste.	
Hazardous Solid	Waste:	
-Definition, s	ources, identification, classification	
	rization of hazardous solid waste.	
-Hazardous	waste toxicity, reactivity,	
infectiousnes	s, flammability, radioactivity,	
corrosiveness	s, irritation, bio-concentration,	
genetic activi	ty, explosiveness.	

	-Bio-medical waste, its sources, generation,		
	storage, transportation and Disposal.		
	-Solid waste management and sustainable		
	development: Case studies		
Pedagogy:	Lectures, tutorials, Case studies, assignments.		
References/	1. A. K. Chatterjee, Introduction to environmental biotechnology.		
Readings:	PHI, India, 2011.		
	2. M. L. Davis, A. David , Environmental Engineering. McGraw Hill		
	Education, 2017.		
	3. T. George, T. Hillary, and V. Samuel, Integrated solid waste		
	management . McGraw Hill Publisher, 2014.		
	4. M.E. Henstock, Disposal and recovery of municipal solid waste		
	Butterworths publication, 1983.		
	5. R. B. King, J. K. Sheldon, and G. M. Long, Practical Environmental		
	Bioremediation: The Field Guide, Lewis Publishers., 1998.		
	6. M. Prabhu, Resource recovery from wastewaters for sustainable		
	development, 2016.		
	shodhganga.inflibnet.ac.inhttp://hdl.handle.net/10603/84904		
	7. T. Satyanarayana, B. Johri, and T. Anil, Microorganisms in		
	Environmental Management, Springer Publishers., 2012.		
	8. A. Scragg, Environmental Biotechnology. Pearson Education		
	Limited. 2007.		
	9. H J Rehm and G. Reed, Biotechnology, a comprehensive treatise,		
	VCH Verleg. 1999.		
Course	At the end of this course, the students will be able to:		
Outcomes:	1. explain solid waste management systems with respect to its		
Outcomes.	physical properties, and associated critical considerations in view of		
	emerging technologies.		
	2. outline sources, types and composition of solid waste with		
	methods of handling, sampling and storage of solid waste.		
	3. select the appropriate method for solid waste collection,		
	transportation, redistribution, disposal and treatment.		
	 describe methods of disposal of hazardous solid waste. 		
	4. describe methods of disposal of hazardous solid waste.		

Course Code: MBT 621

Title of the Course: IPR, BIOSAFETY & BIOETHICS

Number of Credits: 3

Pre-requisites	No prerequisite is required	
for the		
Course:		
Course	1) To provide basic knowledge on intellectual property	rights and
Objectives:	their implications in biological research and	product
	development;	
	2) To learn biosafety and risk assessment of products der	rived from
	biotechnology and regulation of such products;	
	3) To become familiar with ethical issues in biological resea	arch.
	4) Understand the consequences of biomedical	research
	technologies such as cloning of whole organisms	s, genetic
	modifications, DNA testing.	
Content:		No. of
	MODULE I	hours
	• Different types of IP: patents, trademarks, copyright,	
	industrial design, traditional knowledge,	
	geographical indications, Trade Secrets.	
	 Basics of patents: types of patents; 	15
	 Concept of 'prior art': invention in context of "prior art"; 	
	 Precautions before patenting-disclosure/non- disclosure 	
	 Patent application- forms and guidelines, fee structure, time frames; 	
	 Types of patent applications: provisional and complete specifications; 	
	 PCT and conventional patent applications; procedure 	
	for filing a PCT application; role of a Country Patent	
	Office; filing of a patent application;	
	• Patent databases - IP as a factor in R&D IPs of	
	relevance to biotechnology and few case studies;	
	WIPO Treaties; Budapest Treaty; Patent Cooperation	

Treaty (PCT)	
 International framework for the protection of IP National Bio-diversity Authority (NBA) and other regulatory bodies, protection of new GMOs; History of GATT, WTO, WIPO and TRIPS; plant variety protection and farmers rights act; Country-wise patent searches (USPTO, EPO, India); analysis and report formation. International patenting-requirement, procedures and costs; financial assistance for patenting Publication of patents-gazette of India, status in Europe and US; Patent infringement- meaning, scope, litigation, case studies and examples; Commercialization of patented innovations; licensing 	
 outright sale, licensing, royalty; patenting by research students and scientists-university/organizational rules in India and abroad, collaborative research - backward and forward IP; Benefit/credit sharing among parties/community, commercial (financial) and non-commercial incentives. 	
MODULE II	
 Biosafety and Biosecurity - introduction; historical background; introduction to biological safety cabinets; primary containment for biohazards; biosafety levels; GRAS organisms, biosafety levels of specific microorganisms; recommended biosafety levels for infectious agents and infected animals; 	15
 Definition of GMOs & LMOs; principles of safety assessment of transgenic plants – sequential steps in risk assessment; concepts of familiarity and substantial equivalence; risk – environmental risk assessment and food and feed safety assessment; problem formulation – protection goals, compilation of relevant information, risk characterization and development of analysis plan; 	

	risk assessment of transgenic crops vs cisgenic plants or products derived from RNAi, genome editing tools. International regulations – Cartagena protocol, OECD consensus documents and Codex Alimentarius; Indian regulations – EPA act and rules, guidance documents, regulatory framework – RCGM, GEAC, IBSC and other regulatory bodies; Draft bill of Biotechnology Regulatory authority of India - containments – biosafety levels and category of rDNA experiments; field trails – biosafety research trials – standard operating procedures - guidelines of state governments; GM labeling – Food Safety and Standards Authority of India (FSSAI).
	MODULE III • Introduction, ethical conflicts in biological sciences - interference with nature Bioethics in health care - patient 15 patient confidentiality, informed consent, euthanasia, artificial reproductive technologies, 15 prenatal diagnosis genetic screening, gene therapy, transplantation. • Bioethics in research – cloning and stem cell research, Human and animal experimentation, animal rights/welfare • Agricultural biotechnology - Genetically engineered food, environmental risk, labeling and public opinion. • Sharing benefits and protecting future generations • Protection of environment and biodiversity • Biopiracy
Pedagogy:	Lectures, tutorials, Case studies, assignments
References/ Readings:	 L. Bently and B. Sherman, Intellectual property law . Oxford University Press, 2008. L. Bently, Intellectual property law Oxford University Press., 2008. Complete Reference to Intellectual Property Rights

4. T. M. Cook, A User's Guide to Patents Tottel Publishing., 2007.
5. W. Craig, M. Tepfer, G. Degrassi, & D. Ripandelli, An Overview of
General divisions/csurv/geac/annex-5.pdf F, 2009.
6. Problem Formulation in the Environmental Risk Assessment for
Genetically Modified Plants. Transgenic Research, 19(3), 425-436.
doi:10.1007/s11248-009-9321-9
7. D. O. Fleming, D. L. Hunt, Biological safety: principles and
practices ASM Press., 2000.
8. P. Ganguli, Intellectual Property Rights: Unleashing the
Knowledge Economy. New Delhi: Tata McGraw-Hill Pub., 2001.
9. Grubb P. W. Grubb P. L. Thomsen, P. R., Patents for Chemicals,
Pharmaceuticals and Biotechnology: Fundamentals of Global Law,
Practice and Strategy Oxford University Press., 2010.
10. http://www.wipo.int
11. International Union for the Protection of New Varieties of Plants.
http://www.upov.int
12. J. Rajmohan. Biosafety and bioethics Gyan Publishing House.,
2006.
13. F Karen . Greif and Jon F. Merz, Current Controversies in the
Biological Sciences – Case Studies of Policy Challenges from New
Technologies, MIT Press
14. Keith F, CRC handbook of laboratory safety. A.CRC Press.,2000.
15. H. Kuhse, Bioethics: An Anthology. Malden, MA: Blackwell., 2010.
16. Laws. Snow White Publication Oct., 2007.
17. National Biodiversity Authority. http://www.nbaindia.org
18. National IPR Policy, Department of Industrial Policy & Promotion,
Ministry of Commerce, Gol.
19. National Portal of India.http://www.archive.india.gov.in
20. Office of the Controller General of Patents, Design & Trademarks;
Department of Industrial Policy & Promotion; Ministry of
Commerce & Industry; Government of India.
http://www.ipindia.nic.in/
21. Recombinant DNA Safety Guidelines, Department of
Biotechnology, Ministry of Science and Technology, Govt. of
India, 2017. Retrieved from https://dbtindia.gov.in/
22. K. Singh. Intellectual property rights in Biotechnology. A status
report New Delhi Biotech Consortium, India, 1993.
23. N.S. Sreenivasulu, and C.B. Raju, Biotechnology and Patent laws:
patenting living beings Manupatra Publishers, 2008.
24. Wegner H. Patent law in Biotechnology, chemicals &
pharmaceuticals. Stockton Press, 1994.

	25. Wolt, J. D., Keese, P., Raybould, A., Fitzpatrick, J.W., Burachik, M.,		
	Gray, A., Wu, World Intellectual Property Organisation. World		
	Health Organization. Laboratory biosafety manual. WHO press,		
	2004.		
	26. World Trade Organisation. http://www.wto.org		
Course	On completion of this course, students should be able to:		
Outcomes:	1. understand the rationale for and against IPR and especially patents;		
	2. understand why India has adopted an IPR Policy and be familiar with		
	broad outline of patent regulations;		
	3. understand different types of intellectual property rights		
	4. gain knowledge national and international regulations of biosafety		
	and risk assessment of products derived from recombinant DNA		
	research and environmental release of GMOs		
	5. describe the major competing ethical theories and apply ethical		
	theory to contemporary moral issues that arise out of recent		
	developments in the life sciences that affect public policy.		
	6. analyze and clarify moral beliefs about abortion, human		
	reproduction, decisions of life and death, mental illness and other		
	related issues.		
	1		

Course Code: GBT-622

Title of the Course: FOOD TECHNOLOGY

Number of Credits: 2

Pre-requisites		
for the	Basic knowledge in Microbiology or Food Science.	
Course:	basic knowledge in microsology of rood science.	
Course	1) On completion of this course, students should be able to acquire	
Objectives:	knowledge and contribution of biotechnology in food i	ndustry.
	2) To understand the safety standards in food industry	
Content:		No. of
	MODULE I	hours
	Industrial and Food Biotechnology; Introduction; Importance; Applications of biotechnology in food processing; Significant advances and Recent developments; Preservation and processing – chilling methods, phenomena of rigor mortis, spoilage changes – causative factors; Drying – conventional methods; Salt curing, pickling and smoking; Freezing and cold storage, Canning procedures; Role of preservatives in processing. Packing – handling fresh fish, frozen packs, individually quick frozen (IQF), layered and shatter packs; Fishery by- products, cannery waste, feeds, silage, fish gelatin, fish glue, chitin and chitosan, pearl essence, fertilizer	15
	MODULE II Seafood microbiology, factors influencing, microbial, growth and activity; food-borne pathogens: bacteria fungi, viruses; Spoilage factors; Toxins influencing food spoilage; Microbes as food single cell protein (SCP), microbial nutraceuticals; Quality management – concepts, planning, system, quality control, quality assurance, quality improvement; Certification standards – ISO and HACCP; Principles of quality related to food sanitation, contamination, pest control, human resource and occupational hazards; Novel product development, marketing and food export, government policies,	15

	economic importance, nutrition promotion, consumer		
	studies qualitative and quantitative research methods.		
Pedagogy:	Lectures/ tutorials/assignments/self-study		
Defenenced	1. C. Oraura The seconds for biggeting companying from		
References/	1. S. Omura, The search for bioactive compounds from		
Readings:	microorganisms. Springer New York, 2011.		
	2. M. Fingerman, (Ed.), Recent Advances in Marine Biotechnology, Vol.		
	8: Bioremediation (1st ed.). CRC Press, 2003.		
	3. G. M. Evans, J.Furlong, G. G. Evans, Environmental Biotechnology:		
	Theory and Application, United Kingdom: Wiley, 2011.		
	 T. Fatma, Cyanobacterial and Algal Metabolism and Environmental Biotechnology. India: Narosa 1999. 		
	5. A.S. Ninawe, K. Rathnakumar, Fish Processing Technology And		
	Product Development. India: Narendra Publishing House, 2008.		
	 P. Galvez Raul, Jean-Pascal Berge (Eds.) Utilization of Fish Waste. United Kingdom: CRC Press, 2013. 		
	7. W.C .Frazier, D.C.Westhoff, V.M. Vanitha, Food Microbiology. 5 th		
	Edition. McGraw Hill Education, 2017.		
	8. G. M. Hall, Fish Processing Technology. United Kingdom: Springer		
	US, 2012.		
Course	1. Students will gain knowledge about food preservation and safety.		
Outcomes:	2. Application of food technology in food related research, food		
	industry and at national and international food organizations.		
	3. Understand the strategies for new product development, quality		
	assurance, safety and marketing.		
	4. Impart knowledge to society regarding nutritional facts of food		
	products and generate a healthier population.		
	5. Better understanding of marine - fish byproducts that will help them		
	develop entrepreneur skills.		

Course Code: GBT-623

Title of the Course: VIROLOGY

Number of Credits: 2

Pre-requisites for the Course:	Basic knowledge in Microbiology.	
Course Objectives:	 Upon completion of this course the students will be able to 1) develop an understanding of how the perception of microbes (bacteria and viruses) is limited by technology: only metagenomic analyses allow to now start studying in depth the dark matter. 2) gain an appreciation for viruses as essential drivers of the evolution of life on Earth. 3) Gain theoretical knowledge in virology virus transmission processes, illness and etiology. 	
Content:	 MODULE I General Virology The structure of virus particles: subunits, filamentous viruses, and nucleoproteins, isometric virus particles, Enveloped (membrane-bound) virus particles , Virus particles with head-tail morphology. Frequency of occurrence of different virus particle morphologies. Classification of viruses based on disease , host organism , virus particle morphology , viral nucleic acids , taxonomy. Satellites, Viroids, and prions Replication of Viral DNA and RNA Containment facilities, maintenance and handling 	No. of hours 15
	 of pathogenic viruses. Viral Enteric Diseases and Oncogenic viruses, Rotavirus diversity, emerging strains, Other viruses associated with diarrhoea and gastroenteritis: Adenoviruses, 	

	 Astroviruses, Norwalk and Sapporo-like viruses and other enteroviral diseases. Polio; Non-polio Enteroviruses, hepatic viruses Biology of Measles, mumps, rubella, Parvovirus B-Chicken pox and other viral pox diseases Viral respiratory diseases Biology and pathogensis of SARS, Metapneumovirus, Human rhino virus and Corona virus etc. Viral Haemorrhagic Fevers Yellow Fever, Kyasanur forest, disease, Chikungunya, Rift Valley Fever, Crimean Congo. 	
	 MODULE II Haemorrhagic fever, Hanta, Marburg and Ebola, and Rickettsial fevers. Viral encephalitis: Japanese encephalitis and West Nile viral infection, endemic areas. Biology of HIV viruses. Vaccines and antivirals. Methods of culturing viruses Human Virome, assembly, composition and host interaction Marine Virome. Ecological role of viruses in marine ecosystem. Lysogeny strategy adopted by marine viruses Metagenomic methods to study the virome and the dark matter. Phage serotyping Phage therapy for combating diseases, Case studies 	15
Pedagogy:	Lectures, tutorials, Case studies, Assignments	
References/	1. R. Ananthanarayan, Ananthanarayan and Paniker's, Text	tbook of
Readings:	 Microbiology. Universities Press, 2020. 2. J. Carter and V. A. Saunders, Virology: principl applications, Wiley, 2007. 3. N. Dimmock, A. Easton and K. Leppard, Introduction to Virology, John Wiley and Sons, 2006. 4. J. Flint, L W Enquist, V.R. Racaniello and A.M. Skalka, P 	Modern

	of Virology: Molecular Biology, Pathogenesis, and Control. ASM		
	Press, 2000.		
	5. R. Khare, Guide to Clinical and Diagnostic Virology, ASM Books,		
	2019.		
	6. S. N. J Korsman, M. I Andersson, L. Nutt, G. Van Zyl and W.		
	Preiser, Virology E-Book: An Illustrated Colour, Text. Elsevier		
	Health Sciences, 2012.		
	7. G. Kudesia and T. Wreghitt, Clinical and Diagnostic Virology,		
	Cambridge University Press, 2009.		
	8. B. Mishra, Textbook of Medical Virology, CBS, Publishers and		
	Distributors, 2020.		
	9. D. D. Richman, F.G. Hayden and R. J. Whitley , Clinical Virology,		
	Wiley, 2020.		
	10. A. M. Skalka, J. Flint, G. F. Rall, V. R. Racaniello and T.		
	Hatziioannou, Principles of Virology, Wiley, 2020.		
	11. R. Warom, Virology, Titan Books, 2017.		
	12. D. O. White and F. J. Fenner, Medical Virology, Elsevier Science,		
	2016.		
	13. C. J. Woolverton, L. Sherwood and J. Willey, Prescott's		
	Microbiology. McGraw-Hill Education, 2016.		
Course	The student will be able to		
Outcomes:	1. identify the different viral diseases and correlate with the		
	virus morphology, classification and containment facilities.		
	2. able to employ methodology to study the diversity of		
	unculturable viruses.		
	devise applications such as phage therapy for combating infection		
	4. appreciate and understand the role of virome in		
	environment		
L	1		

Course Code: GBT 624

Title of the Course: GENOMICS AND PROTEOMICS

Number of Credits: 2

Pre-requisites	Basic knowledge in Molecular Biology /Biochemistry.	
for the		
Course:		
Course Objectives:	 To develop required knowledge and skills in the students so that they are able to acquire the following competency in genomics and proteomics which aims to look into the genome and protein properties from a global perspective. To provide basic knowledge about sample preparation, mass spectrometry workflow, different chromatography technologies and quantitative proteomics. 	
Content:		No. of
	MODULE I	hours
	 Brief overview of prokaryotic and eukaryotic genome organization; extra-chromosomal DNA: bacterial plasmids, mitochondria and chloroplast. Genetic and physical maps; markers for genetic mapping; methods and techniques used for gene mapping, physical mapping, linkage analysis, cytogenetic techniques, FISH technique in gene mapping, somatic cell hybridization, radiation hybrid maps, in situ hybridization, comparative gene mapping. Human Genome Project, genome sequencing projects for microbes, plants and animals, accessing and retrieving genome project information from the web. Identification and classification of organisms using molecular markers- 16S rRNA typing/sequencing, SNPs; Use of genomes to understand the evolution of eukaryotes Track emerging diseases and design new drugs; determining gene location in genome sequence. 	15

	MODULE II• Introduction to Proteomics• Proteomics technologies- Sample preparation, Protein extraction and quantification, Gel-based proteomics: 2D-PAGE, isoelectric focusing.• Mass spectrometry-based proteomics: mass spectrometry, MALDI-TOF, sample preparations, liquid chromatography, and quantitative proteomics techniques such as iTRAQ, SILAC and TMT using mass spectrometry.• Protein-protein interaction, protein-DNA interactions, yeast 2-hybrid system, protein chips and functional proteomics.• Proteome databases.• Clinical and biomedical applications of proteomics; challenges in proteomics.• Introduction to metabolomics, lipidomics, metagenomics, translational research and systems biology.	
Pedagogy:	Lectures tutorials assignments demonstration	
References/ Readings:	 Lectures, tutorials, assignments, demonstration. A. Batiza, Bioinformatics, genomics, and proteomics: getting the big picture. Infobase Publishing, 2005. B. Cummings, Bioinformatics, 2nd Edition, 2007. B. R. Glick & J.J. Pasternak, Molecular Biotechnology, 3rd Edition, ASM Press, 1998. B. Kobe , M. Gussand, T. Huber, A.M. Campbell & L. J. Heyer, Structural Proteomics: High-Throughput Methods (Methods in Molecular Biology) Discovering Genomics and Proteomics, Humana Press, 2008. D.C. Liebler, Introduction of Proteomics: Tools for the new Biology. Totowa, NJ: Humana Press, 2002. S.C. Suhai, Genomics and proteomics: functional and computational aspects Springer, 2000. 	
Course Outcomes:	Students will be able to 1. acquire knowledge and gain understanding of the fundamentals of genomics and proteomics, transcriptomics and metabolomics. 2. analyse various analytical problems based on techniques of	

proteomics like 2D and MALDI and methods of protein
separation, detection and quantitation.
3. evaluate various applications of genomics and proteomics in
agriculture, human health and industry.
4. have the necessary learning to radically advance their
understanding of life and transform medicine.

Course Code: GBT-625

Title of the Course: EMERGING TRENDS IN WASTEWATER TREATMENT

Number of Credits: 2

Pre-requisites	Basic knowledge in Microbiology or Environmental Science or		
for the	Environmental Technology		
Course:			
Course	The primary objectives of the course are as follows:		
Objectives:	 The primary objectives of the course are as follows: Reinforcing the basic tenets of microbial treatment of wastewaters and waterborne pathogens (source, fate and factors affecting their survival in the environment). Understanding the advantages and disadvantages between centralized wastewater systems, decentralized systems and onsite systems and appropriate application of each of these systems. Understanding of emerging and novel biological treatment technologies and how these technologies need to be modified to address site specific conditions. Gain insights into the use of biological treatment processes used to recover valuable constituents or produce valuable products from wastewaters. Understanding of microbial or molecular based technologies used to monitor for the presence, sources and types of contaminants 		
	discharged in complex wastewater mixtures.		
Content:	<u>MODULE I</u> <u>Global Water Crisis</u>	No. of hours	
	 Overall trends and challenges in the treatment of wastewaters and provide an overview of water demands from a Global and India centric perspective. Issues and questions: Consumption v/s supply; how does the treatment of water help to ensure a renewable and sustainable water resource The major wastewater impacts on ecosystem integrity and human health. Areas requiring treatment in India. Major sector treatment issues (industrial, 	15	

ГТ	· · · · · · · · · · · · · · · · · · ·	
	agricultural, domestic)	
	 Impact of increasing complexity in the 	
	composition of wastewater on treatment	
	strategies	
	 Challenges in treatment of wastewater 	
De	ecentralized Wastewater Treatment Systems	
Th	ne major drivers for decentralized systems:	
	 Economics of decentralized systems v/s 	
	centralized systems.	
	Logistical Challenges: Impacts relating to	
	urban sprawl and difficulty in connecting	
	newly developed areas to centralized	
	systems	
	Complexity and Site Specific Treatment	
	Needs: Flexibility of decentralized systems.	
	 Difference between decentralized and on- 	
	site systems: in terms of size and the	
	transport and treatment of wastewaters	
<u><u> </u></u>	Conventional Biological Treatment Processes	
	Overview of conventional biological treatment	
	processes and commonality amongst centralized	
	and decentralized systems dealing with the	
	treatment of wastewaters and solids.	
	The efficacy and challenges associated with the	
	use of biological treatment for major classes of	
	wastewater constituents.	
	 Examination of common biological treatment 	
	strategies associated with different domestic,	
	agricultural, industrial and manufacturing sector	
	needs.	
	Treatment Platforms: Review of treatment	
	processes that are generally incorporated within a	
	technology (e.g., fixed film biological treatment	
	incorporated into a technology like a rotating	
	biological contactor)	
	Hybrid systems and different treatment platforms	
	nested with a hybridized system in order to	
	develop a customized treatment strategy	
	designed to deal with a specific suite of	

combines fixed phytoremediation to • Overview of cas hybridized decentrali	zed approaches. for effective treatment of
MOD	JLE II
groups. • Bioaugmentation tec the biodegradation waters through the a - Autochthonou - Allochthonou - Gene bioaugr • Techniques for the t pollutants ranging hydrocarbons, nit	e biological performance. zed: bacteria, fungi and algal 15 chniques designed to improve of contaminated soils and ctions of microorganisms: us bioaugmentation is bioaugmentation mentation rreatment of a wide range of from polycyclic aromatic rophenols, polychlorinated enols, crude oil, diesel oil,
emerging nanoparti systems range from the oxidation or s constituents that of function of downstry the incorporation of compound membrane the membrane or pathogens. • Standardized test operating procedures	ent systems integrating treatment technologies with cle applications. Integration the use of nanotechnology in sequestering of wastewater ould harm or impede the eam biological treatment, to f biocide nanoparticles into nes to prevent biofouling of to inactivate waterborne protocols or standardized s of these technologies. ed in these technologies to

address site specific conditions.

- Unique opportunities existing to address difficult or unusual treatment challenges.
- Seaweeds/macroalgal wastewater treatment
- Examining factors such as the maturity and reliability of the technology and a discussion of factors such as wastewater constituents, site conditions, cost factors and time that influence the applicability and suitability of the technology.

Resource Recovery from Wastewaters

- An overview of the use of biological treatment processes used to recover valuable constituents or produce valuable products from wastewaters
- The recovery of valued nutrients such as nitrogen and phosphorus, to valued elements and metals, to the generation of energy though microbial fuel cells or the generation of biogas.
- Integration of nutrient recovery steps such as Microbial Electrochemical Cell (MEC) to recover valuable nutrients in treatment technologies
- Novel composting methods such as *terra preta* of the sludge (biomass) generated after treatment for increasing soil fertility

Environmental Monitoring

- Review and discussion of microbial and molecular based technologies.
- Types of testing.
- Application of biomarkers; advantages and limitations.

Types of biomarkers used for environmental monitoring:

- Ames Salmonella mutagenicity assay
- Microtox using bioluminescent bacteria
- Vitellogenin
- DNA adducts
- Sister chromatid exchange
- Aryl hydrocarbon ethoxylase (AHH)
- Ethoxyresorufin o deethylase (EROD) assay
- Yeast based endocrine toxicity assays (YES)

	- Other ELISA based tests	
Pedagogy:	Lectures, tutorials, assignments	
References/ Readings:	 A. K. Chaterjee, Introduction to environmental biotechnology. PHI, India, 2000. M. Colin, Marine Microbiology: Ecology and applications. Second edition. Garland science, 2012. T. Satyanarayana, B. Johri, and T. Anil, Microorganisms in Environmental Management, Springer Publishers, 2012. M. J. Kennish, Practical Handbook of Estuarine and Marine Pollution. CRC Press, Francis and Taylor, 2019. R. B. King, J. K. Sheldon, and G. M. Long, Practical Environmental Bioremediation: The Field Guide, Lewis Publishers, 1998. S.M. Meena, and M.M. Naik, Advances in Biological Science Research: a practical approach. Elsevier, 2019. M. Prabhu, Resource recovery from wastewaters for sustainable development. 2016. 	
Course Outcomes:	 At the end of this course, students will be able to understand the basic tenets of biological wastewaters treatment, the advantages and disadvantages between centralized and decentralized systems. able to gain insights into the processes to recover or produce valuable products from wastewater. able to understand emerging treatment strategies that combine both conventional biological approaches with emerging technologies in hybridized systems exposed to how biological monitoring can be integrated with water quality monitoring to enhance our understanding of how wastewaters are impacting ecosystem health. 	

Course Code: GBT 652

Title of the Course: Internship

Number of Credits: 02

Pre-requisites	None		
for the Course:			
Course	The primary objectives is		
Objectives:	1. To understand the agency as a system, and to develop an		
	understanding and skills in working with specialized organization.		
	2. To impart student with "hands-on" experiences at a qualified place of		
	employment (non-profit or governmental agency or private		
	organizations)		
	3. To provide a potential impact to students' cognitive skills, knowledge,		
	interests, and future career.		
Content:	The Internship course is designed to permit students to		
	apply their skills and knowledge of the discipline gained		
	in the classroom setting and apply it in actual		
	industrial/academic environment. Students are required		
	to observe and participate in a job-related capacity under		
	supervision of the employer. 60 hrs		
	• The students are expected to follow the work schedule		
	of the agency/organization where he/she is placed with		
	reference to working days and working hours.		
	• The student has to submit a internship report duly signed		
	by the head of the organization and submit it to the		
	program Director for evaluation		
Pedagogy:	Theory, practical demonstrations, documentation, etc.		
Course	At the end of this course, students will be able to:		
Outcomes:	1. gain "hands-on" experiences at a qualified place of employment (non-		
	profit or governmental agency) the daily expectations of employment		

	within the agency.
	2. Students engaged in the activities which are supervised by an agency
	employee, will acquire the skills and knowledge base necessary to
	become successfully employed within the agency or a similar
	occupational or professional environment.
	3. Expose the student to various work forces and get a broader
	perspective on available opportunities.
	4. Develop a personal relationship with the employer and enhancing the
	experience for mentor as well as mentee
1	

SEMESTER IV

Name of the Programme: M.Sc. Biotechnology

Course Code: GBT 605

Title of the Course: RESEARCH METHODOLOGY

Number of Credits: 2

Pre-requisites		
for the		
Course:	None	
Course	1) To develop required skills in the students so that they are able	
Objectives:	to acquire following competency: Plan research, Write	
	research proposal, carry out data collection and analysis and	
	write scientific communication.	
	2) The course will give the student an overview of research	
	methods.	
Content:		No. of
	MODULE I	hours
	Conduct of Research	
	 Good Laboratory Practices, Ethics in research 	
	 Foundations of Research: Meaning, Objectives, 	15
	Motivation, Utility. Concept of theory, empiricism,	
	deductive and inductive theory. Characteristics of	
	scientific method – Understanding the language of	
	research – Concept, Construct, Definition, Variable.	
	Research Process.	
	 Problem Identification & Experimental Design– 	
	Research Question – Investigation Question –	
	Measurement Issues – Hypothesis – Qualities of a	
	good Hypothesis –Null Hypothesis & Alternative	
	Hypothesis. Hypothesis Testing – Logic &	
	Importance.	
	Project proposal writing, Literature survey- tools for	
	literature survey. Defining the Aims and Objectives,	
	Work Plan – Time-bound Frame.	
	 Making a reading list, Citation, Bibliography and its 	
	management software.	
	 Research Design: Concept and Importance in Research Features of a good research design 	
	Research – Features of a good research design –	
	Exploratory Research Design – concept, types and	

 uses, Descriptive Research Designs – concept, types and uses. Experimental Design: Concept of Independent & Dependent variables. Sampling: Concepts of Statistical Population, Sample, Sampling Frame, Sampling Error, Sample Size, Non Response. Characteristics of a good sample. Probability Sample – Simple Random Sample, Systematic Sample, Stratified Random Sample & Multi-stage sampling. Determining size of the sample-Practical considerations in sampling and sample size. Data collection, Analysis and Interpretation: Types of data, Data Preparation – Univariate analysis (frequency tables, bar charts, pie charts, percentages), Bivariate analysis – Cross tabulations and Chi-square test including testing hypothesis of association. 	
 MODULE II Importance of communicating research, Ethical aspects in academic writing, Plagiarism and software to detect plagiarism. Types of scientific writing and Research manuscript writing: reports, short communication, manuscript/original articles, review articles, thesis writing. Fundamentals of scientific paper: Drafting titles and framing abstracts, Authorship, Keywords, Introduction, Material and methods, Results and Discussion, Conclusion, Acknowledgement, Conflicts of Interest, Scientific Objectivity and Bibliography. Selection of journal for publication: Tools for suggesting journals for publishing research, Open access and predatory journals, cloned journals. Publication/Research metrics - Impact factor, citation count, cite score, h-Index, g-Index. Research evaluation: Peer review, Viva Voce. Benefits of publishing data. Science and social responsibility. 	15

Pedagogy:	Lectures, tutorials, assignments		
References/	1. M. Alley, The Craft of Scientific Writing, Springer Science and		
Readings:	Business Media, 1996.		
	2. G. Barbara and R.A. Day How to write and publish a scientific paper.		
	Greenwood, 2016.		
	3. P.G. Cooray, Guide to Scientific and Technical Writing. P.G. Cooray,		
	Hindagala, Sri Lanka, 1992.		
	. C. R. Kothari, Research Methodology Methods and Techniques, New		
	Age International, 2004.		
	5. R. C. Kumar, Research Methodology. APH Publisher Corporation,		
	New Delhi, 2008.		
	6. A. E. Shamoo, and D.B. Rasnik, Responsible conduct of research.		
	Oxford, 2021.		
Course	At the end of this course, students will be able to		
Outcomes:	1. Understand basic elements of scientific research, including research		
	methods, planning, writing the research proposal, data collection		
	and analysis, and writing scientific communications.		
	2. Demonstrate the ability to choose methods appropriate to research		
	aims and objectives		
	3. Understand the limitations of particular research methods		
	4. Develop skills in qualitative and quantitative data analysis and		
	presentation		
	5. Develop advanced critical thinking skills		
	6. Explain key research concepts, read, comprehend, and explain		
	research articles in their academic discipline.		

Course Code: GBT-606

Title of the Course: SYNTHETIC BIOLOGY

Number of Credits: 2

Pre-requisites for the Course:	None	
Course Objectives:	 The objective of the course is to 1. redesign organisms for useful purposes by engineering them to have new abilities. 2. harness the power of nature to solve problems in medicine, manufacturing and agriculture. 	
Content:	MODULE I	No. of hours
	 Synthetic biology: Introduction, History, Top down and Bottom up approach. Enabling technologies Emerging tools for DNA synthesis: artificial DNA synthesis, synthetic genomics. Genome modularity concepts: Biobricks, Assembly method: 3 Antibiotic (3A) Assembly, Amplified Insert Assembly, Gibson Scarless Assembly, Methylase-assisted (4R/2M) Assembly Golden gate cloning Synthetic biological circuits: oscillators, bistable switches, logical operators, analog tuners Circuit design Modeling Microfluidics Synthetic transcription factors 	15
	MODULE II	
	 Genome editing: CRISPR technologies, gene 	15

	 therapy, synthetic immunology Artificial cells, Synthetic genomics, Mycoplasma laboratorium, Protocell Computational method for protein engineering, pathway engineering, circuit designs using biological parts for creating synthetic biological constructs and strain design Xenobiology using nucleic acid analogues, xenonucleic acids, unnatural base pairs and expanded genetic code Applications of synthetic biology in biosensors, biological computers, organoids, bio-printed organs, space explorations. Ethics on creation of life and ethical support for synthetic biology 	
Pedagogy:	Lectures, tutorials, assignments	
References/ Readings:	 M. M. Andrea, Introduction to Synthetic Biology, Springer Verlag, 2018. M. W. Covert, Fundamentals of Systems Biology From Synthetic Circuits To Whole-Cell Models Taylor & amp; Francis, 2018. J. A. Davies, Synthetic Biology: A Very Short Introduction, Oxford, 2018. G. E. Kaebnick, T. H. Murray, A. Lustig and J. Boldt, Synthetic Biology and Morality Artificial Life and the Bounds of Nature MIT Press Ltd, 2013. M. A. Marchisio, Computational Methods in Synthetic Biology Springer, 2021. V. Singh and P.K. Dhar, Systems and Synthetic Biology, Springer, 2015. 	
Course Outcomes:	 The students will be able to apply the concepts of synthetic biology for the design of biological systems. understand how the limits of existing technology be overcome by DNA synthesis technology identify the biological problems that have limitations for industrial use and to analyze how synthetic biology can be applied as a solution. Apply the concepts in creating various applications 	

Course Code: GBT-607

Title of the Course: PLANT AND ANIMAL BIOTECHNOLOGY

Number of Credits: 2

Pre-requisites		
for the	Basic knowledge of molecular biology and recombinant DNA	Technology
Course:	busic knowledge of molecular biology and recombinant bior	reennoiogy
Course	1) The provide a comprehensive exposure to advances	in animal
Objectives:	and plant Biotechnology.	
	2) Student is expected to have a clear understanding	g of basic
	Biotechnology techniques to learn recent advances in t	
Content:		No. of
		hours
	MODULE I	
	General features of eukaryotic expression and vector	15
	systems. Gene transfer to animal cells. Transgenic mice	
	methodologies, Transgenic poultry, Transgenic Fish,	
	Embryo transfer technology, Gene targeting, Cloning live	
	stock by nuclear transfer, Transgenic livestock, Ethics of	
	cloning Disease resistant transgenics, animal models for	
	disease study, Pharming, improving milk quality,	
	improving traits, Xenografts, Toxological applications,	
	knock outs.	
		-
	MODULE II	15
	Strategies for Introducing Biotic and Abiotic Stress	
	Resistance/Tolerance Bacterial resistance; Viral	
	resistance; Fungal resistance; Insects and pathogens	
	resistance; Herbicide resistance; Drought, salinity,	
	thermal stress, flooding and submergence tolerance	
	Genetic Engineering for Plant Architecture and	
	Metabolism Seed storage proteins; Protein engineering;	
	Vitamins and other value addition compounds; Source-	
	sink relationships for yield increase; Post-harvest	
	bioengineering; Plant architecture; Flowering behaviour	
	Plants as Biofactories: Concept of biofactories;	
	Fermentation and production of industrial enzymes,	
	vitamins and antibiotics and other biomolecules; Cell	

	cultures for secondary metabolite production; Production of pharmaceutically important compounds; Bioenergy generation		
Pedagogy:	Lectures, tutorials, assignments		
References/	1. A. Bongso and E.H. Lee, Stem cells from bench to bed side World		
Readings:	Scientific publisher, 2004.		
	2. A. Slater, N. Scott, and Fowler, Plant Biotechnology: The genetic		
	manipulation of plants. Oxford University Press, 2003.		
	3. B. D. Singh, Plant Biotechnology. Kalyani Publisher, 2015.		
	4. B.R Jordan. The Molecular Biology and Biotechnology of		
	Flowering, CABI Publication, 2006.		
	5. M. Denis, Plant Breeding and Biotechnology: Societal Context		
	and the Future of Agriculture, Cambridge University Press, 2007.		
	6. P. K. Gupta, Plant Biotechnology. Rastogi Publication, 2015.		
	 W. Neil. Phytoremediation: Methods and Reviews, Humana Press, 2007. 		
Course	1. Students will be familiar with the principles and applications of		
Outcomes:	different techniques used in plant and animal transformation.		
	2. Students will learn to compare the pros and cons of transgenic		
	plants in the environment.		
	3. They will understand the role of rDNA technology in evolving		
	plants for resistance to pest and disease, tolerance to herbicides		
	and abiotic factors.		
	4. They will learn about the different mechanisms of disease		
	resistance, stress tolerance and products produced using genetic		
	engineering in plants and animals.		

Course Code: MBT - 602

Title of the Course: SCUBA DIVING

Number of Credits: 2

Pre-requisites	Students must know to swim 200 meters (any style) and be able to float 10		
for the	minutes		
Course:			
Course	Skill-based course with an objective to:		
Objectives:	1. Familiarize divers with knowledge, procedures, techn	niques, and	
	problems of underwater diving.		
	2. Appreciate and preserve marine life .		
Content:		No. of	
	MODULE I	hours	
	Dive Theory		
	1. Introduction	15	
	2. Diving equipment		
	3. Physics		
	4. Physiology		
	5. Planning dives		
	6. Executing dives		
	7. The underwater world		
	8. Scuba experience and beyond		
	MODULE II		
	Practicals (Total 4 dives)	15	
	 2 sessions of pool training for skills 		
	2 days of 2 sea dives each - skills and pleasure dives		
Pedagogy:	Lectures, tutorials, practical onsite training		
References/	1. PADI Open Water Diver Manual PADI publisher, 2015.		
Readings:	2. D. Graver, Scuba Diving. Human Kinetics Publishers, 2010	6.	
	3. S. Cole, and M. Brandon, Reef Life: A Guide to Tropical	Marine Life	
	Firefly Books Ltd, 2013.		
Course	1. The students will be able to study the marine biodiversit	у.	
Outcomes:	2. They will be able to carry out underwater surv	veying and	
	understand the human and environmental impact on marine life.		
	3. Collection of underwater marine samples.		
	4. Students will become licensed divers and can enr	ol for the	
	advanced scuba diving course.		

Course Code: GBT-608

Title of the Course: Field trip

Number of Credits: 02

Effective from AY: 2022-23

Pre-requisites	Knowledge of Microbiology/ Molecular Biology/ Biochemistry/ Bioprocess		
for the Course:	Technology/ Food Technology (Any one)		
Course	The primary objectives of the group learning course are as follows		
Objectives:	1. To provide first hand experience,		
	2. To stimulate interest and motivation in science,		
	3. To add relevance to learning and inter-relationships,		
	4. To provide a potential impact to students' cognitive skills, knowledge,		
	interests, and future career.		
Content:		No of hours	
	• Visit to any two central science research and development institute or science laboratory.	10	
	 Visit to any two pharmaceutical industry to learn about 	10	
	industrial manufacturing processes.		
	• Visit to 3-4 Biotechnology industrial unit such as beverage	15	
	production unit, dairy industry, fish processing unit, food		
	processing unit, waste processing unit, etc.		
	 Demonstration of sampling skills by visit to various 	10	
	ecological sites		
	Report preparation and Group discussion and individual		
	presentation	15	
Pedagogy:	Field visit		
Course	At the end of this course, the students will be able to:		
Outcomes:	1. connect between the field trip learning with prior ex	periences	
	and knowledge from the classroom.		
	2. sharpen their skills of observation and perception.		
	3. understand experiential learning discussed during field trips.		
	4. learn to draft reports and share his experiences via pres	entation	
Back to top)	•		

(Back to top)