

गोंय विद्यापीठ ताळगांव पठार गोंय - ४०३ २०६ फोन: +९१-८६६९६०९०४८

Goa University

Taleigao Plateau, Goa - 403 206 Tel : +91-8669609048 Email : registrar@unigoa.ac.in Website: www.unigoa.ac.in

(Accredited by NAAC)

GU/Acad -PG/BoS -NEP/2023/184/2

Date:04.07.2023

CIRCULAR

The University has notified Ordinance OA-35 governing the **Master of Science in Artificial Intelligence** Programme offered at the Goa Business School, Goa University Campus for implementation from the Academic year 2023-2024 onwards.

The approved Semester I and II Syllabus of the **Master of Science in Artificial** Intelligence Programme is attached.

The Dean/ Vice-Deans of the Goa Business School are requested to take note of the above and bring the contents of the Circular to the notice of all concerned.

(Sanket Gaude) Offg. Assistant Registrar – Academic-PG

Τo,

- 1. The Dean, Goa Business School, Goa University.
- 2. The Vice-Deans, Goa Business School, Goa University.

Copy to:

- 1. The Chairperson, Board of Studies in Computer Science and Technology (PG).
- 2. The Programme Director, M.Sc Artificial Intelligence, Goa University.
- 3. The Controller of Examinations, Goa University.
- 4. The Assistant Registrar, PG Examinations, Goa University.
- 5. Directorate of Internal Quality Assurance, Goa University for uploading the Syllabus on the University website.

Goa University

M.Sc in Artificial Intelligence to be effective from Academic Year 2023-24

M.Sc in Artificial Intelligence Programme Specific Outcomes:

The course is aimed at imparting the following core things -

1. Core programming skills and techniques, including designing and coding applications, and the important principles of code design and development.

2. Data science tools and techniques, including the principles of data science, data analysis, visualisation and interpretation, and the use of "big data".

3. Artificial intelligence tools and techniques, including problem-solving, knowledge representation, machine learning, computer vision, human-computer interactions and (mis) information diffusion.

4. Ethical computing and data science, exploring the ethical, legal, social and professional frameworks in which data scientists must operate, in business and society.

5. The application of AI and data science in research and industry

Pathway

Fundamentals (Mathematics and Problem Solving, Programming) \rightarrow Core Courses (AI, Machine Learning, Deep Learning, etc.,) \rightarrow Specialization (Natural Language Processing, Computer Vision) \rightarrow Research and Dissertation (Core Research – Language Models, or Application Oriented Research or Product Based Research (MLOps, DevOps, Design Thinking, Pragmatic AI)

As per the above pathway vision, the structure for programme has been designed as follows –

M.Sc. in Artificial Intelligence to be effective from Academic Year 2023-24		
SEMESTER I – Total 20 credits		
Discipline Specific Core(DSC) Courses		
Course Code	Course Title	Credits
<u>CSI-500</u>	Fundamentals of Artificial Intelligence	2
<u>CSI-501</u>	Fundamentals of Artificial Intelligence Lab	2
<u>CSI-502</u>	Algorithms and Data structures	2
<u>CSI-503</u>	Algorithms and Data structures Lab	2
<u>CSI-504</u>	Mathematical Foundations for Artificial Intelligence	2
<u>CSI-505</u>	Mathematical Foundations for Artificial Intelligence Lab	2
<u>CSI-506</u>	Data Science Fundamentals	2
<u>CSI-507</u>	Data Science Fundamentals Lab	2
	Total Credits for DSC	16
Di	scipline Specific Elective(DSE) Courses – any one to be opted	
Course Code	Course Title	Credits
<u>CSI-521</u>	Natural Language Processing	4
<u>CSI-522</u>	Computer Vision	4
<u>CSI-523</u>	Robotics	4
<u>CSI-524</u>	IoT Architecture and Protocols	4
	Total Credits for DSE	4
	SEMESTER II – Total 20 credits	
	Discipline Specific Core(DSC) Courses	
Course Code	Course Title	Credits
<u>CSI-508</u>	Deep Learning	2
<u>CSI-509</u>	Deep Learning Lab	2
<u>CSI-510</u>	Big Data Frameworks	2
<u>CSI-511</u>	Big Data Frameworks Lab	2
<u>CSI-512</u>	Reinforcement Learning	2
<u>CSI-513</u>	Reinforcement Learning Lab	2
<u>CSI-514</u>	Software Engineering for AI Enabled systems	2
<u>CSI-515</u>	Software Engineering for AI Enabled systems Lab	2
	Total Credits for DSC	16
Di	scipline Specific Elective(DSE) Courses – any one to be opted	
Course Code	Course Title	Credits
<u>CSI-525</u>	Machine Translation	4
<u>CSI-526</u>	Mathematics for Computer Vision and Robotics	4
<u>CSI-527</u>	Soft computing	4
<u>CSI-528</u>	Regression Analytics and Predictive Models	4
<u>CSI-529</u>	Essentials of Data Analytics	4
	Total Credits for DSE	4

SEMESTER III – Total 20 credits		
Research Specific Elective(RSE) Courses – any two to be opted		
Course Code	Course Title	Credits
CSI-600	Speech Processing	4
CSI-601	Advanced Machine Translation	4
CSI-602	Simulation and Modelling	4
CSI-603	MLOps	4
CSI-604	Generative Deep Learning Models	4
CSI-605	Data Engineering	4
CSI-606	Sensors, Actuators and Signal Conditioning	4
CSI-607	Signal Processing	4
CSI-608	Image Processing	4
	Total Credits for RSE	8
	Generic Elective(GE) Courses - total 12 credits to be opted	
Course Code	Course Title	Credits
CSI-621	Corporate Skills	4
CSI-622	Research Methodology	4
	To be opted from Courses from other Disciplines	4
	Total Credits for GE Courses	12
SEMESTER IV – Total 20 credits		
One Research	Specific Elective(RSE) Course to be opted from the RSE list given	below in
cor	sultation with the Mentor. It can be completed in Semester 3.	
	RSE List	1
Course Code	Course Title	Credits
CSI-609	Financial Machine Learning	4
CSI-610	AI for Atmospheric Science	4
CSI-611	Pragmatic Al	4
CSI-612	AI for Medical Specialization	4
CSI-613	Design thinking for Al	4
CSI-614	Recommender Systems	4
CSI-615	Text Mining and Sentiment Analysis	4
CSI-616	Digital Twin	
Total Credits for RSE Courses 4		4
	Dissertation Type	Credits
CSD-651	Research Project in Academic or Research Institutes	16
Total Credits for Dissertation		16

Semester I

Name of the Programme: M.Sc. in Artificial Intelligence

Course code: CSI-500

Title of course: Fundamentals of Artificial Intelligence

Number of credits: 2(2L+0T+0P)

Prerequisites for	Programming back programming and probability and statistics and li	near algebra
the course		
Objectives	To develop a basic understanding of problem solving, knowledge representation,	
	reasoning and learning methods of AI.	
<u>Content</u>	Introduction -Intelligent Agents, Problem-solving Solving Problems	5 hours
	by Searching -Search in Complex Environments - Adversarial	
	Search and Games- Constraint Satisfaction Problems	
	Knowledge, reasoning, and planning	
	Knowledge Representation-First-Order Predicate Logic -	3 hours
	Unification Forward and Backward Chaining - Resolution -	
	Ontological Engineering	
	Categories and Objects - Events-Mental Events and Mental Objects	
	- Reasoning Systems for Categories - Reasoning with Default	
	Information	
	Uncertain knowledge and reasoning	
	Quantifying Uncertainty - Probabilistic Reasoning - Probabilistic	3 hours
	Reasoning over Time Probabilistic Programming -Making Simple	
	Decisions - Making Complex Decisions –MultiAgent Decision	
	Making	
	Machine Learning from Examples - Learning Probabilistic Models -	
	Deep Learning - Reinforcement Learning - Communicating,	6 hours
	Perceiving, and Acting	
	Natural Language Processing - Deep Learning for Natural Language	
	Processing - Computer Vision - Robotics.	2 hours
	Artificial Intelligence applications Language Models - Information	
	Retrieval - Information Extraction	
	Natural Language Processing - Machine Translation - Speech	
	Recognition	
	Robotics-Hardware and Software for Robots - Planning and	
	Perception	
	Explainable AI - Definitions and concepts such as black-box	
	models, transparency, interpretable machine learning and	7 hours
	explanations Decision-making and decision support, Human-	
	Computer Interaction (HCI) and AI Explainable AI Methods for	
	Explainable AI Applications and examples Trust and	
	acceptance-Evaluation methods and metrics Ethical, legal and	
	social issues of explainable AI.	
	Contemporary issues in AI- Philosophy, Ethics, and Safety of AI -	
	The Future of Al	4 hours
<u>Pedagogy</u>	Tutorials / Hands-on-assignments / Self-study	
<u>References/</u>	1. A Classical Approach to Artificial Intelligence, M.C. Trivedi, Khanna	a Book
<u>Reading</u>	Publishing, 2019.	
	2. Artificial Intelligence: A modern approach by Stuart Russel, Pearso	on Education,
	2010.	
	3. Artificial Intelligence by Rich and Knight, The McGraw Hill, 2017.	
	4. Artificial Intelligence: A new synthesis by Nils and Nilson, Elsevier, 1997.	
	5. Artificial Intelligence by Luger, Pearson Education, 2002.	
	Artificial Intelligence by Padhy, Oxford Press, 2005.	

	7.https://www.edx.org/course/artificial-intelligence-ai 8.https://www.udemy.com/course/artificial-intelligence-az/
<u>Course</u>	1. Understand the basic concepts and techniques of Artificial Intelligence.
<u>Outcomes</u>	2. Apply AI algorithms for solving practical problems.
	3. Describe human intelligence and AI.
	4. Explain Expert System and implementation, neural network and fuzzy logic

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-501 Title of the Course: Fundamentals of Artificial Intelligence Lab

Number of Credits: 2 (0L+0T+2P) Effective from AY: 2023-24

Prerequisites	Artificial Intelligence theory, probability and statistics, linear algebra	a and Python
<u>for the</u>	programming	
<u>course:</u>		
Objectives:	To develop a basic understanding of problem solving, knowledge rep	presentation,
	reasoning and learning methods of AI and implement AI algorithms	
<u>Content:</u>	Assignment-1 -Real-world path planning for pedestrians. In the first part, students implement A* over a map that includes roads/paths as well as elevations. In the second part, students collect actual data through walking around the real world, and the cost model is then learned via regression techniques.	10 hours
	Assignment-2 -Solve maze via search -this assignment involves formulating maze-solving as a search problem, image processing (via OpenCV) as a step in maze-solving, as well as guided performance/quality analysis of representational parameters.	10 hours
	Assignment 3-Within the context of an artificial intelligence course, students are taught to identify ethical issues within technical projects and to engage in moral problem solving with regard to such issues.	10 hours
	Assignment 4-Neural network for face recognition using tensor flow -build feedforward neural networks for face recognition using TensorFlow. Students then visualize the weights of the neural networks they train. The visualization allows students to understand feedforward one-hidden layer neural networks in terms of template matching, and allows students to explore overfitting.	10 hours
	Assignment -5 -Organic path finding -Students develop a "human- like" pathfinding technique by specializing a generic search algorithm with custom action cost and heuristic cost functions. Students apply classical search algorithms and reflect on example organic paths to achieve "human-like" pathfinding.	10 hours
	Assignment - 6 -Implement a genetic algorithm in Python to evolve strategies for Robby the Robot to collect empty soda cans that lie scattered around his rectangular grid world. And also Compare the performances of a brute-force search and a search employing the Minimum Remaining Values (MRV) heuristic in solving Sudoku puzzles.	10 hours
Pedagogy:	lectures/practical/tutorials/assignments/self-study	

<u>References</u>	1. A Classical Approach to Artificial Intelligence, M.C. Trivedi, Khanna Book
<u>/Readings:</u>	Publishing, 2019.
	2. Artificial Intelligence: A modern approach by Stuart Russel, Pearson Education,
	2010.
	3. Artificial Intelligence by Rich and Knight, The McGraw Hill, 2017.
	4. Artificial Intelligence: A new synthesis by Nils and Nilson, Elsevier, 1997.
	5. Artificial Intelligence by Luger, Pearson Education, 2002.
	6. Artificial Intelligence by Padhy, Oxford Press, 2005.
	7.https://www.edx.org/course/artificial-intelligence-ai
	8.https://www.udemy.com/course/artificial-intelligence-az/
<u>Course</u>	1. The students need to understand existing implementation of algorithms
Outcomes:	2.learn to extend an existing implementation of the back-propagation algorithm
	and use it to recognize static hand gestures in images.
	3.Students learn about feedforward neural networks and the backpropagation
	algorithm by implementing a perceptron network for AND and XOR Boolean
	functions and, given an implementation of a feedforward network, learn digit
	recognition using the MNIST data set.
	4. students extend a Tic Tac Toe program to Ultimate Tic Tac Toe and implement
	a different search strategy than the example code.

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-502 Title of the Course: Algorithms and Data Structure Number of Credits: 2 (2L+0T+0P) Effective from AY: 2023-24

<u>Prerequisites</u>	Programming in Python	
for the		
<u>Objectives:</u>	The aim of the course is to introduce the fundamental concept of data and to emphasize the importance of data structures in developing a implementing efficient algorithms. It provides an exposure to variou structures and algorithm analysis including lists, stacks, queues, tree various sorting and searching algorithms.	ata structures nd us data es, and
<u>Content:</u>	Introduction: Three level Approach - Application/User level, Abstract/Logical level, Physical/Implementation level; Concept of Abstract Data Types (ADTs), Data Structure definition, Data type vs. data structure, Applications of data structures, Algorithms analysis and its complexity, Best case, worst case, and Average case performance, time-space tradeoff, Asymptotic	3 hours 3 hours
	Analysis, Big-O notation. Linear Data Structures: Array and its application: Polynomials, Sparse matrices, String-pattern Matching. Linked Lists, Doubly linked list. Circular linked list. Stack and Oueues.	5 hours
	Nonlinear Data Structures: Trees: Binary tree representation, Binary Search Trees, AVL Trees, M-way Search Trees, B-trees. B tree algorithms, Heap Structures.	5 hours
	Graphs: Graph representations; Graph Traversals Complexity of Searching & Sorting algorithms: Bubble sort, Quick sort, Selection sort, Insertion sort, Merge sort and Heap sort. An Empirical Comparison of Sorting Algorithms, Lower bounds for Sorting. Linear search, binary search.	2 hours 8 hours
	Dynamic programming and Greedy algorithms: Assembly line scheduling, Matrix-chain multiplication; Prim ^s Algorithm, Kruskal ^s Algorithm	4 hours
Pedagogy:	Practical/ tutorials/assignments/self-study	
<u>References</u> <u>/Readings:</u>	 Horowitz, Ellis, Sartaj Sahni, and Susan Anderson-Freed. Fundamentals of data structures in C. WH Freeman & Co., 1992. Benjamin Baka, Basant Agarwal, "Hands on Data Structure and Algorithms with Python", Second Edition, O"Reilly, 2018 Cormen Thomas, L. Charles, R. Ronald, S. Clifford, "Introduction to Algorithms", Second Edition, EEE, PHI. Allen, Weiss Mark. Data structures and algorithm analysis in C. Pearson Education India, 2011. Algorithms, by Dasgupta, Papadimitriou, and Vazirani, McGraw-Hill. 	
<u>Course</u> Outcomes:	 Understanding of various data structures. Proficiency in algorithmic problem-solving. Practical implementation and application of data structures. Enhanced critical thinking and problem analysis skills. 	

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-503 Title of the Course: Algorithms and Data Structure Lab Number of Credits: 2 (0L+0T+2P) Effective from AY: 2023-24

Litective itom At. 2		
<u>Prerequisites</u> <u>for the</u>	Programming in Python	
course:		
Objectives:	The aim of the course is to introduce the fundamental concept of da	ta structures
	and to emphasize the importance of data structures in developing a	nd
	implementing efficient algorithms. It provides an exposure to variou	us data
	structures and algorithm analysis including lists, stacks, queues, tree	es. and
	various sorting and searching algorithms.	
Content:	Object-Oriented Design Goals, Object-Oriented Design Principles.	
	1.The programming assignment should introduce and enforce the	3 hours
	concepts of encapsulation, polymorphism and Inheritance.	
	ADT Specifications and Implementation of following basic data	
	structures	
	2. Singly Linked Linear Lists	3 hours
	3. Singly Linked Circular Lists	2 hours
	4. Doubly Linked Linear Lists	2 hours
	5. Doubly Linked circular Lists	2 hours
	6. Stack using linked list	2 hours
	7. Queue using linked list	2 hours
	ADT Specifications and Implementation of following non-linear	4 hours
	data structures	
	8. Binary Trees	
	9. Binary Search Trees	3 hours
	10. AVL Trees	3 hours
	11. B-Trees and its variants	3 hours
	Application of stack	3 hours
	12. Program to convert the given infix expression to postfix	
	expression using stack	
	13. Program to evaluate a postfix expression using stack.	2 hours
	14. Program to traverse a binary tree in the following way: Pre-	3 hours
	order, In-order, Post-order	
	Applications of Binary Trees	2 hours
	15. Write a program to implement Huffman encoding using Binary	
	tree.	
	16. Write a program to create a binary tree for the given infix	2 hours
	expression.	
	Applications of AVL Trees	
	17. Write a program that reads a list of names and telephone	
	number from a text file and inserts them into an AVL tree. Write a	3 hours
	function to allow the user to search the tree. Searching and	
	sorting	
	18. Program to implement Binary search technique using Iterative	3 hours
	method and Recursive methods.	
	19. Programs to implement following sorting algorithm- Bubble	3 hours
	sort, Selection sort, Insertion sort, Quicksort, Merge sort and	
	Heap sort	
	Implementation of Dynamic programming	4 hours
	20. Assembly line scheduling	

	21. Matrix-chain multiplication	3 hours	
	Implementation of Greedy algorithms	3 hours	
	22. Prim"s Algorithm		
	23. Kruskal"s Algorithm		
Pedagogy:	Lectures/Practical/ tutorials/assignments/self-study		
References/R	1. Horowitz, Ellis, Sartaj Sahni, and Susan Anderson-Freed. Fundam	nentals of data	
eadings:	structures in C. WH Freeman & Co., 1992.		
	2. Benjamin Baka, Basant Agarwal, "Hands on Data Structure and Algorithms		
	with Python", Second Edition, O"Reilly, 2018		
	3. Cormen Thomas, L. Charles, R. Ronald, S. Clifford, "In	troduction to	
	Algorithms", Second Edition, EEE, PHI.		
	4. Allen, Weiss Mark. Data structures and algorithm analysis in C. Pearson		
	Education India, 2011.		
	5. Algorithms, by Dasgupta, Papadimitriou, and Vazirani, McGraw-	Hill.	
<u>Course</u>	1. Implement common data structures such as lists, stacks, queue	s, graphs, and	
Outcomes:	binary trees for solving programming problems.		
	2. Identify and use appropriate data structures in the context of a s	olution to a	
	given problem.		
	3. Learn to understand the implementation issues		
	4. Overall learn the foundation required for programming		

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-504 Title of course: Mathematics foundation for Artificial Intelligence

Number of credits: 2 (2L-0T-0P) Effective from AY: 2023-24

Prerequisites for	Basic mathematics	
the course		
<u>Objectives</u>	To build a strong foundation in maths required for learning computer science/data science subjects. To understand fundamental concepts and tools in calculus, linear algebra etc with emphasis on their applications to computer science in particular data science/machine learning	
<u>Content</u>	Introduction Importance of mathematics and their applications for computer science/machine learning/data science/deep learning Functions, variables, equations, graphs revision	3 hours
	Probability and Statistics: Probability Rules & Axioms, Bayes' Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods-confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t- test,Linear regression, regularization	7 hours
	Calculus Overview of Differential and Integral Calculus, Partial Derivatives Product and chain rule-Taylor's series, infinite series summation/integration concepts-Fundamental and mean value- theorems of integral calculus, evaluation of definite and improper integrals-Beta and Gamma functions, Functions of multiple variables, limit, continuity, partial derivatives-Basics of ordinary and partial differential equations - Applications of Calculus	4 hours
	Linear Algebra: Systems of Linear Equations-Matrices-Solving Systems of Linear Equations-Vector Spaces-Linear Independence-Basis and Rank- Linear Mappings Affine Spaces	3 hours
	Analytic Geometry Norms-(Inner Products-Lengths and Distances Angles and Orthogonality-Orthonormal Basis Orthogonal Complement-Inner Product of Functions-Orthogonal Projections-Rotations) - Eigen value decomposition and SVD	6 hours
	Optimization Differentiation of Univariate Functions-Partial Differentiation and Gradients-Gradients of Vector-Valued Functions-Gradients of Matrices Useful Identities for Computing Gradients-Backpropagation and	7 hours

	Automatic Differentiation-Higher-Order Derivatives-Linearization
	and Multivariate Taylor Series-Gradient Descent-Constrained
	Optimization -Lagrange Multipliers-Convex Optimization,
<u>Pedagogy</u>	Problem solving approach and carrying out small project work
	using matlab tools
References/	1. Statistics Written, Robert S. Witte and John S. Witte
Readings	2. Barron's AP Statistics, 8th Edition, Martin Sternstein, PhD.
	3. Statistics for Business and Economics
	by- James T. McClave, P. George Benson and Terry T Sincich
	4. Naked Statistics: Stripping the Dread from the Data, Charles
	Wheelan
	5. Introduction to Linear Algebra, Gilbert Strang
	6. Linear Algebra and Its Applications, David C. Lay
	7. No bullshit guide to Linear algebra, Ivon Savov
	8. Functions and Graphs by I M Gelfand
	9. Cartoon guide to calculus, Larry Gonick
	10. Optimization Methods in Business Analytics — edX, MIT
Course	1. Strong understanding of mathematical concepts relevant to AI.
<u>Outcomes</u>	2. Application of mathematics in AI problem-solving.
	3. Proficiency in quantitative analysis and data interpretation.
	4. Development of algorithmic thinking skills for AI algorithms.

Name of the Programme: M.Sc. in Artificial Intelligence Course code: CSI-505 Title of course: Mathematics Foundation for AI using Matlab

Number of credits: 2 (0L-0T-2P) Effective from AY: 2023-24

Prerequisites for	Mathematical foundation theory and programming background	
the course		
Objectives	The lab assignment are aimed at demonstration of the following reg	arding
	statistics	
<u>Content</u>	Revision of the following :	6 hours
	NumPy is a third-party library for numerical computing, optimized	
	for working with single- and multi-dimensional arrays. Its primary	
	type is the array type called ndarray. This library contains many	
	routines for statistical analysis.	
	SciPy is a third-party library for scientific computing based on	
	NumPy. It offers additional functionality compared to NumPy,	
	including scipy.stats for statistical analysis.	
	Pandas is a third-party library for numerical computing based on	
	NumPy. It excels in handling labeled one-dimensional (1D) data	
	with Series objects and two-dimensional (2D) data with Data-rame	
	ODJECIS. Matalatliblic a third party library for data visualization. It works	
	well in combination with Numby Sciby and Pandas	
	Assignment 1. Write program to implement the following	
	Assignment 1 - White program to implement the following	
	concepts using python instances -Numpy, Panuas, matpioting,	
	and nytorch etc	
	Assignment -2 - Sampling Variables in Statistics Frequency	6 hours
	Distributions Generate frequency distribution tables Generate	0 110013
	grouped frequency distribution tables and -Visualizing Frequency	
	Distributions -Generate bar plots, pie charts, and histograms	
	.Employ bar plots, pie charts and histograms.	
	Assignment-3-Comparing Frequency Distributions -grouped bar	6 hours
	plots- step-type histogram-kernel density estimate plots- strip	
	plots and box plots	
	Assignment-4 -Multidimensional image operations, Solving	6 hours
	differential equations and the Fourier transform using scipy	
	Assignment-5 -Optimization algorithms using scipy.	6 hours
	Assignment -6 -Linear algebra using scipy	6 hours
	Assignment- 7-Program in python to implement the concepts such	6 hours
	as Vector space, subspace, span, coumn space, row space, null	
	space, left-null space, rank, basis, orthogonal matrix, symmetric	
	matrix	
	Assignment -8 – Implement Eigen value decomposition in python.	6 hours
	Assignment-9 – implement SVD using python.	6 hours
	Assignment -10 – implement some of optimization algorithm using	6 hours
	the python library	
Pedagogy	Iab assignments / Project 1 Statistics Written Data of C. Million and K. L. C. Million	
<u>Keterences/</u>	1. Statistics Written, Robert S. Witte and John S. Witte	
<u>keadings</u>	2. Barron's AP Statistics, 8th Edition, Martin Sternstein, PhD.	
	 Statistics for Business and Economics Neked Statistics, Stripping the Dread frame the Data - Charles Miles 	
	4. Naked Statistics: Stripping the Dread from the Data, Charles Whe	elan

5. Introduction to Linear Algebra, Gilbert Strangsss

	r	
<u>Course</u>	1.	Practical application of mathematical concepts in AI.
<u>Outcomes</u>	2.	Proficiency in data manipulation, analysis, and visualization.
	3.	Implementation and experimentation with AI algorithms.
	4.	Development of critical thinking and problem-solving skills in AI.

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-506 Title of the Course: Data Science Fundamentals

Number of Credits: 2(2L+ 0T+ 0P)

Prerequisites for	Statistics and Probability theory and Python Programming	
the course		
Objectives	To get started with basics of Data Science and learn all aspects of	
	Data Science in its entirety	
<u>Content</u>	Introduction: Typology of problems - Data science in a big data world: Benefits and uses of data science and big data-Facets of data-The data science process-The big data ecosystem and data science-The data science process: Overview of the data science process- Defining research goals and creating a project charter- Retrieving data-Cleansing, integrating, and transforming data- Exploratory data analysis-Build the models- Presenting findings and building applications on top of them.	4 hours
	Mathematics for Data science - Importance of linear algebra, statistics and optimization from a data science perspective; Structured thinking for solving data science problems. Linear Algebra: Matrices and their properties (determinants, traces, rank, nullity, etc.); Eigenvalues and eigenvectors; Matrix factorizations; Inner products; Distance measures; Projections; Notion of hyperplanes; half-planes. Probability, Statistics and Random Processes: Probability theory and axioms; Random variables; Probability distributions and density functions (univariate and multivariate); Expectations and moments; Covariance and correlation; Statistics and sampling distributions; Hypothesis testing of means, proportions, variances and correlations; Confidence (statistical) intervals; Correlation functions; White-noise process. Data clearing (EDA)	8 hours 3 hours
	Introduction to Data Science Methods: Linear regression as an exemplar function approximation problem; Linear classification problems-PCA	4 hours
	Handling large data on a single computer The problems you face when handling large data-General techniques for handling large volumes of data-General programming tips for dealing with large data sets - Case study 1: Predicting malicious URLs - First steps in big data-Distributing data storage and processing with frameworks	4 hours
	Introduction to NoSQL The rise of graph databases Introducing connected data and graph databases Introducing Neo4j: a graph database	3 hours 4 hours
	Data visualization to the end user Data visualization options Crossfilter, the JavaScript MapReduce library Creating an interactive dashboard with dc.js Dashboard development tools	
<u>Pedagogy</u>	Lectures/ Tutorials/Hands-on assignments/Self-study	
References /	1. Practical statistics for data science by peter bruce and andrew bru	uce
Readings	2. Naked statistics by charles wheelon	

	3. Business data science by matt taddy
	4. Elements of statistical learning by Trevor Hastie, Robert and jerome
	5. Python for data analysis
	6. Data science and big data analytics -EMC2
Course	1. Understanding of data science principles.
Outcomes	2. Proficiency in data manipulation and preprocessing.
	3. Ability to visualize and communicate data insights.
	4. Knowledge of statistical analysis and predictive modeling techniques.

Name of the Programme: M.Sc. in Artificial Intelligence Course code: CSI-507 Title of course: Data Science Fundamentals Lab Number of credits: 2(0L+0T+2P)

Prerequisites for	Basic programming skills, Statistics	
the course		
Objectives	To introduce Basic process of data science, Python and Jupyter	
	notebooks.	
	To understanding how to manipulate and analyze uncurated	
	datasets	
	To learn basic statistical analysis and machine learning methods	
	and effectively visualize results	
<u>Content</u>	Jupyter and Numpy: Jupyter notebooks are one of the most	10 hours
	commonly used tools in data science as they allow you to combine	
	your research notes with the code for the analysis. After getting	
	started in Jupyter, we'll learn how to use numpy for data analysis.	
	numpy offers many useful functions for processing data as well as	
	data structures which are time and space efficient.	
	Pandas: Pandas, built on top of numpy, adds data frames which	
	offer critical data analysis functionality and features.	10 hours
	Visualization: When working with large data sets you often need	10 hours
	to visualize your data to gain a better understanding of it. Also,	
	when you reach conclusions about the data, you'll often wish to	
	use visualizations to present your results.	
	Mini Project: With the tools of Jupyter notebooks, numpy, pandas,	
	and Visualization, you're ready to do sophisticated analysis on	10 hours
	your own. You'll pick a dataset we've worked with already and	
	perform an analysis for this first project.	
	Machine Learning: To take your data analysis skills one step	10 hours
	further, we'll introduce you to the basics of machine learning and	
	how to use sci-kit learn - a powerful library for machine learning.	
	Working with Text and Databases: You'll find yourself often	5 hours
	working with text data or data from databases. This week will give	
	you the skills to access that data. For text data, we'll also give you	
	a preview of how to analyze text data using ideas from the field of	
	Natural Language Processing and how to apply those ideas using	
	the Natural Language Processing Toolkit (NLTK) library.	
	Mini-Project	5 hours
<u>Pedagogy</u>	Tutorials/ Lab assignments/ Project work	
<u>References/</u>	1. Practical statistics for data science by Peter Bruce and Andrew Br	uce
<u>Readings</u>	2. Naked statistics by Charles Wheelon	
	3. Business data science by Matt Taddy	
	4. Elements of statistical learning by Trevor Hastie, Robert and jeror	ne
	5. Python for data analysis	
	b. Data science and big data analytics -EMC2	
Course	1. Application of data science techniques to real-world problems.	
Outcomes	2. Proticiency in data acquisition and preprocessing.	
	3. Ability to perform exploratory data analysis.	
	4. Building and evaluating predictive models.	

Semester II Name of the Programme: M.Sc. in Artificial Intelligence

Course Code: CSI-508

Title of the Course: Deep Learning

Number of Credits: 2(2L-0T-0P)

Prerequisites for	Programme prerequisites	
the course		
Objectives	To study the basics of Neural Networks and their various variants	
	such as the Convolutional Neural Networks and Recurrent Neural	
	Networks, to study the different ways in which they can be used to	
	Solve problems in various domains such as computer vision,	
Contont	Speech and NEP.	1 hours
Content	Logic Percentron Learning Algorithm and Convergence	THOUIS
	Multilaver Percentrons (MIPs) Representation Power of MIPs	1 hours
	Sigmoid Neurons, Gradient Descent	1 110010
	Feedforward Neural Networks, Representation Power of	2 hours
	Feedforward Neural Networks, Backpropagation	
	Gradient Descent(GD), Momentum Based GD, Nesterov	2 hours
	Accelerated GD, Stochastic GD, Adagrad, AdaDelta,RMSProp,	
	Adam,AdaMax,NAdam, learning rate schedulers	
	Autoencoders and relation to PCA, Regularization in autoencoders,	3 hours
	Denoising autoencoders, Sparse autoencoders, Contractive	
	autoencoders	
	Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset	3 hours
	augmentation, Parameter sharing and tying, injecting hoise at	
	Greedy Layer Wise Pre-training Better activation functions. Better	3 hours
	weight initialization methods. Batch Normalization	5 110013
	Learning Vectorial Representations of Words. Convolutional	3 hours
	Neural Networks, LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet,	
	ResNet	
	Visualizing Convolutional Neural Networks, Guided	3 hours
	Backpropagation, Deep Dream, Deep Art, Fooling Convolutional	
	Neural Networks	
	Recurrent Neural Networks, Backpropagation Through Time	3 hours
	(BPTT), Vanishing and Exploding Gradients, Truncated BPTT	
	Gated Recurrent Units (GRUs), Long Short Term Memory (LSTM)	3 hours
	Cells, Solving the vanishing gradient problem with LSTW	2 hours
	images Hierarchical Attention Transformers	STICUTS
Pedagogy	Lectures/Tutorials/Hands-on assignments/Self-study	
<u> </u>		
References/	1. Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep	Learning. An
<u>Readings</u>	MIT Press book. 2016.	
	2. Charu C. Aggarwai. Neural NetWorks and Deep Learning: A Textbo	ook. springer.
	2013. 3 Dive into Deen Learning by Achton Zang	
	 A Introduction to Deen Learning by Ashton Zang. 	
Course	1. Understanding of deep learning concepts and principles.	
Outcomes	2. Implementation and training of deep learning models.	
	3. Practical application of deep learning in various domains.	
	 Evaluation and interpretation of deep learning model performance. 	

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-509 Title of the Course: Deep Learning Lab Number of Credits: 2(0L-0T-2P)

Effective from AY: 2023-24 **Prerequisites for** Programming, Machine Learning Skills. Statistics, Calculus, Linear Algebra. Probability. the course 1. To make students comfortable with tools and techniques Objectives required in handling large amounts of datasets. 2. They will also uncover various deep learning methods in NLP, Neural Networks etc. **Tensorflow with Python** 5 hours Content Introducing Tensorflow - Tensorflow as an Interface - Tensorflow as an environment - Tensors - Computation Graph - Installing Tensorflow - Tensorflow training - Prepare Data - Tensor types -Loss and Optimization - Running tensorflow programs. **Building Neural Networks using Tensorflow** 5 hours Building Neural Networks using Tensorflow - Tensorflow data types - CPU vs GPU vs TPU - Tensorflow methods - Introduction to Neural Networks - Neural Network Architecture - Linear Regression example revisited - The Neuron - Neural Network Layers - The MNIST Dataset - Coding MNIST NN. Deep Learning using Tensorflow 5 hours Deepening the network - Images and Pixels - How humans recognise images - Convolutional Neural Networks - ConvNet Architecture - Overfitting and Regularization - Max Pooling and ReLU activations - Dropout - Strides and Zero Padding - Coding Deep ConvNets demo - Debugging Neural Networks - Visualising NN using Tensorflow - Tensorboard. 5 hours Transfer Learning using Keras and TFLearn Transfer Learning Introduction - Google Inception Model -Retraining Google Inception with our own data demo - Predicting new images - Transfer Learning Summary - Extending Tensorflow -Keras - TFLearn - Keras vs TFLearn Comparison. Suggest ideas for lab work 3 hours Assignment -1 Cat vs. Dog Image Classifier 3 hours Assignment -2- Covid-19 Detection in Lungs 3 hours Assignment -3- Digit Recognition System 3 hours Assignment - 4- Facial Recognition Application 3 hours Assignment -5- Face Mask Detection 3 hours Assignment -6- Cyber-Attack Prediction 3 hours Assignment -7- Automated Attendance System 3 hours Assignment -8 Emotion Recognition 3 hours Assignment -9- Object Detection System

	Assignment 10 - Recommender System	3 hours
Pedagogy	Lab assignment/mini project	
<u>References/</u> <u>Readings</u>	 Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep MIT Press book. 2016. Charu C. Aggarwal. Neural Networks and Deep Learning: A Textb 2019. Grokking Artificial Intelligence Algorithms by Rishal Hurbans Manning Publications. Deep Learning From Scratch: Building with Python from First Prin 	Learning. An ook. Springer. published by ciples by Seth
	 Weidman published by O'Reilley. 5. Deep learning in Python/ Pytorch by Manning Publications. 6. Deep Learning with Python by francois chollet. 7. Dive into Deep Learning by Ashton Zang. 8. Introduction to Deep Learning by Sandro Skansi. 	
<u>Course</u> Outcomes	 Practical application of deep learning techniques. Implementation and training of deep learning models. Data preprocessing and augmentation for deep learning. Model evaluation and optimization. 	

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-510 Title of the Course: Big Data Frameworks Number of Credits: 2(2L-0T-0P)

Prerequisites for	Probability and statistics and programming background	
the course		
Objectives	1. To understand the need of Big Data, challenges and different	
	analytical architectures	
	2. Installation and understanding of Hadoop Architecture and its	
	ecosystems	
	3. Processing of Big Data with Advanced architectures like Spark.	
	4. Describe graphs and streaming data in Spark	
Content	Introduction to big data	3 hrs
	Data Storage and Analysis - Characteristics of Big Data – Big Data	
	Analytics - Typical Analytical Architecture – Requirement for new	
	analytical architecture – Challenges in Big Data Analytics – Need of	
	big data frameworks	
	Hadoop framework	6 hrs
	Hadoop – Requirement of Hadoop Framework - Design principle of	
	Hadoop –Comparison with other system - Hadoop Components –	
	Hadoop 1 vs Hadoop 2 – Hadoop Daemon's – HDFS Commands –	
	Map Reduce Programming: I/O formats, Map side join, Reduce	
	Side Join, Secondary sorting, Pipelining MapReduce jobs -	
	Hadoop Ecosystem	3 hrs
	Introduction to Hadoop ecosystem technologies: Serialization:	
	AVRO, Co-ordination: Zookeeper, Databases: HBase, Hive,	
	Scripting language: Pig, Streaming: Flink, Storm	
	Spark framework	4 hrs
	Introduction to GPU Computing, CUDA Programming Model, CUDA	
	API, Simple Matrix, Multiplication in CUDA, CUDA Memory Model,	
	Shared Memory Matrix Multiplication, Additional CUDA API	
	Features.	
	Data analysis with spark shell	4 hrs
	Writing Spark Application - Spark Programming in Scala, Python, R,	
	Java - Application Execution	
	Spark SQL and Graph X	5hrs
	SQL Context – Importing and Saving data – Data frames – using	
	SQL – GraphX overview – Creating Graph – Graph Algorithms.	
	Spark streaming Overview – Errors and Recovery – Streaming	3 hrs
	Source – Streaming live data with spark	
	Recent trends in big data analytics	2 hr
<u>Pedagogy</u>	Assignment / Quiz / Project / Seminar	
References/	1. Mike Frampton, "Mastering Apache Spark", Packt Publishing, 201	15.
Readings	2. TomWhite, "Hadoop: The Definitive Guide", O'Reilly, 4th Edition, 2015	5.
	3. NickPentreath, MachineLearningwithSpark, PacktPublishing, 2015.	
	4. Mohammed Guller, Big Data Analytics with Spark, Apress, 2015.	
	5. Donald Miner, Adam Shook, "Map Reduce Design Pattern", O'Rei	lly, 2012.
<u>Course</u>	1. students would have a good understanding of Big Data	
<u>Outcomes</u>	2. understand the basics of the frameworks like Hadoop and spark a	nd
	3. have a knowledge of Spark SQL	
	4. have understanding of Spark streaming.	

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-511 Title of the Course: Big Data Frameworks Lab

Number of Credits: 2(0L -0T-2P)

			•	
Effective	from	AY:	2023-24	

Should have knowledge of one Programming Language (Java	
preferably), Practice of SQL (queries and sub queries), exposure to	
Linux Environment.	
Understand the Big Data Platform and its Use cases • Provide an	
Interfacing with HDES • Understand Man Peduce Jobs • Provide	
hands on Hodoon Eco System • Apply analytics on Structured	
Instructured Data	
List of Experiments:	E h u
1. Implement the following Data structures in Java Linked	5 hrs
Lists, Stacks, Queues, Set, Map	
2. Perform setting up and Installing Hadoop in its three operating	5 hrs
modes: Standalone, Pseudo Distributed, Fully distributed.	
3. Implement the following file management tasks in Hadoop:	5 hrs
Adding files and directories, Retrieving files (Deleting files Hint:	
A typical Hadoop workflow creates data files (such as log files)	
elsewhere and copies them into HDFS using one of the above	
command line utilities.	
4. Run a basic Word Count Map Reduce program to understand	5 hrs
Map Reduce Paradigm.	
5. Write a Map Reduce program that mines weather data.	5 hrs
Weather sensors collecting data everyhour at many locations	
across the globe gather a large volume of log data, which is a	
goodcandidate for analysis with MapReduce, since it is semi	
structured and record-oriented.	
6. Implement Matrix Multiplication with Hadoop Map Reduce	5 hrs
7. Install and Run Pig then write Pig Latin scripts to sort, group,	5 hrs
join, project, and filter your data.	
8. Install and Run Hive then use Hive to create, alter, and drop	5 hrs
databases, tables, views, functions, and indexes.	
9. Solve some real life big data problems.	20 hrs
- Traffic control using big data	
- Medical insurance fraud detection	
- Recommendation system	
 Anomaly detection in cloud servers 	
- Tourist behavior analysis	
- Web server log analysis	
Lab assignments/mini project/ seminar	
Text Books	
• Tom White "Hadoop: The Definitive Guide" Third Edit on, O'reily	Media, 2012.
 Seema Acharya, Subhasini Chellappan, "Big Data Analytics" Wiley 	2015.
References	
 Michael Berthold, David J. Hand, "Intelligent Data Analysis", Sprin 	iger, 2007.
 Jay Liebowitz, "Big Data and Business Analytics" Auerbach Publica 	ations. CRC
press (2013)	,
 Anand Rajaraman and lef rev David Illman "Mining of Massive D 	atasets"
Cambridge University Press, 2012	
 Bill Franks. "Taming the Big Data Tidal Wave: Finding Opportunities 	es in Huge
	 Should have knowledge of one Programming Language (Java preferably), Practice of SQL (queries and sub queries), exposure to Linux Environment. Understand the Big Data Platform and its Use cases • Provide an overview of Apache Hadoop • Provide HDFS Concepts and Interfacing with HDFS • Understand Map Reduce Jobs • Provide hands on Hodoop Eco System • Apply analytics on Structured, Unstructured Data. List of Experiments: Implement the following Data structures in Java Linked Lists, Stacks, Queues, Set, Map Perform setting up and Installing Hadoop in its three operating modes: Standalone, Pseudo Distributed, Fully distributed. Implement the following file management tasks in Hadoop: Adding files and directories, Retrieving files (Deleting files Hint: A typical Hadoop workflow creates data files (such as log files) elsewhere and copies them into HDFS using one of the above command line utilities. Run a basic Word Count Map Reduce program to understand Map Reduce Paradigm. Write a Map Reduce program that mines weather data. Weather sensors collecting data everyhour at many locations across the globe gather a large volume of log data, which is a goodcandidate for analysis with MapReduce, since it is semi structured and record-oriented. Implement Matrix Multiplication with Hadoop Map Reduce? Install and Run Pig then write Pig Latin scripts to sort, group, join, project, and filter your data. Solve some real life big data problems. Traffic control using big data Amedical insurance fraud detection Recommendation system Anomaly detection in cloud servers Tourist behavior analysis Web server log analysis Lab assignments/mini project/ seminar Text Books Tom White "Hadoop: The Definitive Guide" Third Edit on, O'reily esema Acharya, Subhasini Chellappan, "Big Data Analytics" Wiley press (2013) Anand Rajarama and Jef rey David Ul

	Data Streams with Advanced Analytics", John Wiley & sons, 2012.
	• Glen J. Myat, "Making Sense of Data", John Wiley & Sons, 2007
<u>Course</u>	1. Identify Big Data and its Business Implications.
<u>Outcomes</u>	2.List the components of Hadoop and Hadoop Eco-System
	3. Access and Process Data on Distributed File System and Manage Job Execution
	in Hadoop Environment
	3. Develop Big Data Solutions using Hadoop Eco System
	4. Analyze Infosphere BigInsights Big Data Recommendations.

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-512 Title of the Course: Reinforcement Learning Number of Credits: 2(2L-0T-0P)

Prerequisites for	Linear algebra, multivariable calculus	
the course	Basic machine learning knowledge	
Objectives	To enable the student to understand the reinforcement learning	
	paradigm, to be able to identify when an RL formulation is	
	appropriate, to understand the basic solution approaches in RL, to	
	implement and evaluate various RL algorithms.	
<u>Content</u>	Review of ML fundamentals – Classification, Regression. Review of	2 hrs
	probability theory and optimization concepts.	
	RL Framework; Supervised learning vs. RL; Explore-Exploit	2 hrs
	Dilemma; Examples.	
	MAB: Definition, Uses, Algorithms, Contextual Bandits, Transition	2 hrs
	to full RL, Intro to full RL problem	
	Intro to MDPs: Definitions , Returns, Value function, Q-function.	2 hrs
	Bellman Equation, DP, Value Iteration, Policy Iteration,	2 hrs
	Generalized Policy Iteration.	
	Evaluation and Control: TD learning, SARSA, Q-learning, Monte	2 hrs
	Carlo, ID Lambda, Eligibility Traces.	2 h
	Maximization-Blas & Representations: Double Q learning, Tabular	2 nrs
	learning vs. Parameterized, Q-learning with NNS	2 has
	Poplay Buffer	ZINIS
	Policy Gradients: Introduction Motivation REINFORCE PG	3 hrs
	theorem Introduction to AC methods	51115
	Actor-Critic Methods Baselines Advantage AC A3C Advanced	3 hrs
	Value-Based Methods: Double DON Prioritized Experience Replay	5 11 5
	Dueling Architectures, Expected SARSA.	
	Advanced PG/A-C methods: Deterministic PG and DDPG. Soft	4 hrs
	Actor-Critic (SAC) HRL: Introduction to hierarchies, types of	
	optimality, SMDPs, Options, HRL algorithms POMDPS: Intro,	
	Definitions, Belief states, Solution Methods; History-based	
	methods, LSTMS, Q-MDPs, Direct Solutions, PSR.	
	Model-Based RL: Introduction, Motivation, Connections to	4 hrs
	Planning, Types of MBRL, Benefits, RL with a Learnt Model, Dyna-	
	style models, Latent variable models, Examples, Implicit MBRL.	
	Case study on design of RL solution for real-world problems.	
<u>Pedagogy</u>	Hands-on assignments / tutorials / peer-teaching / flip classroom/	
	presentations.	
<u>References/</u>	1. Reinforcement learning -Introduction by Richard sutton and A	ndrew barto,
<u>Readings</u>	2nd edition, MIT press.	
	2. Algorithms for reinforcement learning by Csaba Szepesvari, Rona	lld Brachman,
	et al,2010.	
Course	1.Solid understanding of reinforcement learning concepts, t	heories, and
Outcomes	algorithms.	
	2.Addity to implement and apply reinforcement learning algorithms	to real-world
	problems.	
	3. Evaluation and analysis of reinforcement learning systems.	
	4.Critical thinking skills, staying updated with current research and t	rends.

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-513 Title of the Course: Reinforcement Learning Lab Number of Credits: 2(0L-0T-2P)

Prerequisites for	Linear algebra, multivariable calculus , Basic machine learning		
the course	knowledge and programming background.		
Objectives	To understand the theory by carrying out the lab assignment		
	based on the key ideas of reinforcement learning.		
<u>Content</u>	1. RL task formulation (action space, state space, environment	7 hours	
	definition)		
	2. Tabular based solutions (dynamic programming, Monte Carlo,	7 hours	
	temporal-difference)		
	3. Function approximation solutions (Deep Q-networks)	7 hours	
	4. Policy gradient from basic (REINFORCE) towards advanced	7 hours	
	topics (proximal policy optimization, deep deterministic policy		
	gradient, etc.)		
	5. Model-based reinforcement learning	7 hours	
	6. Imitation learning (behavioral cloning, inverse RL, generative	7 hours	
	adversarial imitation learning)		
	7. Meta-learning	8 hours	
	8. Multi-agent learning, partial observable environments	10 hours	
<u>Pedagogy</u>	Lab assignments/ mini project		
<u>References/</u>	1. Richard S. Sutton and Andrew G. Barto, "Reinforcement learning:	An	
<u>Readings</u>	introduction", Second Edition, MIT Press, 2019.		
	2. Li, Yuxi. "Deep reinforcement learning." arXiv preprint arXiv:1810.06339		
	(2018).		
	3. Wiering, Marco, and Martijn Van Otterlo. "Reinforcement learning."		
	Adaptation, learning, and optimization 12 (2012): 3.		
	4. Russell, Stuart J., and Peter Norvig. "Artificial intelligence: a modern		
	approach."Pearson Education Limited, 2016.		
	5. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learr	ning." MH	
	press, 2016.		
0	6. David Silver's course on Reinforcement Learning (link).		
<u>Course</u>	1. Practical implementation skills of reinforcement learning algorith	ms.	
Outcomes	2. Ability to design and analyze experiments for evaluating r	2. Ability to design and analyze experiments for evaluating reinforcement	
1	learning systems.		
	2 Contribution to the field through neural research or inconsting or	aliantinan	
	 Contribution to the field through novel research or innovative ap Improved collaboration and communication chills with instance 	plications.	

Name of the Programme: M.Sc. in Artificial Intelligence Course code:CSI-514

Title of course: Software Engineering for AI Enabled systems

Number of credits: 2 (2L-0T-0P)

Effective	from	AY:	2023-24

Prerequisites for	Programming & Data Structures, Python	
the course		
Objectives	Gain an in-depth understanding of Software Engineering including	
	its importance.	
	Learn Scrum, Kanban, Agile, Waterfall, Prototyping, Incremental,	
	RAD and Spiral Software Process Models.	
	Learn to perform systematic Software Requirement Engineering.	
	Applying SE approach to developing AI solutions	
<u>Content</u>	Software Engineering: Software Processes, SDLC , agile approaches	5 hours
	to SE	
	Requirements Engineering: elicitation techniques, specification.	5 hours
	SCRUM and user stories.	
	Test Driven Development: Refactoring and Unit testing	5 hours
	Use of frameworks and APIS and handling of big data	5 marks
	Configuration management, continuous integration, and	5 hours
	automated software engineering	
	Cloud based software development, DevOps	5 hours
<u>Pedagogy</u>	Classroom/handson instructions, assignments, miniprojects	
<u>References/</u>	1. Hands-On Software Engineering with Python: Move b	eyond basic
<u>Readings</u>	programming and construct reliable and efficient software with c	omplex code,
	Brian Allbee, Packt Publishing.	
	2. A concise Introduction to Software Engineering, Pankaj Jalote-200	08n- Springer.
	3. Agile Estimating and Scrum, Mike Cohn, Prentice Hall.	
<u>Course</u>	1. Application of SE principles for AI and Data Sceince projects	
<u>Outcomes</u>	2. How to work in self organizing teams	
	3. Use of tools and techniques for automating and manag	ing software
	development	
	Understand cloud based software development	

Name of the Programme: M.Sc. in Artificial Intelligence Course code:CSI-515 Title of course: Software Engineering for AI Enabled Systems Lab

Number of credits: 2 (0L-0T-2P)

Prerequisites for	Programming & Data Structures, Python	
the course		
Objectives	Applying SE approach to developing AI solutions	
	Use of modern software engineering tools and frameworks	
<u>Content</u>	1)Version Control Tools- Git and Github	12 hours
	2)TDD –Unit testing and refactoring with Python	12 hours
	3)Working with Python libraries and frameworks	12 hours
	4)Use of testing tools- selenium, Jmeter	12 hours
	5) Cloud based software development & DevOps	12 hours
<u>Pedagogy</u>	Lab sessions and projects	
<u>References/</u>	1. Hands-On Software Engineering with Python: Move beyond basic	
<u>Readings</u>	programming and construct reliable and efficient software with c	omplex code,
	Brian Allbee, Packt Publishing.	
	2. A concise Introduction to Software Engineering, Pankaj Jalote-200	08n- Springer.
	3. Agile Estimating and Scrum, Mike Cohn, Prentice Hall.	
<u>Course</u>	1. Application of SE principles for AI and Data Science projects	
<u>Outcomes</u>	2. How to work in self organzing teams	
	3. Use of tools and techniques for automating and manag	ing software
	development	
	Understand how to implement devop	

Elective Courses Semester I Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-521 Title of Course: Natural Language Processing Number of Credits: 4 (2L-2T-0P)

Litective itolii AT. 2		
Prerequisites for	Fundamentals of Artificial Intelligence; Mathematical Foundations	
the course	for Artificial Intelligence.	
	Machine Learning and Programming background. Introduction to	
	NLP (Theory), Mathematical foundations for AI.	
Objectives	This course will focus on understanding the essentials of Natural	
	Language Processing (NLP), areas in NLP, algorithms, and NLP	
	tasks.	
	Students who complete this course will gain a foundational	
	understanding in natural language processing methods and	
	strategies. They will also learn how to evaluate the strengths and	
	weaknesses of various NIP technologies and frameworks as they	
	gain practical experience in the NLP toolkits available	
Content:	Part I: Foundations of Natural Language Processing	8 hours
Theory	Introduction	onours
<u>Incory</u>	 Natural Language Processing - Problems and perspectives 	
	 Introduction/Recall to/of probability calculus 	
	O N-grams and Language Models	
	 Markov Models 	
	 Introduction to Machine Learning and Deen Learning 	
	Recurrent Neural Network Language Models	
	The evaluation of NLP applications Corpora	
	 Corpora and their construction: representativeness 	
	 Concordances collocations and measures of words association 	
	 Methods for Text Retrieval 	
	Regular expressions	
	Part II: Natural Language Processing	16 hours
	Computational Phonetics and Speech Processing	10 110 113
	 Speech samples: properties and acoustic measures 	
	• Analysis in the frequency domain Spectrograms	
	 Annlications in the acoustic-phonetic field 	
	 Speech recognition with HMM and Deen Neural Networks 	
	 Tokenisation and Sentence splitting 	
	Computational Mornhology	
	 Morphological operations 	
	o Static lexica Two-level morphology	
	Computational Syntax	
	O Part-of-speech tagging	
	O Grammars for natural language	
	O Natural language Parsing	
	 Supplementary worksheet: formal grammars for NL 	
		1
	Formal languages and Natural languages. Natural language	Į
	 Formal languages and Natural languages. Natural language complexity 	
	 Formal languages and Natural languages. Natural language complexity Phrase structure grammars. Dependency Grammars 	
	 Formal languages and Natural languages. Natural language complexity Phrase structure grammars, Dependency Grammars Treebanks 	
	 Formal languages and Natural languages. Natural language complexity Phrase structure grammars, Dependency Grammars Treebanks Modern formalisms for parsing natural languages 	
	 Formal languages and Natural languages. Natural language complexity Phrase structure grammars, Dependency Grammars Treebanks Modern formalisms for parsing natural languages Computational Semantics 	

	Word Sense Disambiguation	
	 Distributional Semantics & Word-Space models 	
	0 Logical approaches to sentence semantics	
	Part III: Applications and Case studies:	6 hours
	• Solving Downstroom Tacke: Document classification. Sontiment	0 110013
	Solving Downstream Tasks. Document classification, Seminent	
	Analysis, Named Entity Recognition, Semantic Textual Similarity	
	Prompting Pre-Trained Language Models	
	Network Embedding	
	Sample list of Assignments and a Mini Project using all these	
	functionalities to be discussed and implemented during Tutorial	20 * 1 = 20
	Slots	hours for
		Assignment
	Assignment -1 -Import nltk and download the 'stopwords' and	Discussion
	'punkt' packages.	+
	Assignment-2 -Import spacy and load the language model.	10 hours for
	Assignment -3 -How to tokenize a given text?	a Mini
	Assignment-4 - How to get the sentences of a text document?	Project
	Assignment- 5-How to tokenize a text using the `transformers`	2
	package?	
	Assignment -6 - How to tokenize text with stopwords as	
	delimiters?	
	Assignment- 7- How to remove stop words in a text?	
	Assignment -8- How to add custom stop words in spaCy?	
	Assignment 9 How to remove nunctuations?	
	Assignment 10 - How to perform stomming?	
	Assignment 11 How to lommatize a given text?	
	Assignment 12. How to outract usernames from empile?	
	Assignment 12 How to find the most common words in the text	
	Assignment -13-How to find the most common words in the text	
	excluding stopwords	
	Assignment -14- How to do spell correction in a given text?	
	Assignment -15- How to tokenize tweets?	
	Assignment -16- How to extract all the nouns in a text?	
	Assignment -17- How to extract all the pronouns in a text?	
	Assignment - 18 - How to find similarity between two words?	
	Assignment -19- How to find similarity between two documents?	
	Assignment -20 -How to find the cosine similarity of two	
	documents?	
Pedagogy	Hands-on assignments/tutorials / peer-teaching / pair	
	programming/presentations / mini-project.	
	Lectures / Practical / tutorials / assignments / self-study / mini-	
	project	
<u>References/</u>	1. Allen, James, Natural Language Understanding, Second Edition,	
<u>Readings</u>	Benjamin/Cumming, 1995.	
	2. Charniack, Eugene, Statistical Language Learning, MIT Press, 1993	l.
	3. Jurafsky, Dan and Martin, James, Speech and Language Processing	g, Second
	Edition, Prentice Hall, 2008.	
	4. Manning, Christopher and Heinrich, Schutze, Foundations of Stati	stical
	5. Natural Language Processing, MIT Press, 1999.	
	6. Tamburini, F Neural Models for the Automatic Processing of Itali	ian, Bologna:
	Pàtron. 2022	-
	7. T. McEnery and A. Wilson. Corpus Linguistics, EUP. 2001	
	8. https://corpora.ficlit.unibo.it/NLP/	
	9. <u>https://www.machine</u> learningplus.com/nlp/nlp-exercises/	
	10. Deep Learning by Goodfellow, Bengio, and Courville free online	

	11. Machine Learning — A Probabilistic Perspective by Kevin Murphy online			
	12. Natural Language Processing by Jacob Eisenstein free online Speech and			
	Language Processing by Dan Jurafsky and James H. Martin (3rd ed. draft)			
<u>Course</u>	1. Learners will learn about the concepts in natural language processing.			
Outcomes	2. Learners will have a fair idea of different areas in NLP			
	3. Learners will appreciate the complexities involved in natural language			
	processing.			
	4. Through lectures and practical assignments, students will learn the necessary			
	tricks for making their models work on practical problems.			

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-522 Title of Course: Computer Vision Number of Credits: 4 (2L-2T-0P) Effective from AY: 2023-24

Prerequisites for	Python programming, linear algebra and calculus , array	
the course	manipulation	
Objectives	The aim of the course is to introduce the fundamental concept of	
	computer vision and to emphasize the importance of computer	
	vision in developing and implementing different projects	
Theory:	Image Formation - Geometric Camera Models - Light and Shading -	6 hours
	Color - Early Vision: Just One Image	
	Linear Filters - Local Image Features - Texture - Early Vision:	6 hours
	Multiple Images - Stereopsis - Structure from Motion - Mid-Level	
	Vision	
	Segmentation by Clustering - Grouping and Model Fitting- Tracking	6 hours
	- High-Level Vision- Registration- Smooth Surfaces and Their	
	Outlines - Range Data - Learning to Classify - Classifying Images	
	Detecting Objects in Images- Tonics in Object Recognition	6 hours
	Annlications	onours
	Image-Based Modeling and Rendering - Looking at People- Image	6 hours
	Search and Retrieval - Optimization Techniques	
Tutorial	1. Open CV setup and demo on getting started up.	3 hours
session/Practic		
al assignments:	2. Image representation and image manipulation using open CV	3 hours
	3. Image storage and manipulation.	3 hours
	4 Photographs and perspective prejections	2 hours
	4. Photographs and perspective projections	3 nours
	5 Gaussian smoothings	3 hours
		Shours
	6. Canny edge detection	3 hours
	7. Corner detection	3 hours
	8. Gabor filters	3 hours
	9. Hough transformation for lines	3 hours
	10 Hough transformation for circles	3 hours
Pedagogy:	lectures/Practical/tutorials/assignments/self-study	5 110013
References/R	1. Computer Vision: Algorithms And Applications by Richard Szeliski	
eadings:	https://www5.cs.fau.de/lectures/ss-14/computer-vision-cv/mputer-	vision-
	exercises/index.html	
	Read more at: https://viso.ai/computer-vision/computer-vision-boo	<u>ks/</u>
	2. Computer Vision: Models, Learning, and Inference	
	Read more at: https://viso.ai/computer-vision/computer-vision-boo	<u>ks/</u>
	3. Modern Computer Vision with PyTorch by Yeshwanth Reddy and V	/ Kishore
	Ayyadevara	

	Read more at: <u>https://viso.ai/computer-vision/computer-vision-books/</u>
	4. Learning OpenCV 4 Computer Vision with Python 3
	Read more at: https://viso.ai/computer-vision/computer-vision-books/
Course	1. Acquire and process raw image data and Relate image data to 3D scene
Outcomes:	structures.
	2. Know the concepts behind and how to use several model-based object
	representations, and critically compare them.
	3. Know many of the most popularly used current computer vision techniques by
	carrying out suitable lab experiments listed above
	4. Undertake computer vision work in MATLAB or python OpenCV

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-523 Title of Course: Robotics Number of Credits: 4 (2L-2T-0P) Effective from AY: 2023-24

Litective from AT. 2	2025-24	
Prerequisites for	Linear Algebra, Set Theory, Complex Analysis, Matrices	
the course		
<u>Objectives</u>	1. To summarize and analyze the fundamentals of robotics.	
	2. To introduce students the kinematics and dynamics of robots.	
	3. To elucidate students the types of motion control.	
	4. To familiarize students with the basic techniques of designing	
	the robots.	
Theory:	Module:1 Fundamentals	5 hours
-	Introduction – Components, Degrees of Freedom, Joints,	
	Coordinates, Mechanisms, Controller.	
	Module:2 Kinematics	5 hours
	Position and Orientation of Objects. Coordinate Transformation.	
	Joint Variables and Position of End	
	Effector, Inverse Kinematics Problem, Jacobian Matrix, Statics and	
	lacobian Matrices.	
	Module:3 Dynamics	5 hours
	Lagrangian and Newton-Euler Formulations Derivation of	5 110 410
	Dynamics Equations Based on Lagrangian	
	Formulation Derivation of Dynamic Equations Based on Newton-	
	Fular Earmulation Liso of Dynamics	
	Equations and Computational Load Identification of Manipulator	
	Dynamics.	F hours
	Maninulability Ellingaid and Maninulability Mangura Dast	Shours
	Configurations of Dobatic Machanisms from	
	Maninulability Viewneint Verieus Indiaes of Maninulability	
	Nampulability viewpoint, various indices of Manipulability,	
	Dynamic Manipulability.	E haven
	Widdule:5 Position Control	5 nours
	Generating a Desired Trajectory, Linear Feedback Control, Two-	
	Stage Control by Linearization and Servo	
	Compensation, Design and Evaluation of Servo Compensation,	
	Decoupling Control, Adaptive Control.	
	Module:6 Force Control	3 hours
	Impedance Control - Passive-Impedance Method, Active-	
	Impedance Method-One- Degree-of- Freedom	
	Case, Active-Impedance Method-General Case.	
	Module:7 Hybrid Control	2 hours
	Hybrid Control - Hybrid Control via Feedback Compensation,	
	Dynamic Hybrid Control.	
Practicals to be	1. Assignment on introduction to Robot Configuration.	3 hours
discussed and	2. Demonstration of Robot with 2 dof, 3 dof, 4 dof etc.	2 nours
implemented	3. I wo assignments on programming the Robot for some simple	5 hours
during the	real life applications.	
Tutorial Slots:	4. I wo assignments on programming the Robot for applications in	5 hours
	Val II.	
	5. Two programming exercises for robots.	5 hours
	6. Two case studies of applications in industry.	5 hours
	7. Exercise on robotic simulation software.	5 hours

Pedagogy	Lectures/Practical/ Tutorials/Assignments		
References/	Text Book(s)		
Readings	1. Tsuneo Yoshikawa, "Foundations of Robotics Analysis and Control", The MIT		
	Press Cambridge, 1990.		
	2. Saeed B Niku, "Introduction to Robotics Analysis, Control, Applications", 3rd		
	Edition, Wiley, 2020.		
	Reference Books		
	1. Robert J. Schilling, "Fundamentals of Robotics, Analysis and Control", Prentice		
	Hall India, 2003.		
	2. John J. Craig, "Introduction to Robotics, Mechanics and Control", 3rd Edition,		
	Pearson Prentice Hall, 2005.		
Course	After the completion of the course, student will be able to:		
Outcomes	1. Comprehend, classify and analyze the fundamentals of robotics.		
	2. Analyze the kinematics in robots.		
	3. Gain knowledge about the dynamics of robots.		
	4. Elucidate the motion control in robotics.		

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-524 Title of Course: IoT Architecture and Protocols

Number of Credits: 4 (2L-2T-0P)

Prerequisites for	Internet Technologies, Computer Organization and architecture,	
the course	Operating Systems.	
Objectives	To understand the fundamentals of Internet of Things and the	
	protocols and standards designed for IoT	
<u>Theory</u>	Introduction to IoT: Introduction, IoT ecosystem, Applications,	2 hours
	Challenges.	
	Fundamentals: IoT Devices - Sensors, Actuators, and gateways,	4 hours
	Basics of the wireless sensor network.	
	IoT Architecture & Design: oneM2M, IoTWF, Additional Reference	4 hours
	Models, Core functional stack, Data Management and compute	
	stack.	
	Communicating smart objects: Communication criteria,	8 hours
	communication models, for access technologies – 3GPP MTC, IEEE	
	802.11, IEEE 802.15, WITCHESSMART, ZWAVE,	
	Bluetooth Low Energy Zighee Smart Energy DASH7	3 hours
	Int Network Laver: IP as Int network laver IPv6 6LoWPAN	5 110015
	6TISCH, RPL, CORPL, CARP	
	IoT Transport and Application protocols:	3 hours
	Transport Layer: TCP, UDP, DCCP, SCTP, TLS, DTLS	
	IoT application transport methods, HTTP, CoAP, XMPP, MQTT,	
	AMQP, DDS	
	Security in IoT: MAC802.15.4, 6LoWPAN, RPL, Application Layer	3 hours
	security.	
	IoT Application case study: Discuss any 3 applications of IoT	3 hours
Any 15 Case	1. Smart Agriculture System	15 * 2 = 30
Studies /	2. Weather Reporting System	hours
Systems to be	3. Home Automation System	
discussed	4. Face Recognition Bot	
during the	5. Smart Garage Door	
Tutorial Slots:	D. Smart Aldrin Clock	
	7. All Pollution Monitoring System	
	9 Smart Traffic Management System	
	10 Smart Cradle System	
	11 Smart Gas Leakage Detector Bot	
	12 Streetlight Monitoring System	
	13 Smart Anti-Theft System	
	14 Liquid Level Monitoring System	
	15. Night Patrol Robot	
	16. Health Monitoring System	
	17. Smart Irrigation System	
	18. Flood Detection System	

r	
	19. Mining Worker Safety Helmet
	20. Smart Energy Grid
<u>Pedagogy</u>	lectures/ tutorials/Hands-on assignments/self-study
References/	1. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome
Readings	Henry, "IoT Fundamentals: Networking Technologies, Protocols, and Use
	Cases for the Internet of Things", CISCO Press, 2017
	2. Hersent, Olivier, David Boswarthick, and Omar Elloumi, The internet of things:
	Key applications and protocols. John Wiley & Sons, 2011.
	3. Buyya, Rajkumar, and Amir Vahid Dastjerdi, eds. Internet of Things: Principles
	and Paradigms. Elsevier, 2016.
Course	1. Understanding and knowledge of various IoT protocols.
<u></u>	
Outcomes	2. Ability to select and implement appropriate IoT protocols based on application
	requirements.
	3. Awareness of security and privacy considerations in IoT protocols.
	4. Familiarity with interoperability, performance optimization, and emerging
	trends in IoT protocols.

Semester II

Name of the Programme: M.Sc. in Artificial Intelligence

Course Code: CSI-525

Title of Course: Machine Translation

Number of Credits: 4 (2L-2T-0P)

Prerequisites for	Knowledge of Mathematics for Computer Science and Machine	
the course	Learning will prove beneficial, A previous course on Artificial	
	Intelligence and Natural Language Processing will help; Exposure	
	to Linguistics is useful, though not mandatory	
Objectives:	The objective of the course is to understand and get an insight into	
	the different approaches used for Machine Translation (MT).	
Content:	Introduction: Data-driven MT, MT Approaches, Language	8 hours
	divergence, three major paradigms of MT, MT Evaluation,	
	Bilingual Word Mappings: Combinatorial Argument, One-to-One	4 hours
	Alignment, Heuristic and Iterative bases computation,	
	Mathematics of Alignment, Expectation Maximization, IBM models	
	of Alignment	
	Phrase-Based Machine Translation (PBMT): Need, Examples,	10 hours
	Phrase Table, Mathematics of Phrase-Based SMT, Decoding.	
	Rule-Based Machine Translation (RBMT): Kinds, UNL, Interlingua	5 hours
	and Word Knowledge, UNL conversion, Transfer-based MT.	
	Example-Based Machine Translation (EBMT): Essential steps of	3 hours
	EBMT, Text similarity computation, Translation memory, Statistical	
	Machine Translation	
	Assignments to be discussed during the Tutorial Slots -	30 hours
	Assignment 1:	8 hours
	Data-driven MT, MT Approaches, Language divergence, three	
	major paradigms of MT, MT Evaluation,	
	Assignment 2:	4 hours
	Bilingual Word Mappings: Combinatorial Argument, One-to-One	
	Alignment, Heuristic and Iterative bases computation,	
	Mathematics of Alignment, Expectation Maximization, IBM models	
	of Alignment	
	Assignment 3:	10 hours
	Phrase-Based Machine Translation (PBMT): Need, Examples,	
	Phrase Table, Mathematics of Phrase-Based SMT, Decoding.	
	Assignment 4:	5 hours
	Rule-Based Machine Translation (RBMT): Kinds, UNL, Interlingua	
	and Word Knowledge, UNL conversion, Transfer-based MT.	
	Assignment 5:	3 hours
	Example-Based Machine Translation (EBMT): Essential steps of	
	EBMI, Text similarity computation, Translation memory, Statistical	
Dedeesary	Machine Translation	
Pedagogy:	lectures/ tutoriais/assignments/seit-learning/ flipped classroom	
<u>Keterences/</u>	1. Machine Translation by Pushpak Bhattacharyya, Chapman a	ind Hall/CRC,
<u>keadings</u>	repludiy 2015 2 Machine Translation on Coursers by Prof. Alexander Misibal and	d Ion Nichuss
	2. Wachine Translation on Coursera by Prot. Alexander Walbel and	a jan mienues
	An Open Source Neural Machine Translation System https://arc	namt not/
	An Open Source Neural Wachine Translation System <u>https://open</u> A Bhashini Project – https://bhashini.gov.in/bhashadaan/on/likha	india
Course	4. Diasinin Floject - <u>inteps.//bilasinin.gov.in/bilasinduadi/en/ikito</u>	horstand the
Outcomes	differences between Phrase-Based Rule-Based and Example-Based	sed Machine
<u>Sattonics</u>	amerenees between rindse bused, nule bused, and Example bu	

Translation
2.explain, apply, and assess evaluation methods for machine translation; describe
and child their own translation model using evicting tools for machine translation
3.build their own translation model using existing tools for machine translation
and evaluate and analyse the translation results; compare different types of
machine translation strategies, such as rule-based, statistical, and neural machine
translation;
4.implement components of machine translation systems or components used in
evaluation or pre-processing

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-526

Title of the Course: Mathematics for Computer Vision and Robotics

Number of Credits: 4(2L+2T+P)

Prerequisites for	Linear Algebra, Probability and Statistics, Signal Processing	
the course		
Objectives	To understand basic concepts of linear algebra and to illustrate its	
	power and utility through applications to computer vision.	
	To apply the concepts of vector spaces, linear transformations,	
	matrices and inner product spaces in engineering.	
	To understand the concepts of curves and surfaces and solving	
	linear programming problems that arise in engineering.	
<u>Theory:</u>	Vectors and Matrices Points, vectors, vector spaces(Rn only), lines	3 hours
	and planes as subspaces -Matrices and four fundamental spaces-	
	Gaussian elimination.	
	Factorization of Matrices LU factorizations-Cholesky	6 hours
	decomposition – eigenvalues and eigenvectors – SVD - Applications	
	of the SVD Solving Linear Systems and the Pseudoinverse -	
	Principal Components Analysis (PCA)	
	Linear transformations Linear transformations(R^n only) – Basic	6 hours
	properties-invertible linear transformation - matrices of linear	
	transformations.	
	Geometry in Linear Transformation Projections, Rotations and	6 hours
	reflection and applications	
	Orthogonality Dot products and inner products(R^n only) –	3 hours
	lengths and angles of vectors –orthogonal matrices- Gram Schmidt	
	orthogonalizations - QR factorization- orthogonal projections-	
	Least Square solutions	
	Differential geometry Introduction to differential geometry -	3 hours
	curves-curvature-torsion-osculating plane –surfaces	
	Linear programming Linear programming – Formulation of LPP-	3 hours
	Graphical method - Simplex method	
Assignments to	Assignment 1- Getting to Know the Python math Module,	- * 0 04
be discussed	Constants of the math Module:Pi, Tau, Euler's Number, Infinity,	/*3=21
during lutorial	Not a Number (NaN) and Arithmetic Functions, Find Factorials With	hours
Slots:	Python factorial(), Find the Celling Value with Cell(), Find the Floor	. O h a una fa a
	Value with floor(), Find the Numbers with trunc(), Find the	+ 9 nours for
	closeness of Numbers with Python (sclose()	a iviini Droiget
	Accignment 2 Dower Functions, Coloulate the Dower of a Number	Project
	With now() Find the Natural Exponent With even() Practical	
	Example With exp() Logarithmic Exponent With exp(), Practical	
	With log() Understand log2() and log10() Practical Example With	
	Natural Log	
	Assignment-3 -Other Important math Module Functions. Calculate	
	the Greatest Common Divisor. Calculate the Sum of Iterables.	
	Calculate the Square Root, Convert Angle Values, Calculate	
	Trigonometric Values	
	Assignment -4 -New Additions to the math Module in Python	
	3.8.cmath vs math, NumPy vs math,	

	Assignment -5 -Calculating combinations and permutations using factorials, Calculating the height of a pole using trigonometric functions, Calculating radioactive decay using the exponential function, Calculating the curve of a suspension bridge using hyperbolic functions, Solving quadratic equations
	Assignment - 6 -Simulating periodic functions, such as sound and
	light waves, using trigonometric functions,
	Assignment -7 -Vector algebra in python, Physical Quantities, Vector and Scalars, Representation of vectors, Types of Vectors, Operations on Vectors, Section Formula, Concept of Euclidean Distance between two vectors,
Pedagogy	Lectures/ Lab Assignments/ Seminar Presentations /Project Work
References/	1. Linear Algebra, Jin Ho Kwak and Sungpyo Hong, Second edition Springer, 2004.
Readings	2. Mathematics for Machine Learning, Marc Peter Deisenroth, A. Aldo Faisal,
	Cheng Soon Ong, Cambridge University Press, 2020.
	3. Operations Research principles and applications, G.Srinivasan, 3rd edition, PHI
	learning, 2017, Differential Commetry of Curves and Surfaces: Revised and Undeted Second
	4. Differential Geometry of Curves and Surfaces. Revised and Opdated Second Edition Manfredo P. do Carmo, Dover publications 2016
	5. Linear Algebra and Optimization with Applications to Machine Learning -
	Volume I.
	6. Linear Algebra for Computer Vision, Robotics, and Machine Learning, Jean H.
	Gallier, Jocelyn Quaintance, World Scientific Publishing Company, 2020.
	7. Basics of Matrix Algebra for Statistics with R, Nick Fieller, CRC press, 2016.
	8. Introduction to Linear Algebra, Gilbert Strang, 5th Edition, Cengage Learning
	9. Modern Mathematics And Applications in Computer Graphics And Vision,
	10 Computer Vision: A Modern Approach, Forsyth and Ponce, 2nd Edition Pearson
	2012.
<u>Course</u>	At the end of this course the students are expected to learn
Outcomes	1. The abstract concepts of matrices and system of linear equations using
	decomposition methods and applications in engineering
	2. Understand the geometry behind linear transforms which is used in computer
	graphics, Understand the concepts of orthogonality through linear algebra
	3. Understating properties curves and surfaces and Solving linear programming
	problems arise in engineering
	4. Solving problems in Linear algebra, linear programming and differential
	geometry using matpionib or Fython.

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-527 Title of the Course: Soft Computing Number of Credits: 4 (2L+2T+0P) Effective from AY: 2023-24

Effective from AY: 2	2023-24	
Prerequisites for	Machine Learning, Statistics	
<u>Objectives</u>	The objective of this course is to introduce methods for handling imprecise and uncertain data using Rough sets, Neuro Fuzzy Systems and foster their abilities in designing and implementing optimal solutions for real-world and engineering problems using derivative free optimization techniques	
<u>Content</u>	Introduction to Soft Computing Soft Computing Overview – Uncertainty in data, Hard vs Soft Computing	3 hours
	Neural Networks Introduction, RBF Networks, Self-Organizing Map, Boltzmann Machines, Convolutional Neural Networks.	2 hours
	Fuzzy Systems Fuzzy Sets, Fuzzy Relations, and Membership functions, Properties of Membership functions, Fuzzification and Defuzzification.	5 hours
	Fuzzy logic Fuzzy Rule based systems, Fuzzy Decision making, Fuzzy Classification, Fuzzy CMeans Clustering.	5 hours
	Rough Sets Rough Sets – Definition, Upper and Lower Approximations, Boundary Region, Decision Tables and Decision Algorithms. Properties of Rough Sets. Rough K-means clustering, Rough	5 hours
	Optimization Techniques Introduction, Genetic Algorithm, Memetic Algorithms, Particle Swarm Optimization, Ant Colony Optimization, Frog-Leaping.	5 hours
	Hybrid Systems GA Based Back Propagation Networks, Fuzzy Back Propagation Networks, Evolutionary Ensembles	5 hours
Assignments	List of Assignments:	
and Mini Project	1. To demonstrate the working of Hebbian learning rule	12 * 2 =
Discussions	2. To demonstrate the working of perceptron learning rule	24 hours
during the	3. To demonstrate the working of Delta learning rule	
Tutorial Slots:	4. To demonstrate the working of Widrow-Hoff learning rule	+ 6
	5. To demonstrate the working of Radial basis function network	hours
	 To demonstrate the working of Learning vector quantization To demonstrate the working of Solf Organizing mans 	TOF a
	7. To demonstrate the working of Becurrent neural networks	Project
	9. To demonstrate the working of Fuzzy inference system	indject
	10. To demonstrate the working of Genetic algorithm	
	11. To demonstrate the working of Particle Swarm Optimization	
	12. To demonstrate the working of Ant Colony Optimizations and TSP	

<u>Pedagogy</u>	Lectures / Assignments / Quiz / Mini Project / Seminar Presentations
References/	Main Readings
<u>Readings</u>	1. S.N. Sivanandham and S.N.Deepa, "Principles of Soft Computing", 2nd Edition,
	Wiley Publications.
	2. Andries P. Engelbrecht, "Computational Intelligence: An Introduction", John
	Wiley & Sons, 2007.
	3. Laurene V. Fausett "Fundamentals of Neural Networks: Architectures,
	Algorithms And Applications", Pearson, 1993.
	4. Simon Haykin "Neural Networks and Learning Machines" Prentice Hall, 2008.
	Timothy Ross, "Fuzzy Logic with Engineering Applications", Third Edition, Wiley.
<u>Course</u>	1. Have a general understanding of soft computing methodologies, to deal with
<u>Outcomes</u>	imprecise and uncertain data
	2. Develop computational neural network models for some simple biological
	systems;
	3. Develop fuzzy models for engineering systems, particularly for control systems;
	4. Apply derivative free optimization methods to solve real world problems
	5. Demonstrate some applications of computational intelligence.

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-528 Title of the Course: Regression Analytics and Predictive Models

Number of Credits: 4 (2L+2T+0P)

the course Image: Constraint of the course Develop an understanding of regression analysis and model building. Objectives • Develop an understanding of regression analysis and model building. • Provide the ability to develop relationship between variables • Investigate possible diagnostics in regression techniques • Formulate feasible solutions using a regression model for real-life problems. 4 hours Theory: Simple Regression Analysis 4 hours Introduction to a linear and nonlinear model. Ordinary Least Square methods. Simple linear regression model, using simple regression to describe a linear relationship. Fitting a linear ternd to time series data, Validating simple regression model using t, F and p test. Developing confidence interval. Precautions in interpreting regression results. 4 hours Multiple Regression Analysis Concept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression model, prediction with multiple regression equation. 4 hours Fitting Curves and Model Adequacy Checking 1 4 hours Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, box Cox methods, transformations on the interpreting the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications. 4 hours Multicollinearity Introduction, sources of multicollinearity,	Prerequisites for	Probability Theory and Distributions	
Objectives Develop an understanding of regression analysis and model building. Provide the ability to develop relationship between variables investigate possible diagnostics in regression techniques Formulate feasible solutions using a regression model for real-life problems. Theory: Simple Regression Analysis Introduction to a linear and nonlinear model. Ordinary Least Square methods. Simple linear regression model using simple regression to describe a linear relationship. Fitting a linear trend to time series data, Validating simple regression model using t, F and p test. Developing confidence interval. Precautions in interpreting regression results. Multiple Regression Analysis Concept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression model, prediction with multiple regression equation. Fitting Curves and Model Adequacy Checking Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. Transformations chaliging transformations, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications. Multicollinearity Introduction, sources of multicollinearity. effects of multicollinearity. Multicollinearity diagnostics: examination of correlation matrix, variance inflation factors (VIF). Eigen system analysis of XIX. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression.<th>the course</th><th></th><th></th>	the course		
building. Provide the ability to develop relationship between variables Investigate possible diagnostics in regression techniques Formulate feasible solutions using a regression model for real-life problems. Theory: Simple Regression Analysis 4 hours Introduction to a linear and nonlinear model. Ordinary Least Square methods. Simple linear regression model, using simple regression to describe a linear relationship. Fitting a linear trend to time series data, Validating simple regression model using t, F and p test. Developing confidence interval. Precautions in interpreting regression results. 4 hours Multiple Regression Analysis Concept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression analysis, problem of overfitting of a model, comparing two regression model, prediction with multiple regression equation. 4 hours Fitting Curves and Model Adequacy Checking 4 hours Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. 4 hours Transformation techniques 4 hours Introduction, sources of multicollinearity, effects of multicollinearity, variance Inflation factors (VIF). Eigen system analysis of X1X. Methods of dealing with Multicollinearity. collecting additional data, model re-specification, and ridge regression. 4 hours	Objectives	 Develop an understanding of regression analysis and model 	
 Provide the ability to develop relationship between variables Investigate possible diagnostics in regression techniques Formulate feasible solutions using a regression model for real-life problems. Theory: Simple Regression Analysis Introduction to a linear and nonlinear model. Ordinary Least Square methods. Simple linear regression model, using simple regression to describe a linear relationship. Fitting a linear trend to time series data, Validating simple regression model using t, F and p test. Developing confidence interval. Precautions in interpreting regression results. Multiple Regression Analysis Concept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression model, prediction with multiple regression equation. Fitting Curves and Model Adequacy Checking Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. Transformation techniques Introduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods, transformations to linearize the model, Box Cox methods, transformations to linearize the model, Box Cox methods, transformations of XIX. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression. Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion. Model building and Nonlinear Regression		building.	
 Investigate possible diagnostics in regression techniques Formulate feasible solutions using a regression model for real-life problems. Theory: Simple Regression Analysis Introduction to a linear and nonlinear model. Ordinary Least Square methods. Simple linear regression model, using simple regression to describe a linear relationship. Fitting a linear trend to time series data, Validating simple regression model using t, F and p test. Developing confidence interval. Precautions in interpreting regression results. Multiple Regression Analysis Concept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression analysis, problem of overfitting of a model, comparing two regression model, prediction with multiple regression equation. Fitting Curves and Model Adequacy Checking Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. Transformation techniques Introduction, variance stabilizing transformations, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications. Multicollinearity Introduction, sources of multicollinearity, effects of multicollinearity, variance Inflation factors (VIF), Eigen system analysis of XIX. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion. Moudel building and Nonlinear Regression. <		 Provide the ability to develop relationship between variables 	
 Formulate feasible solutions using a regression model for real-life problems. Theory: Simple Regression Analysis Introduction to a linear and nonlinear model. Ordinary Least Square methods. Simple linear regression model, using simple regression to describe a linear relationship. Fitting a linear trend to time series data, Validating simple regression model using t, F and p test. Developing confidence interval. Precautions in interpreting regression results. Multiple Regression Analysis Concept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression model, prediction with multiple regression equation. Fitting Curves and Model Adequacy Checking Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of prue errors from near neighbors. Transformation techniques Introduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications. Multicollinearity Introduction, sources of multicollinearity: collecting additional data, model re-specification, and ridge regression. Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion. Mourdel building and Nonlinear Regression 		 Investigate possible diagnostics in regression techniques 	
problems. 4 hours Theory: Simple Regression Analysis 4 hours Introduction to a linear and nonlinear model. Ordinary Least Square methods. Simple linear regression model, using simple regression to describe a linear relationship. Fitting a linear trend to time series data, Validating simple regression model using t, F and p test. Developing confidence interval. Precautions in interpreting regression results. 4 hours Multiple Regression Analysis 4 hours Concept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression analysis, problem of overfitting of a model, comparing two regression model, prediction with multiple regression equation. 4 hours Fitting Curves and Model Adequacy Checking 4 hours Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. 4 hours Transformation techniques 1 Introduction, variance stabilizing transformations, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications. 4 hours Multicollinearity Multicollinearity, effects of multicollinearity. Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of XIX. Methods of dealing with Multicollinearity: collecting additional data,		• Formulate feasible solutions using a regression model for real-life	
Theory: Simple Regression Analysis 4 hours Theory: Simple Rigression to a linear and nonlinear model. Ordinary Least Square methods. Simple linear regression model, using simple regression to describe a linear relationship. Fitting a linear trend to time series data, Validating simple regression model using t, F and p test. Developing confidence interval. Precautions in interpreting regression results. 4 hours Multiple Regression Analysis 4 hours Concept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression analysis, problem of overfitting of a model, comparing two regression model, prediction with multiple regression equation. 4 hours Fitting Curves and Model Adequacy Checking 4 hours Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. 4 hours Transformation techniques 4 hours Multicollinearity 4 hours Introduction, sources of multicollinearity, effects of multicollinearity. Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF). Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression. 4 hours Generalized Linear Models 4 hours 4 hours		problems.	
Introduction to a linear and nonlinear model. Ordinary Least Square methods. Simple linear regression model, using simple regression to describe a linear relationship. Fitting a linear trend to time series data, Validating simple regression model using t, F and p test. Developing confidence interval. Precautions in interpreting regression results.4hoursMultiple Regression Analysis Concept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression model, prediction with multiple regression equation.4hoursFitting Curves and Model Adequacy Checking Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. Transformation techniques Introduction, variance stabilizing transformations, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications.4 hoursMulticollinearity Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF). Eigen system analysis of XIX. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression.4 hoursGeneralized Linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.4 hoursModel building and Nonlinear Regression6 hours	Theory:	Simple Regression Analysis	4 hours
methods. Simple linear regression model, using simple regression to describe a linear relationship. Fitting a linear trend to time series data, Validating simple regression model using t, F and p test. Developing confidence interval. Precautions in interpreting regression results.4hoursMultiple Regression Analysis Concept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression analysis, problem of overfitting of a model, comparing two regression model, prediction with multiple regression equation.4 hoursFitting Curves and Model Adequacy Checking Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors.4 hoursTransformation techniques Introduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications.4 hoursMulticollinearity Multicollinearity4 hoursMulticollinearity Multicollinearity4 hoursMulticollinearity Generalized linear model: link functions and linear prediction parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.4 hoursMulticel inear Model building and Nonlinear Regression6 hours		Introduction to a linear and nonlinear model. Ordinary Least Square	
describe a linear relationship. Fitting a linear trend to time series data, Validating simple regression model using t, F and p test. Developing confidence interval. Precautions in interpreting regression results. Multiple Regression Analysis Concept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression analysis, problem of overfitting of a model, comparing two regression model, prediction with multiple regression equation. Fitting Curves and Model Adequacy Checking Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. Transformation techniques Introduction, variance stabilizing transformations, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications. Multicollinearity Introduction, sources of multicollinearity, effects of multicollinearity, Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression. Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion. Model building and Nonlinear Regression Variable spleatione model building model microcrification Model		methods. Simple linear regression model, using simple regression to	
data, Validating simple regression model using t, F and p test. Developing confidence interval. Precautions in interpreting regression results.HoursMultiple Regression Analysis Concept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression analysis, problem of overfitting of a model, comparing two regression model, prediction with multiple regression equation.4 hoursFitting Curves and Model Adequacy Checking Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. Transformation techniques Introduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods, transformations to linearize the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications.4 hoursMulticollinearity Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression.4 hoursGeneralized linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.4 hoursModel building and Nonlinear Regression Wariable selection model building model microardification6 hours		describe a linear relationship. Fitting a linear trend to time series	
Developingcontidenceinterval.Precautionsin interpreting regression results.Multiple Regression Analysis Concept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression analysis, problem of overfitting of a model, comparing two regression model, prediction with multiple regression equation.4 hoursFitting Curves and Model Adequacy Checking Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors.4 hoursTransformation techniques Introduction, variance stabilizing transformations, transformations on the repressors variables, Generalized and weighted least squares, Some 		data, Validating simple regression model using t, F and p test.	
regression results.4hoursMultiple Regression Analysis4hoursConcept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression analysis, problem of overfitting of a model, comparing two regression model, prediction with multiple regression equation.4 hoursFitting Curves and Model Adequacy Checking Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors.4 hoursTransformation techniques Introduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications.4 hoursMulticollinearity Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression.4 hoursGeneralized Linear Models Generalized Linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.6 hoursModel building and Nonlinear Regression Variable selection model building model building model microgrification6 hours		Developing confidence interval. Precautions in interpreting	
Multiple Regression Analysis4 hoursConcept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression analysis, problem of overfitting of a model, comparing two regression model, prediction with multiple regression equation.4 hoursFitting Curves and Model Adequacy Checking Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. Transformation techniques4 hoursIntroduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications.4 hoursMulticollinearity Introduction, sources of multicollinearity, effects of multicollinearity, Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression.4 hoursGeneralized Linear Models Generalized Linear Models4 hoursGeneralized Linear Models Generalized Linear Models4 hoursGeneralized Linear Model6 hoursKodel building and Nonlinear Regression Variable selection, model building model microsfication and estimation with the GLM, Residual Analysis, and concept of over dispersion.6 hours		regression results.	a 1
 Concept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression analysis, problem of overfitting of a model, comparing two regression model, prediction with multiple regression equation. Fitting Curves and Model Adequacy Checking Fitting Curves and Model Adequacy Checking Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. Transformation techniques Introduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications. Multicollinearity Introduction, sources of multicollinearity, effects of multicollinearity. Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression. Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion. Model building and Nonlinear Regression Yariable selection model building, model microerification Model 		Multiple Regression Analysis	4hours
 Prelationship, Assessing the fit of the regression line, interences from multiple regression analysis, problem of overfitting of a model, comparing two regression model, prediction with multiple regression equation. Fitting Curves and Model Adequacy Checking Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. Transformation techniques		concept of Multiple regression model to describe a linear	
 A hours 4 hours 5 hours 5 attistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. 7 Transformation techniques 1 htroduction, variance stabilizing transformations, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications. Multicollinearity 1 htroduction, sources of multicollinearity, effects of multicollinearity. 4 hours 4 hours 4 hours 4 hours 5 dours 6 hours 4 hours 		relationship, Assessing the fit of the regression line, interences from	
Comparing two regression model, prediction with multiple regression4 hoursFitting Curves and Model Adequacy Checking Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. Transformation techniques4 hoursTransformation techniques Introduction, variance stabilizing transformations, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications.4 hoursMulticollinearity Multicollinearity Multicollinearity Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression.4 hoursGeneralized linear model: sparameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.4 hoursModel building and Nonlinear Regression Variable selection model building, model microarification, Model6 hours		comparing two regression model, prodiction with multiple regression	
Fitting Curves and Model Adequacy Checking4 hoursFitting Curves and Model Adequacy Checking4 hoursIntroduction, fitting curvilinear relationship, residual analysis, PRESS4 hoursstatistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors.4 hoursTransformation techniques4 hoursIntroduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications.4 hoursMulticollinearity Introduction, sources of multicollinearity, effects of multicollinearity, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression.4 hoursGeneralized Linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.6 hoursModel building and Nonlinear Regression6 hours		comparing two regression model, prediction with multiple regression	
 Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. Transformation techniques Introduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications. Multicollinearity Introduction, sources of multicollinearity, effects of multicollinearity. Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF). Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression. Generalized Linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion. Model building and Nonlinear Regression 		Eitting Curves and Model Adequacy Checking	4 hours
 statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. Transformation techniques Introduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications. Multicollinearity Introduction, sources of multicollinearity, effects of multicollinearity. Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression. Generalized Linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion. Model building and Nonlinear Regression Kariable selection, model building, model microactification. Model 		Introduction fitting curvilinear relationship residual analysis PRESS	4 Hours
 regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors. Transformation techniques Introduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications. Multicollinearity Introduction, sources of multicollinearity, effects of multicollinearity. Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression. Generalized Linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion. Model building and Nonlinear Regression 6 hours 		statistics, detection and treatment of outliers, lack of fit of the	
 heteroscedasticity. Estimation of pure errors from near neighbors. Transformation techniques Introduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications. Multicollinearity Introduction, sources of multicollinearity, effects of multicollinearity. Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression. Generalized Linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion. Model building and Nonlinear Regression Genoralized Linear model building model misspecification. 6 hours 		regression model, test of lack of fit. Problem of autocorrelation and	
Transformation techniques4 hoursIntroduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications.4 hoursMulticollinearity4 hoursIntroduction, sources of multicollinearity, effects of multicollinearity. Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression.4 hoursGeneralized Linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.6 hours		heteroscedasticity. Estimation of pure errors from near neighbors.	
Introduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications.4 hoursMulticollinearity Introduction, sources of multicollinearity, effects of multicollinearity. Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression.4 hoursGeneralized Linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.4 hoursModel building and Nonlinear Regression Variable selection model building model microsification Model6 hours		Transformation techniques	4 hours
linearize the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications.4 hoursMulticollinearity Introduction, sources of multicollinearity, effects of multicollinearity. Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression.4 hoursGeneralized Linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.4 hoursModel building and Nonlinear Regression Variable selection model building model missonsification6 hours		Introduction, variance stabilizing transformations, transformations to	
repressors variables, Generalized and weighted least squares, Some practical applications.4 hoursMulticollinearity Introduction, sources of multicollinearity, effects of multicollinearity. Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression.4 hoursGeneralized Linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.4 hoursModel building and Nonlinear Regression Variable selection model building model misspecification Model6 hours		linearize the model, Box Cox methods, transformations on the	
practical applications.4 hoursMulticollinearityIntroduction, sources of multicollinearity, effects of multicollinearity. Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression.4 hoursGeneralized Linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.4 hoursModel building and Nonlinear Regression Variable selection model building model misspecification Model6 hours		repressors variables, Generalized and weighted least squares, Some	
Multicollinearity4 hoursIntroduction, sources of multicollinearity, effects of multicollinearity. Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression.4 hoursGeneralized Linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.4 hoursModel building and Nonlinear Regression6 hours		practical applications.	
 Introduction, sources of multicollinearity, effects of multicollinearity. Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression. Generalized Linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion. Model building and Nonlinear Regression Variable selection, model building, model misspecification, Model 		Multicollinearity	4 hours
Multicollinearitydiagnostics:examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression.4 hoursGeneralized Linear Models Generalized linear model:4 hoursGeneralized linear model:1ink functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over 		Introduction, sources of multicollinearity, effects of multicollinearity.	
 variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression. Generalized Linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion. Model building and Nonlinear Regression Variable selection, model building, model misspecification, Model 		Multicollinearity diagnostics: examination of correlation matrix,	
Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression.4 hoursGeneralized Linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.4 hoursModel building and Nonlinear Regression Variable selection6 hours		variance Inflation factors (VIF), Eigen system analysis of X1X.	
model re-specification, and ridge regression.4 hoursGeneralized Linear Models4 hoursGeneralized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.6 hoursModel building and Nonlinear Regression6 hours		Methods of dealing with Multicollinearity: collecting additional data,	
Generalized Linear Models4 hoursGeneralized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.4 hoursModel building and Nonlinear Regression6 hoursVariable selectionmodel building model misspecification6 hours		model re-specification, and ridge regression.	
Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.6 hoursModel building and Nonlinear Regression6 hours		Generalized Linear Models	4 hours
parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.6 hoursModel building and Nonlinear Regression6 hoursVariable selectionmodel building model misspecificationModel		Generalized linear model: link functions and linear predictors,	
estimation with the GLM, Residual Analysis, and concept of over dispersion. Model building and Nonlinear Regression Variable selection model building model misspecification Model		parameter estimation and inference in the GLM, prediction and	
dispersion. Model building and Nonlinear Regression 6 hours Variable selection model building model misspecification Model		estimation with the GLM, Residual Analysis, and concept of over	
Variable selection model building model misspecification Model		alspersion. Model building and Newlinear Degreesing	Chause
I VALADIA CONTINUE DIVIDAL DIVIDIDO DIVIDAL DICCIDICIDADE MONDOL.		Variable selection model building model missnesification. Model	o nours
validation techniques: Analysis of model coefficients and predicted		variable selection, model building, model coefficients and predicted	
values data splitting method Nonlinear regression model poplinear		values data splitting method. Nonlinear regression model penlinear	
least squares transformation to linear model parameter estimation		least squares transformation to linear model parameter estimation	
in nonlinear system, statistical inference in nonlinear regression		in nonlinear system, statistical inference in nonlinear regression	

Accignmente	1 Linear Degression	12 * 2 -
Assignments	1. Linear Regression	12 2 =
and a Mini	2. Minimum Least Square Method	24 hours
Project to be	3. Calculating coefficients values	
discussed	4. Ascombe's Quartet	+ 6 hours
during the	5. Regression Equations- x on y & y on x	for Mini
Tutorial slots:	6. Predicting mom's height based on daughter's height	Project
	7. Regression-Solved problem-2	discussion
	8. Probable Error- Calculating correlation coefficient of POPULATION	s
	9. Predictive modelling project for credit card fraud detection	
	10. Predictive modelling project for customer value prediction	
	11. Predictive modelling project for stock market forecasting	
	12. Predictive modelling project for corporate bankruptcy prediction	
Pedagogy	Lectures/ tutorials/assignments/self-study	
Defenses	1. Develop C. Mantenerse, Elizabeth A. Deel, C. Caeffrey Vising, Inte	
References/	1. Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining, Intr	oduction to
Readings	Linear Regression Analysis, Third Ed., Wiley India Pvt. Ltd., 2016. No	rman R.
	2. Draper, Harry Smith; Applied Regression Analysis, WILEY India Pvt	. Ltd. New
	Delhi; Third Edition, 2015.	
	3. Johnson, R A., Wichern, D. W., Applied Multivariate Statistical An	alysis, Sixth
	Ed., PHI learning Pvt., Ltd., 2013.	
	4. Iain Pardoe, Applied Regression Modeling, John Wiley and Sons, Inc,	2012.
<u>Course</u>	1. Develop in-depth understanding of the linear and nonlinear regression	on model.
<u>Outcomes</u>	2.Demonstrate the knowledge of regression modeling and mode	el selection
	techniques.	
	3.Examine the relationships between dependent and independent varia	ables.
	4.Estimate the parameters and fit a model.	

Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-529 Title of the Course: Essentials of Data Analytics Number of Credits: 4(2L+2T+0P) Effective from AY: 2023-24

<u>Prerequisites for</u> <u>the course</u>	Probability and Statistics	
<u>Objectives</u>	 To understand the concepts of analytics using various machine learning models. To appreciate supervised and unsupervised learning for predictive analysis. To understand data analytics as the next wave for businesses looking for competitive advantage. Carry out rule-based analysis of the data in line with the analysis plan. Validate the results of their analysis according to statistical guidelines. Validate and review data accurately and identify anomalies. To learn aspects of computational learning theory. Apply statistical models to perform Regression Analysis, Clustering and Classification. 	
Theory:	Module:1 Regression Analysis Linear regression: simple linear regression - Regression Modelling - Correlation, ANOVA, Forecasting, Autocorrelation Module:2 Classification Logistic Regression, Decision Trees, Naïve Bayes-conditional probability - Random Forest - SVM Classifier Module:3 Clustering K-means, K-medoids, Hierarchical clustering Module:4 Optimization Gradient descent - Variants of gradient descent - Momentum - Adagrad - RMSprop - Adam - AMSGrad Module:5 case study -Managing Health and Safety Comply with organization's current health, safety and security policies and procedures - Report any identified breaches in health, safety, and security policies and procedures to the designated person - Identify and correct any hazards that they can deal with safely, competently and within the limits of their authority - Report any hazards that they are not competent to deal with to the relevant person in line with organizational procedures and warn other people who may be affected	5 hours 5 hours 5 hours 5 hours 5 hours
	Module:6- requirement analysis - Data and Information Management Establish and agree with appropriate people the data/information they need to provide, the formats in which they need to provide it, and when they need to provide it - Obtain the data/information from reliable sources - Check that the data/information is accurate, complete and up-to-date Module:7 Learning and Self Development Obtain advice and guidance from appropriate people to develop their knowledge, skills and competence - Identify accurately the knowledge and skills they need for their job role - Identify accurately their current level of knowledge, skills and competence and any learning and development needs - Agree with appropriate people a plan of learning and development activities to address their learning needs	3 hours 2 hours

Dracticals to be	1 Web Seraning
discussed	1. Web Scraping:-
during Tutorial	sets on the internet, you might want to show prospective
Slots.	employers that you're able to find and scrape your own data as
51015.	well Plus knowing how to scrape web data means you can find
	and use data sets that match your interests, regardless of
	whether or not they've already been compiled.
	b. If you know some Python, you can use tools like Beautiful Soup
	or Scrapy to crawl the web for interesting data. If you don't know
	how to code, don't worry. You'll also find several tools that
	automate the process (many offer a free trial), like Octoparse or
	ParseHub.
	c. If you're unsure where to start, here are some websites with
	interesting data options to inspire your project:
	d. Reddit, Wikipedia, Job portals
	2. Data Cleaning
	a. A significant part of your role as a data analyst is cleaning data to
	make it ready to analyze. Data cleaning (also called data
	scrubbing) is the process of removing incorrect and duplicate
	data, managing any holes in the data, and making sure the
	formatting of data is consistent.
	b. As you look for a data set to practice cleaning, look for one that
	much curation. Some sites where you can find "dirty" data sets
	to work with include:
	c. CDC Wonder, Data.gov. World Bank, Data.world/r/datasets
	3. Exploratory data analysis (EDA)
	a. Data analysis is all about answering questions with data.
	Exploratory data analysis, or EDA for short, helps you explore
	what questions to ask. This could be done separate from or in
	conjunction with data cleaning. Either way, you'll want to
	accomplish the following during these early investigations.
	b. Ask lots of questions about the data.
	c. Discover the underlying structure of the data.
	d. Look for trends, patterns, and anomalies in the data.
	e. Test hypotheses and validate assumptions about the data.
	f. Think about what problems you could potentially solve with the
	uala. A Sentiment analysis
	a Sentiment analysis typically performed on textual data is a
	technique in natural language processing (NLP) for determining
	whether data is neutral, positive, or negative, it may also be used
	to detect a particular emotion based on a list of words and their
	corresponding emotions (known as a lexicon).
	b. This type of analysis works well with public review sites and
	social media platforms, where people are likely to offer public
	opinions on various subjects.
	c. To get started exploring what people feel about a certain topic,
	you can start with sites like: Amazon (product reviews), Rotten
	Tomato (movie reviews), Facebook witter, News sites
	5. Data visualization
	a. Humans are visual creatures. This makes data visualization a
	powerful tool for transforming data into a compelling story to

	encourage action. Great visualizations are not only fun to create, they also have the power to make your portfolio look beautiful.
<u>Pedagogy</u>	Lectures/Assignments/Seminar Presentations/Mini-Project
<u>References/</u> <u>Readings</u>	 1.Cathy O'Neil and Rachel Schutt. "Doing Data Science, Straight talk from the Frontline",O'Reilly. 2014. 2.Dan Toomey, "R for Data Science", Packt Publishing, 2014. 3.Trevor Hastie, Robert Tibshirani and Jerome Friedman. "Elements of Statistical Learning", Springer, Second Edition. 2009. 4.Kevin P. Murphy. "Machine Learning: A Probabilistic Perspective", MIT Press; 1st Edition, 2012. Reference Books Glenn J. Myatt, "Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining", John Wiley & Sons, Second Edition, 2014. G. K. Gupta, —Introduction to Data Mining with Case Studies", Easter Economy Edition, Prentice Hall of India, 2006. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007. Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis", Elsevier, 2007. R N Prasad, Seema Acharya, "Fundamentals of Business Analytics", Wiley; Second edition, 2016. https://www.sscnasscom.com/qualification-pack/SSC/Q2101/ Mode of Evaluation: ISA/Assignment / Quiz / Project / Seminar
<u>Course</u> <u>Outcomes</u>	 Identify and apply the appropriate supervised learning techniques to solve real world problems with labeled data. Choose and implement typical unsupervised algorithms for different types of applications with unlabelled data. Implement statistical analysis techniques for solving practical problems. Understand different techniques to optimize the learning algorithms.

(Back to top)