

गोंय विद्यापीठ ताळगांव पठार गोंय - ४०३ २०६ फोन: +९१-८६६९६०९०४८

Goa University

Taleigao Plateau, Goa - 403 206 Tel : +91-8669609048 Email : registrar@unigoa.ac.in Website: www.unigoa.ac.in

(Accredited by NAAC)

GU/Acad -PG/BoS -NEP/2023/78/4

Date:24.05.2023

Ref: GU/Acad –PG/BoS -NEP/2022/339/11 dated 19.08.22

CIRCULAR

In supersession to the above referred Circular, the updated approved Syllabus with revised Course Codes of the **Master of Science in Chemistry Programme** is enclosed.

The approved Syllabus of the **Master of Science in Chemistry** Programme (Organic, Inorganic, Analytical and Physical, Pharmaceutical Chemistry) is attached.

The Dean/ Vice-Deans of the School of Chemical Sciences/ Principals of Affiliated Colleges offering the **Master of Science in Chemistry** Programme are requested to take note of the above and bring the contents of the Circular to the notice of all concerned.

ASHWIN Digitally signed by ASHWIN VYAS VYAS LAWANDE LAWANDE Date: 2023.05.24 17:31:44 +05'30'

(Ashwin Lawande) Assistant Registrar – Academic-PG

Τo,

- 1. The Dean, School of Chemical Sciences, Goa University.
- 2. The Vice-Deans, School of Chemical Sciences, Goa University.
- 3. The Principals of Affiliated Colleges offering the Master in Sciences in Chemistry Programme.

Copy to:

- 1. The Chairperson, Board of Studies in Chemistry PG.
- 2. The Programme Director, M. Sc. Chemistry, Goa University.
- 3. The Controller of Examinations, Goa University.
- 4. The Assistant Registrar, PG Examinations, Goa University.
- 5. Directorate of Internal Quality Assurance, Goa University for uploading the Syllabus on the University website.

ANNEXURE-I

M.Sc. Chemistry (SEM I & II) Syllabus (80 Credit course) as per NEP 2020 for AY 2022-23

		SEM I	
Sr. No.	Subject code	Paper title	Credits
1.	<u>CHO-500</u>	Fundamentals of Organic Chemistry	4
2.	<u>CHI-500</u>	Fundamentals of Inorganic Chemistry	4
3.	<u>CHP-500</u>	General Physical Chemistry	4
4.	<u>CHA-500</u>	Techniques in Analytical Chemistry-I	4
5.	<u>CHO-521</u>	Practical Course in Organic Chemistry-I	2
6.	<u>CHO-522</u>	Practical Course in Organic Chemistry-II	2
7.	<u>CHI-521</u>	Practical Course in Inorganic Chemistry-I	2
8.	<u>CHI-522</u>	Practical Course in Inorganic Chemistry-II	2
9.	<u>CHP-521</u>	Practical Course in Physical Chemistry-I	2
10.	<u>CHP-522</u>	Practical Course in Physical Chemistry-II	2
11.	<u>CHA-521</u>	Practical Course in Analytical Chemistry-I	2
12.	<u>CHA-522</u>	Practical Course in Analytical Chemistry-II	2
		SEM II (Inorganic Chemistry)	
1.	<u>CHI-501</u>	Chemistry of Coordination & Organometallic Compounds	4
2.	<u>CHI-502</u>	Chemistry of Materials	4
3.	<u>CHI-503</u>	Concepts in Molecular Symmetry and Spectroscopy	4
4.	<u>CHI-504</u>	Concepts in Inorganic Chemistry	4

	SEM II (Analytical Chemistry)		
1.	<u>CHA-501</u>	Chemical Methods of Analysis	4
2.	<u>CHA-502</u>	Techniques in Analytical Chemistry-II	4
3.	<u>CHA-503</u>	Separation Techniques	4
4.	<u>CHA-504</u>	Instrumental Methods of Analysis	4
		SEM II (Organic Chemistry)	
1.	<u>CHO-501</u>	Organic Spectroscopy	4
2.	<u>CHO-502</u>	Pericyclic and Organic Photochemical Reactions	4
3.	<u>CHO-503</u>	Synthetic Methodologies in Organic Chemistry	4
4.	<u>CHO-504</u>	Stereochemistry and Organic Transformations	4
	L	SEM II (Physical Chemistry)	
1.	<u>CHP-501</u>	Quantum Chemistry and Statistical Thermodynamics	4
2.	<u>CHP-502</u>	Group Theory and Molecular Spectroscopy	4
3.	<u>CHP-503</u>	Chemical Kinetics and Thermodynamics	4
4.	<u>CHP-504</u>	Electrochemistry and Surface Studies	4

Course Code: CHA-500 Title of the course: Techniques in Analytical Chemistry - I

Number of Credits: 04

Prerequisites	Students should have studied chemistry courses at graduate level of	or must
for the course:	have cleared change of discipline entrance test conducted k	
	University.	
Course	1. Learning various methods of data handling in analysis.	
Objective:	2. Understanding the significance of sampling and calibration technic	lues.
	3. Understanding principles and applications of various types of	
	techniques	
	 Training the students to deduce structures based on IR, NN combined data. 	/IR, MS
Content:	1. Analytical Objectives and Data Handling	No. of
	Importance of analytical chemistry in research and industry;	Hours
	statistics and data handling in analytical chemistry, standard	5
	operating procedures, good laboratory practices: quality	
	assurance, method validation and quality control.	
	2. Sampling and Calibration Techniques	5
	Sampling and sample preparation, general steps in chemical	
	analysis, calibration of glass wares. Finding the best straight line-	
	least square regression, correlation coefficient; Calibration curves, standard addition technique and internal standards. Chemical	
	concentrations.	
	3. Classical methods of Analysis	6
	Gravimetry and Titrimetric methods, Principle, methodology,	Ū
	Advantages & Disadvantages over instrumental methods.	
	Conditions for identifying a given reaction as method of Analysis,	
	Classification of reactions in titrimetric analysis (Acid-Base, redox,	
	complexometric and precipitation), Standard solutions and their	
	preparation. Selection of Visual Indicators in titrimetric Analysis	
	4. Introduction to Electroanalytical techniques	4
	Introduction to electrochemical cell, electrode potential,	
	Classification of electroanalytical techniques, working principles,	
	and their applications	
	5. Introduction to Thermoanalytical techniques	5
	Principle, Instrumentation and applications of Thermo Gravimetric	
	Analysis, Differential Thermal Analysis, and Differential Scanning Calorimetry. Numericals based on TGA.	
	6. Introduction to Chromatographic Techniques	15
	a. Principles of chromatography, classification of	13

	techniques based on mechanism of
, , ,	ration, mobile and stationary phase.
	ration- plate theory (theoretical plate
concept) and rate t	heory (van Deemter equation).
b. Principles and app	lications of Paper chromatography, thin
layer chromatogra	aphy, HPTLC, Size exclusion and Ion
exchange chromato	ography. Counter-current chromatography
for isolation of natu	iral products.
c. Gas and Liquid Chr	omatography: Introduction; Instrumental
Modules; The Sep	aration System; Choice of Conditions of
Analysis; Sample	Inlet Systems; Detectors; Practical
Considerations in	Qualitative and Quantitative Analysis;
Coupled Systems-ir	troduction to GCMS, LCMS; Applicability-
interpretation and	numericals.
7. Introduction to Spectr	
-	ectromagnetic Radiation with Matter:
	ectra, regions of spectrum, numericals.
5 1	ble Spectroscopy: Electronic spectra and
	are: types of electronic transition,
	auxochrome, absorption by isolated
-	onjugated chromophores, aromatic
	anic chelates. Calculating λmax for
	s, Trienes, polyenes, α,β -unsaturated
	ds, Numericals. Choices and effect of
	Quantitative Calculations: Beer-Lambert
Law; Mixtures of	absorbing species-laws of additivity of
	ation curve for calculation of unknown;
Spectrometric erro	rs in measurement; Deviation from Beer-
	emical deviation, instrumental deviation;
Numericals for	
spectroscopy.	
	opy: Infrared absorption and molecular
	llar vibrations, types of vibrations, IR
	s and bands-basis of NIR absorption.
• •	tion, Frequencies of functional group,
	Identification of unknown compounds.
	rumentation of UV-Vis and IR: Sources,
•	sample cells, detectors, instrumental
	sorption calibration.
_	n NMR Spectroscopy: Theory of NMR,
	hemical shift, factors influencing chemical
	d in NMR, spin-spin splitting, coupling
	n, factors influencing coupling constant.
	r: Principle, Instrumentation and various
	. Thepic, instrumentation and various

	fragmentation patterns.
	g. Conjoint spectrometry problems: Structural elucidation of
	organic molecules using IR, UV, NMR and MS.
	h. Raman Spectroscopy: Theory, Basic instrumentation and
	Structural analysis using Raman Spectra.
	(Note: Assignment based on all above spectrometric methods
	should be given to student. More weightage of lectures shall be
	given for solving IR and NMR data problems for structure
	elucidation)
Pedagogy:	Mainly lectures and tutorials. Seminars / term papers /assignments /
	presentations / self-study or a combination of some of these can also be
	used. ICT mode should be preferred. Sessions should be interactive in
	nature to enable peer group learning.
References /	1. G. D. Christian, Analytical Chemistry, 6 th Ed.; Wiley, 2004.
Readings:	2. J. H. Kennedy, Analytical Chemistry: Principles, 2 nd Ed.; Saunders
	College Publishing, 1990.
	3. G. W. Ewing, Instrumental Methods of Chemical Analysis, 5 th Ed.;
	McGraw- Hill Int., 1985.
	4. W. Kemp, Organic Spectroscopy, 3 rd Ed.; Palgrave, 1991.
	5. D. A. Skoog, D. M. West, F. J. Hollar, S. R. Crouch, Fundamentals of
	Analytical Chemistry, 9 th Ed.; Cengage learning, 2014.
	6. F. J. Holler, D. A. Skoog, S. R. Crouch, Principles of Instrumental
	Analysis, 6 th Ed.; Thomson Books, 2007.
	7. H. Willard, L. L. Merritt, J. A. Dean, F. A. Settle, Instrumental methods
	of Analysis, 7 th Ed.; HCBS Publishing, 2004.
	8. C. N. Banwell, E. M. McCash, Fundamentals of Molecular
	Spectroscopy, 4 th Ed.; Tata McGraw- Hill, 2006.
	9. R. M. Silverstein, F. X. Webster, Spectrometric identification of
	Organic Compounds, 6 th Ed.; Wiley, 1998.
	10. H. Gunzler, A. Williams, Handbook of Analytical Techniques, 1 st Ed.;
	Wiley, 2001.
	11. P. S. Kalsi, Spectroscopy of Organic Compounds, 2 nd Ed.; New Age
	International, 2000.
	12. E. Pretsch, P. Buhlmann, C. Affolter, Structural Determination of
	Organic Compounds, 2 nd Ed.; Springer, 2005.
	13. L. D. Field, S. Sternhell, J. R. Kalman; Organic Structures from
	Spectra, 4 th Ed.; Wiley, 2007.
	14. R. A. Day, A. L. Underwood, Quantitative Analysis, 6 th Ed.; Prentice
	Hall, 2001.
	15. B. K Sharma, Instrumental methods of chemical analysis, Goel
	Publishing House, Meerut, 2004.
	16. K. Nakamoto, Infrared and Raman Spectra of Inorganic and
	Coordination Compounds, 6 th Ed.; Wiley, 2009.
	17. P. J. Larkin, Infrared and Raman Spectroscopy: principles and

	spectral interpretation, 2 th Ed.; Elsevier, 2018. 18. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, B. Sivasankar, Vogel's Text Book of Quantitative Chemical Analysis, 6 th Ed.; Pearson,
	2009.
Course outcomes:	1. Students will be able to analyse the role of statistical tools for determination of error and organised data management for systematic
	interpretation.2. Student will be able to apply the sampling and calibration methods for obtaining reliable results.
	 Students will be able to understand basic principles and scope of different methods of Analysis
	4. Students will be able to solve problems based on IR, NMR, MS combined spectral data.

Course Code: CHA-521 Title of the course: Practical Course in Analytical Chemistry - I

Number of Credits: 02

Prerequisites	Students should have studied chemistry practical courses at graduate le	evel or
for the course:	must have cleared change of discipline entrance test conducted by Goa	
	University.	
Course	1. Introduction of various experimental techniques for analysis.	
Objectives:	2. Learning data analysis, handling and interpretation of spectra.	
Content:	This course consists of 7 units of experiments in various areas of	No of
	Analytical chemistry. Minimum 13 experiments which include at least	hours
	02 experiments from unit 1-6 and 01 experiment from unit 7 shall be	
	conducted.	
	Unit 1: Statistics	
	i. Calibration of selected Volumetric apparatus	9
	ii. Calibration of selected Laboratory instruments	
	Preparation of standard solutions and standardisation.	
	Unit 2: Colorimetry/ UV-Visible Spectrophotometry	8
	i. Estimation of Iron from Pharmaceutical sample (capsule) by	
	thiocyanate method	
	ii. Estimation of phosphoric acid in cola drinks by molybdenum	
	blue method.	
	iii. Estimation of KNO ₃ by UV spectroscopy and K ₂ Cr ₂ O ₇ by Visible spectroscopy	
	iv. Simultaneous determination and Verification of law of	
	additivity of absorbances (K ₂ Cr ₂ O ₇ and KMnO ₄).	
	Unit 3: Flame Spectrophotometry and AES/AAS/ICP Spectroscopy	9
	i. Estimation of Na and K in food supplements or cosmetic	
	products.	
	ii. Estimation of Pb in water sample by AES/AAS/ICP.	
	iii. Estimation of Fe and Al in Iron ore sample by AES/AAS/ICP.	
	Unit 4: Ion Exchange Chromatography and High Pressure Liquid	10
	Chromatography	
	i. Separation and Estimation of chloride and bromide.	
	ii. Separation of Anthracene and Naphthalene using reverse	
	phase chromatography	
	iii. Separation of Benzaldehyde and Benzyl alcohol using normal	
	phase chromatography	

	Unit 5: Volumetric Titrations	10
	i. Estimation of Ca in pharmaceutical tablet.	
	ii. Estimation of Al and Mg in antacid tablet.	
	iii. Estimation of CaO in cement.	
	Unit 6: Solvent Extraction and spectrophotometry	10
	i. Extraction of Cu as copper dithiocarbamate (DTC) using	
	solvent extraction and estimation by spectrophotometry.	
	ii. Determination of Ni as Dimethylglyoxime complex by	
	spectrophotometry.	
	iii. Determination of Silver as ion association complex with 1,10-	
	Phenanthroline and Bromopyrogallol red.	
	Unit 7: Interpretation Exercises	4
	i. Thermal studies: TG/DTA and Isothermal weight loss studies	
	of various hydrated solids like $CuSO_4 \cdot 5H_2O$, $Ca_2C_2O_4 \cdot H_2O$,	
	$Fe_2C_2O_4 \cdot 2H_2O$.	
	ii. X-ray powder diffractometry: Calculation of lattice parameters	
	from X-ray powder pattern of cubic system such as $NiMn_2O_4$,	
	$CoFe_2O_4$ etc.	
	iii. IR spectra of Urea, benzoic acid, Copper sulphate	
	pentahydrate etc.	
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-out or a com	oination
	of some of these. Sessions shall be interactive in nature to enable peer	
	learning.	0 1
References /	1. J. H. Kennedy, Analytical Chemistry Principles, Saunders College Pub	lishing,
Readings:	2 nd Ed., 1990.	
_	2. G. D. Christian, Analytical chemistry, 5 th Ed., John Willey and Sons, 19	94
	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B. Sivasankar, Vo	gel's
	Textbook of Quantitative Chemical Analysis, 6 th Ed., Pearson Education	Asia
	2009.	
	4. A. J. Elias, Collection of interesting chemistry experiments, University	y press,
	2002.	
	5. R.A. Day & A.L. Underwood, Quantitative Analysis, 6 th Ed., Prentice H	all,
	2001.	
	6. J. Kenkel, Analytical Chemistry for Technicians, 3 rd Ed., Lewis publishe	ers,
	2002.	
Course	1. Students will be able to explain how to determine an unknown	
outcomes:	concentration of solution.	
	2. Students will use statistical methods to analyse data in laboratory.	
	3. Students will be able to use different techniques for qualitative and	
	quantitative estimation.	
	4. Students will be able to interpret TG/X-Ray/IR spectra.	

Course Code: CHA-522 Title of the course: Practical Course in Analytical Chemistry - II

Number of Credits: 02

Prerequisites	Students should have studied chemistry practical courses at graduate	e level or
for the course:	must have cleared change of discipline entrance test conducted by Goa	
	University.	
Course	1. Introduction of various experimental techniques for analysis.	
Objectives:	2. Learning data analysis, handling and interpretation of spectra.	
Content:	This course consists of 7 units of experiments in various areas of	No of
	Analytical chemistry. Minimum 13 experiments which include at	hours
	least 02 experiments from unit 1-6 and 01 experiment from unit	
	7 shall be conducted.	
	Unit 1: Statistics	
	i. Calibration of selected Volumetric apparatus	9
	ii. Calibration of selected Laboratory instruments	
	iii. Preparation of standard solutions and standardisation.	
	Unit 2: Titrimetric Analysis	8
	i. Standardisation and estimation of Chloride using	
	precipitation titration (Mohr's method)	
	ii. Analysis of commercial caustic soda by neutralisation	
	titrimetric method	
	iii. Determination of sulphates by complexometric titrations	
	using EDTA.	
	Unit 3: Flame Spectrophotometry and AES/AAS/ICP	10
	Spectroscopy	
	i. Estimation of Na and K in food supplements or cosmetic	
	products using flame photometer.	
	ii. Estimation of chromium in water sample by AES/AAS/ICP.	
	iii. Estimation of nickel, molybdenum in Hastelloy C-22 using	
	AES/AAS/ICP.	
	Unit 4: Natural product isolation and Ion Exchange	9
	Chromatography	
	i. Isolation of cinnamaldehyde from cinnamonii. Isolation of Caffeine from tea powder	
	iii. Separation and estimation of Cadmium and Zinc	
	· · · · · ·	10
	Unit 5: UV-Visible Spectrophotometry and High-Pressure Liquid Chromatography	10
	i. Estimation of KNO ₃ and $K_2Cr_2O_7$ using UV- Visible	
-		L

	spectroscopy	
	ii. Separation of Benzaldehyde and benzoic acid using reverse	
	phase HPLC.	
	iii. Quantification of naphthalene in a sample using reverse	
	phase HPLC.	
	Unit 6: Solvent Extraction and spectrophotometry	10
	i. Spectrophotometric determination of aspirin/phenacetin/	
	caffeine in APC tablet using solvent extraction	
	ii. Colorimetric determination of iron with salicylic acid.	
	iii. Determination of copper in brass sample by colorimetry.	
	Unit 7: Data Interpretation Exercises	4
	i. NMR/Mass spectra	
	ii. HPLC and GC chromatograph	
	iii. XRD powder pattern of cubic systems	
	iv. Thermogram of coordination compounds	
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-out or a	
	combination of some of these. Sessions shall be interactive in nature	to
	enable peer group learning.	
References /	1. J. H. Kennedy, Analytical Chemistry Principles, Saunders College	
Readings:	Publishing, 2 nd Ed., 1990.	
	2. G. D. Christian, Analytical chemistry, 5 th Ed., John Willey and Sons, 1994	
	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B. Sivasankar, Vogel's	
	Textbook of Quantitative Chemical Analysis, 6 th Ed., Pearson Edu	cation
	Asia 2009.	
	4. J. Elias, Collection of interesting chemistry experiments, University	ty press,
	5. R.A. Day & A.L. Underwood, Quantitative Analysis, 6 th Ed., Prenti	ce Hall,
	2001.	lichere
	6. J. Kenkel, Analytical Chemistry for Technicians, 3 rd Ed., Lewis pub 2002.	insners,
Course	1. Students will be able to standardize a material to determine an un	known
outcomes:	concentration.	NIUWII
outcomes.	2. Students will use statistical methods to analyse data in laboratory.	
	3. Students will be able to use different techniques for qualitative and	
	quantitative estimation.	~
	4. Students will be able to interpret TG/X-Ray/IR spectra.	
L		

Course Code: CHI-500Title of the course: Fundamentals of Inorganic Chemistry

Number of Credits: 04

Prerequisit es for the course:	Students should have studied chemistry courses at graduate level have cleared change of discipline entrance test conducted by Goa Ur	
Course Objective:	 To introduce atomic structure, molecular structure, bonding, and symmetry. To provide fundamental knowledge of solid state chemistry, coordination chemistry, organometallic chemistry, and bioinorganic chemistry. To provide fundamental aspects of transition & inner transition elements & their compounds. To introduce air and water pollution, and its treatments, to follow directive of the Supreme Court in 1993 to introduce environmental education at all levels. 	
	1. Atomic structure, molecular structure and bonding a. Atomic Structure: Structures of hydrogenic atoms: some principles of quantum mechanics, atomic orbitals. Many	No of hours
Content	 electron atoms: penetration & shielding, building up principle, classification of elements. Spectroscopic terms. Atomic properties: atomic radii, ionic radii, ionization energy, electron affinity, electronegativity, polarizability. b. Molecular Structure & bonding: Lewis structures: octet rule, resonance. VSEPR model: basic shapes, modification of the basic shapes. Valence bond theory: hydrogen molecule, homonuclear diatomic molecules, polyatomic molecules, promotion, hypervalence, hybridization. Molecular orbital theory: approximation, boding & antibonding orbitals. Homonuclear diatomic molecules & Heteronuclear diatomic molecules 	10
	 2. Molecular Symmetry a. Symmetry elements and symmetry operations. b. Equivalent symmetry elements and equivalent atoms, symmetry point groups with examples, point groups of higher symmetry. c. Systematic procedure for symmetry classification of molecules and illustrative examples, dipole moment, optical activity and point groups 	4
	3. Solid state chemistry a. Structures of solids: crystal structures, lattices and unit cells,	10

6. Basic Bioinorganic Chemistry a. Macronutrients/micronutrients. Role of elements in biology.	4
· · · · · · · · · · · · · · · · · · ·	4
reactions of CO ligand, spectroscopic properties of metal carbonyls. Oxidative addition and reductive elimination.	
oxidation-reduction of carbonyls, metal carbonyl basicity,	
phosphines, homoleptic carbonyls its synthesis and properties,	
atom and donor pair electron count methods). Ligands: CO &	
chemistry, nomenclature, stability and inert gas rules (neutral	
b. Organometallic Chemistry: Introduction to organometallic	
diagram for octahedral and tetrahedral complexes).	
complexes, magnetic moments, CFSE. Electronic spectroscopy: basic concepts, interpretation of spectra of d ¹ & d ⁹ ions (Orgel	
complexes: CFT applied to octahedral and tetrahedral	
electron delocalization. Electronic properties of metal	
constants, chelate and macrocyclic effects, steric effects and	
chirality in square planar and octahedral complexes, ligand chirality. Thermodynamics of complex formation: formation	
coordination numbers, polymetallic compounds. Isomerism &	
numbers, intermediate coordination numbers, higher	
nomenclature. Constitution and geometry: low coordination	
a. Coordination chemistry: Introduction, representative ligands,	
5. Coordination and Organometallic Chemistry	12
and properties, electronic spectra, thorium and uranium.	
spectra, magnetic properties, lanthanide contraction, compounds of lanthanides. Actinoid chemistry: general trends	
properties, oxidation states, electronic structure, colour and	
b. Inner transition elements: Lanthanides, occurrence,	
two rows.	
metal bonded clusters, difference between 1 st row and other	
metal halides, oxides & oxido complexes, examples of metal-	
occurrence, physical and chemical properties, noble character,	
a. Transition elements: IUPAC definition of transition elements,	10
enthalpies. (numerical expected) 4. Chemistry of transition & inner transition elements	10
energy and the Born–Haber cycle, The calculation of lattice	
radius ratio, structure maps, energetics of ionic bonding, lattice	
phases, ternary phases, rationalization of structures, ionic radii,	
c. Ionic solids: characteristic structures of ionic solids, binary	
intermetallic compounds.	
structures, polymorphism of metals, atomic radii of metals, alloys, substitutional and interstitial solid solutions,	
b. Structures of metals & alloys: polytypism, nonclosed-packed	
spheres, holes in closed-packed structures.	
fractional atomic coordinates and projections, close packing of	

	Metal ion transport role. b. Definition of metallobiomolecules, metalloporphyrins, structure of porphine and heme group, examples of	
	metalloenzymes of Cu and Zn.	
	7. Environmental Chemistry	10
	a. Air Pollution: Classification of air pollutants and	
	photochemical reactions in the atmosphere. Common air	
	pollutants (e.g. CO, NOx, SO ₂ , hydrocarbons and particulates)	
	(a) sources (b) physiological and environmental effect (c)	
	monitoring, (d) various remedial & technological measures to	
	curb pollution. Air quality standards.	
	b. Water pollution: Importance of buffer & buffer index in	
	waste water treatments. Chemical, physical & biological	
	characteristics of water pollution, specific & non-specific	
	characterization of water. DO, BOD, COD, and chlorine demand,	
	typical water treatment & waste water treatment (Municipal).	
	Impact of plastic pollution and its effect.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignm	-
	presentations / self-study or a combination of some of these can a	
	used. ICT mode should be preferred. Sessions should be interact	tive in
References	nature to enable peer group learning. 1. P. W. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Sh	rivor 8
/ Readings:	Atkins Inorganic Chemistry, 5 th Ed.; Oxford Publications, 2009.	IIVEI Q
/ Reduings.	2. J. E. Huheey, E. A. Kieter, R. L. Kieter, O. K. Medhi, Inorganic Che	mistry
	Principles of Structure & Reactivity, 4 th Ed.; Pearson, 2011.	inisci y.
	3. F. A. Cotton, G. Wilkinson, P. L. Gauss, Basic Inorganic Chemis	trv. 3 rd
	Ed.; Wiley, 2008 (reprint).	,,
	4. J. D. Lee, Concise Inorganic Chemistry, 5 th Ed.; Wiley, 2008.	
	5. F. A. Cotton, Chemical applications of group theory, 3 rd Ed.;	; Wiley
	Eastern, 2012 (reprint).	
	 L. Pauling, The Nature of The Chemical Bond, 3rd Ed.; Cornell Un Press, 1960. 	iversity
	7. M. C. Day, J. Selbin, Theoretical Inorganic Chemistry, 2 ^{ed} Ec	d.: Van
	Nostrand-Reinhold, 1969.	, -
	8. H. V. Keer, Principles of Solid state Chemistry, 1 st Ed.; New Age Ir	ntl. Ltd,
	1993, (reprint 2008).	
	9. A. R. West, Solid State Chemistry and Its Applications, 1 st Ed	.; John
	Wiley & Sons, Singapore, 1984 (reprint 2007).	
	10. D. K. Chakrabarty, Solid State Chemistry, 2 ^{ed} Ed.; New Ag	ge Intl.
	Publishers, 2010.	
	11. F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 3 rd Ed.	; Wiley
	Eastern, 2001.	
	12. A. V. Salker, Environmental Chemistry: Pollution and Re	emedial
	Perspective, 1 st Ed.; Narosa Publication, 2017.	

	13. A.K. De, Environmental Chemistry, 3 rd Ed.; New Age Intl. Publishers, 2005.
	14. A. C. Stern, R. W. Boubel, D. Bruce turner, D. L. Fox, Fundamentals of Air Pollution, 1 st Ed.; Academic Press, 1984.
	15. R. A. Horne, Chemistry of Our Environment, 1 st Ed.; John Wiley, 1978.
	16. R. S. Drago, Physical Methods in Inorganic Chemistry, Affiliated East
	West Press Pvt. Ltd., 2017
	17. G. C. Miessler, D. A. Tarr, Inorganic Chemistry, 3 rd Ed.; Pearson, 2004
Course	1. Students will be able to predict geometry and shape of different
outcomes:	molecules, and the point group symbols.
	 Students will be able to explain the fundamentals of atomic and molecular structure, solid state chemistry, coordination chemistry, organometallic chemistry, and bioinorganic chemistry. Students should be able to describe and explain the properties and usefulness of transition & inner transition metals. Students will able to explain different air and water pollutants and will be in a position to apply knowledge to treat these pollutants.

Course Code: CHI-521Title of the course: Practical course in Inorganic Chemistry-I

Number of Credits: 02

Prerequisites for the course:	Students should have studied chemistry practical courses at gradu or must have cleared change of discipline entrance test conducte University.	
Course Objective:	 Students shall acquire skills in synthetic inorganic chemistry. Students will learn to prepare coordination compounds. Students will learn to prepare useful potash alum from scrap alu Students will learn how to grow single crystals. Students will acquire skills in determination of chromium, oxa aluminum by redox titrations. Students will be trained to fix the formula of compounds and fi water molecules by complexometric, redox & iodometric titration Students shall acquire skills in determination of metal content low concentrations (ppm) using colorimetry / spectrophotometric 	llate, and nd lattice ons. It at very
Content	Minimum 13 experiments from the list shall be conducted.	No of
	 Preparations / Synthesis of Inorganic Compounds: (Any Five) Preparation of hexaamminenickel(II) chloride. Preparation of Trisethylenediaminecobalt(III) chloride. Preparation of potassium trioxalatoaluminate trihydrate. Preparation of potassium hexathiocyanato-κN-chromate tetrahydrate. Preparation of potassium trioxalatochromate trihydrate. Preparation of potassium trioxalatochromate trihydrate. 	hours 25
	 2. Estimations / Determinations: (Any Eight) Estimation of nickel in [Ni(NH₃)₆]Cl₂by complexometry or Gravimetry. Estimation of cobalt in [Co(en)₃]Cl₃ by complexometry. Estimation of oxalate in K₃[Al(C₂O₄)₃]·xH₂O or K₃[Cr(C₂O₄)₃]·xH₂O Estimation of nitrite by redox titration. Estimation of calcium from calcite ore. Iodometric determination of Copper in gun metal alloy/Devarda's alloy. Determination of chromium in chrome alum and K₃[Cr(C₂O₄)₃]·xH₂O and to determine degree of hydration. 	35

	chromium.
	ix. Estimation of manganese by colorimetric /
	spectrophotometry method.
Pedagogy	Students will be given pre-lab and post-lab assignments on theoretical
redagogy	aspects of laboratory experiments prior to the conduct of each
	experiment. Exams will be in the form of ISA, SEA which will involve
	performing given experiments and conduct of viva, systematic reporting of
	experiments, results and observations in laboratory report. Sessions
	should be interactive in nature to enable peer group learning.
References /	1. G. Brauer, Handbook of Preparative Inorganic Chemistry, Vol. 1
Readings	& 2, 1963.
Readings	2. G. Pass & H. Sutcliffe, Practical Inorganic Chemistry, Preparations,
	Reactions and Instrumental Methods, 2 nd Ed.; Chapman & Hall,
	1974.
	3. S. De Meo, J. Chem. Ed., Vol 80, Pg.No.796-798, 2003.
	4. W. L. Jolly, The Synthesis & Characterization of Inorganic Compounds,
	Prentice-Hall, INC, 1970.
	5. A. J. Elias, General Chemistry Experiments, Revised Ed.; University Press, 2008.
	6. J. Mendham, R.C. Denney, J.D. Barnes, M.J. K. Thomas, Vogel's Text
	Book of Quantitative Chemical Analysis,6 th Ed.; Pearson, 2002.
	7. G. Svehla, Vogel's Text Book of Qualitative Inorganic Analysis, 7 th Ed,
	Pearson, 2011.
	8. G. Marr, B. W. Rockett, Practical Inorganic Chemistry, Van Nostrnad
	Reinhold London, 1972.
Course	1. Students will be in a position to synthesis coordination compounds with
outcomes:	different metals and ligands.
	2. Students will be able to grow single crystal.
	3. Students will be able to prepare potash alum compound from waste
	scrap Al source.
	4. Students will be able to determine metal content in the synthesised
	inorganic compounds.
	5. Students will be able to fix the formula of compounds.
	6. Students will be able to use and explain the diverse methods available
	for estimation of the metals including colorimeters and spectrometers.

Course Code: CHI-522Title of the course: Practical course in Inorganic Chemistry-II

Number of Credits: 02

Prerequisit	Students should have studied chemistry practical courses at gradua	te level
es for the	or must have cleared change of discipline entrance test conducted	by Goa
course:	University.	
Course	1. Students shall acquire skills in synthetic inorganic chemistry.	
Objective:	2. Students will learn to prepare coordination compounds.	
	3. Students will learn how to grow single crystals.	
	4. Students will acquire skills in determination of metal pre-	sent by
	gravimetric and titrimetric method.	
	5. Students shall acquire skills in determining the metal content	at very
	low concentrations (ppm) using colorimetry / spectrophotometry	•
Content	Minimum 13 experiments from the list shall be conducted.	No of
		hours
	1. Preparations / Estimation of Inorganic Compounds: (Any Nine)	
	i. Preparation of hexaamminecobalt(III) nitrate.	40
	ii. Estimation of cobalt in hexaamminecobalt(III) nitrate by	
	volumetric titration.	
	iii. Preparation of Potassium Trioxalatoferrate(III) Trihydrate	
	iv. Estimation of iron and oxalate by redox titration	
	v. Synthesis of metal nanoparticles (Cu, Ag, Au, Ni) and	
	determining the absorption maxima by UV-visible spectrophotometer.	
	vi. Estimation of amount of calcium in given sample by	
	gravimetric method.	
	vii. Estimation of amount of nickel in given sample by gravimetric method.	
	viii. Estimation amount of zinc present in given sample by	
	gravimetric method. ix. Estimation of iron by colorimetric / spectrophotometry	
	method.	
	x. Estimation of barium by complexometric titration method.	
	xi. Estimation of manganese in presence of iron by	
	complexometric titration method.	
	2. Semi-micro qualitative analysis of cation and anion in a given	
	inorganic mixture: (Any four mixture)	
	Mixture containing total six cations and/or anions.	20
	Cations : Pb^{2+} , Cu^{2+} , Cd^{2+} , Sn^{2+} , Fe^{2+} , Fe^{3+} , Al^{3+} , Cr^{3+} , Zn^{2+} ,	

	Mn ²⁺ , Ni ²⁺ , Co ²⁺ , Ba ²⁺ , Sr ²⁺ , Ca ²⁺ , Mg ²⁺ , (NH ₄) ⁺ , K ⁺
	IVIN , NI , CO , Ba , Sr , Ca , IVIg , (NH_4) , K
	Anions: Cl ⁻ , Br ⁻ , I ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , SO ₃ ⁻²⁻ , CO ₃ ²⁻ , SO ₄ ⁻²⁻ , PO ₄ ⁻³⁻ , S ²⁻
Pedagogy	Students will be given pre-lab and post-lab assignments on theoretical
	aspects of laboratory experiments prior to the conduct of each experiment.
	Exams will be in the form of ISA, SEA which will involve performing given
	experiments and conduct of viva, systematic reporting of experiments,
	results and observations in laboratory report. Sessions should be interactive
	in nature to enable peer group learning.
References	1. G. Brauer, Handbook of Preparative Inorganic Chemistry,
/ Readings	Vol. 1 & 2, 1963.
	2. G. Pass & H. Sutcliffe, Practical Inorganic Chemistry, Preparations,
	Reactions and Instrumental Methods, 2 nd Ed.; Chapman & Hall,
	1974.
	3. S. De Meo, J. Chem. Ed., Vol 80, Pg.No.796-798, 2003.
	4. W. L. Jolly, The Synthesis & Characterization of Inorganic
	Compounds, Prentice-Hall, INC, 1970.
	 A. J. Elias, General Chemistry Experiments, Revised Ed.; University Press, 2008.
	6. J. Mendham, R.C. Denney, J.D. Barnes, M.J. K. Thomas, Vogel's
	Text Book of Quantitative Chemical Analysis,6 th Ed.; Pearson,
	2002.
	7. G. Svehla, Vogel's Text Book of Qualitative Inorganic Analysis, 7 th
	Ed, Pearson, 2011.
	8. G. Marr & B. W. Rockett, Practical Inorganic Chemistry, Van Nostrand
	Reinhold Company, London, 1972.
Course	1. Students will be in a position to synthesize coordination compounds
outcomes:	with different metals and ligands.
	2. Students will be able to grow single crystal.
	3. Students will be able to determine metal content in the given sample.
	4. Students will be in position to apply diverse methods available for
	estimation of the metals and can use colorimeters and
	spectrometers.
	5. Students will able to detect cations and anions in the given salt.

Course Code: CHO-500 Title of the course: Fundamentals of Organic Chemistry

Number of Credits: 04

Prerequisites for the course:	Students should have studied chemistry courses at graduate level have cleared change of discipline entrance test conducted University.	
Course Objective:	 To study the various concepts based on molecular orbital theory. To understand the concepts of topicity, prostereoisomerism and chemo-, regio- and stereoselectivity in organic reactions. To understand the mechanistic aspects of various type of reactio organic synthesis. 	
Content	1.Molecular orbitals and delocalized chemical bonding a. Qualitative description of molecular orbitals of simple acyclic	No of hours
	and monocyclic systems, frontier molecular orbitals.	nours
	 b.Conjugation, cross conjugation, resonance, hyperconjugation and tautomerism (types and examples). c. Aromaticity: Origin of Huckel's rule, examples of aromatic, non-aromatic and antiaromatic compounds; concept of Mobius 	08
	aromaticity.	
	 2.Structure & Reactivity a. Acidity, basicity and pKa of organic compounds; Acid and base strengths; HSAB concept & Factors affecting it, effect of structure & medium on acid and base strength. b. Concept of superacids and superbases. c. Electrophilicity&nucleophilicity, examples of ambident nucleophiles & electrophiles. (Including revision of aromatic electrophilic and nucleophilic substitution) 	08
	 3.Stereochemistry a. Brief revision of configurational nomenclature: R & S; D & L; E & Z; cis & trans and syn & anti nomenclature. Chirality in molecules with two and more chiral centres. b. Conformational analysis of open chain compounds (Butane, 2, 3-butane diol, 2,3-dibromobutane etc.). Erythroand threonomenclature. c. Topicity and Prostereoisomerism: Topicity of ligands and faces-homotopic, enantiotopic and Cram's rule /diastereotopic ligands and faces. d. Introduction to chemoselective, regioselective and 	14

· · · · · · · · · · · · · · · · · · ·		-
	 stereoselective reactions. e. Stereochemistry of <i>cis</i>- and <i>trans</i>-decalins, conformation and reactivity of cyclohexane and substituted cyclohexanes, cyclohexene / cyclohexanone. conformational isomerism and analysis in acyclic and simple cyclic systems –substituted ethanes, cyclopentane, cyclohexane cycloheptane, cyclooctane and decalins, f. optical isomerism - optical activity - molecular dissymmetry and chirality - elements of symmetry. optical isomerism in biphenyls, allenes and spirans - optical isomerism of nitrogenous compounds racemisation and resolution. 4.Reaction Mechanism a. Brief revision of carbocations, carbanions, free radicals, carbenes, Arynes and nitrenes with reference to generation, structure, stability and reactivity; b. Types of mechanisms, types of reactions, thermodynamic and kinetic control. c. The Hammond postulate and principle of microscopic reversibility, d. Methods of determining reaction mechanisms like-i. Identification of products, ii. Determination of the presence of intermediates (isolation, detection, trappingandaddition of suspected intermediate, iii. Isotopic labelling, iv. Stereochemical evidence, v. Kinetic evidence and vi. Isotope effect (at least two reactions to exemplify each 	08
	 method be studied) 5.Aliphatic Nucleophilic substitution a. Brief revision of nucleophilic substitutions with respect to Mechanism, various factors affecting such reactions; b. The Neighbouring Group Participation (NGP)/ Anchimeric assistance: General approach to various NGP processes; NGP by unshared/lone pair of electrons; NGP by π-electrons; NGP by aromatic rings (formation of phenonium ion intermediate); NGP by sigma bonds with special reference to bornyl and norbornyl system (formation of nonclassical carbocation) 	08
	 6.Elimination reactions a. The E2, E1 and E1cB mechanisms. Orientation of the double bond, Saytzeff and Hofmann rule. b. Effects of changes in the substrate, base, leaving group and medium on 	08

	i Overall reactivity	
	i. Overall reactivity,	
	ii. E1 vs. E2 vs. E1cB	
	iii. Elimination vs substitution, Mechanism and orientation in	
	pyrolytic syn elimination (various examples involving cyclic and	
	acyclic substrates to be studied).	
	7. Selective reagents for Organic transformation 06	
	a. Oxidation of organic compounds, PCC, PDC and MnO ₂ ,	
	ozonolysis, peracids.	
	b. Reduction of organic compounds: NaBH ₄ , LAH, DIBAL	
	reduction and reduction with borane and dialkylboranes.	
	Clemmensen reduction, Birch reduction and Wolff-Kishner	
	reduction	
Pedagogy	Mainly lectures and tutorials. Seminars/tern	n
	papers/assignments/presentations/ self-study or a combination of some	e
	of these can also be used. ICT mode should be preferred. Sessions should	
	be interactive in nature to enable peer group learning.	
References /	1. W. Caruthers, I. Coldham, Modern Methods of Organic Synthesis	
Readings	Cambridge University Press, 4 th Ed., 2016.	<i>,</i>
	2. M. B. Smith, Organic Synthesis, McGraw–HILL, New York, Internationa	эl
	Edition, 1994.	
	3. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry	,
	Oxford University Press, 2 nd Ed., 2012.	'
	4. R. Bruckner, Advanced Organic Chemistry – Reaction Mechanisms, Sa	n
	Diego, CA: Harcourt /Academic Press, San Diego, 2002.	
	5. J. Fuhrhop, G. Penxlin, Organic Synthesis – Concepts, Methods	
	Starting Materials, VCH Publishers Inc., New York, 1994.	"
	6. H. O. House, Modern Synthetic Reactions, W. A. Benjamin	
	2 nd Ed.,1965	',
	7. M. Nogradi, Stereoselective Synthesis, VCH Publishers, Inc., Revised	Ч
	and Enlarged Edition, 1994.	L
	8. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Springer India	~
	Private Limited, 5 th Ed, 2007.	a
	, , ,	_
	9. T. Laue, A. Plagens, Named Organic Reactions, John Wiley and Sons	''
Courses	Inc., 2005.	
Course	1. Students will be in a position to evaluate the effect of delocalization of	
outcomes:	electrons & presence or absence of aromaticity in organic compounds.	
	2. Students will be able to apply various concepts in stereochemistry to	
	understand stereochemical outcome in a reaction.	
	3. Students shall be in a position to understand/propose plausible	
	mechanism of organic reactions.	
	4. Students will understand and apply various reagents for desired organi	С
	transformations.	

Course Code: CHO-521 Title of the course: Practical Course in Organic Chemistry-I

Number of Credits: 02

Prerequisites	Students should have studied chemistry practical courses at graduate	ate level
for the	or must have cleared change of discipline entrance test conducted	
course	University.	
Course	To translate certain theoretical concepts learnt earlier into expe	rimental
Objective:	knowledge by providing hands on experience of basic lal	
,	techniques required for organic syntheses.	,
Content	Minimum 13 experiments from the list shall be conducted.	No of
	······································	hours
	1. Introduction to laboratory equipments, apparatus and safety	
	a. Use of common laboratory equipments like fume hoods,	04
	vacuum pumps, weighing balance etc. to be explained to the	
	students.	
	b. Introduction to various types of quick fit joints and apparatus	
	to the students.	
	c. Discussion of Safety Techniques:	
	i Disposal of chemicals	
	ii Usage of protective equipment's	
	iii First aid	
	iv Fire extinguishers, types of fire	
	v Hazards of chemicals and risk assessment	
	2. Laboratory Techniques	24
	a. Simple distillation (any one):	
	i. Toluene-dichloromethane mixture using water condenser.	
	ii. Nitrobenzene and aniline using air condenser.	
	b. Steam distillation (anyone):	
	i. Separation of <i>o</i> - and <i>p</i> - nitrophenols.	
	ii. Naphthalene from its suspension in water,	
	iii. Clove oil from cloves.	
	c. Crystallisation: Concept of induction of crystallization (any one)	
	i. Crystallisation of phthalic acid from hot water using fluted filter	
	paper and stemless funnel.	
	ii. Acetanilide from boiling water	
	iii. Naphthalene from ethanol.	
	iv. Decolorisation and crystallization of brown sugar (sucrose)	
	with animal charcoal using gravity filtration.	
	d. Sublimation: Simple or vacuum sublimation of camphor,	
	naphthalene, anthracene or succinic acid (any one).	
	e. Vacuum distillation (any one): o-dichlorobenzene, diphenyl	

		
	ether. Also use of nomograph should be explained.	
	f. Thin layer Chromatography (any one):	
	i. Separation of <i>o</i> and <i>p</i> -nitroanilines.	
	ii. Separation of analgesic drugs	
	iii. Separation of <i>o</i> and <i>p</i> -nitrophenols,	
	3. Organic synthesis (Any Seven experiments)	24
	a. Aliphatic electrophilic substitution: Preparation of iodoform	
	from ethanol & acetone.	
	b. Aromatic electrophilic substitution (anyone):	
	i. Preparation of <i>p</i> -bromoacetanilide.	
	ii. Bromination of acetophenone to phenacyl bromide	
	iii. Nitration of napththalene to 1-nitronaphthalene	
	iv. Nitration of benzaldehyde to 3-nitrobenzaldehdye.	
	c. Oxidation (any one)	
	i. Benzoic acid from toluene.	
	ii. Cyclohexanone from cyclohexanol.	
	iii Isoborneol to camphor using Jones reagent.	
	d. Reduction (any one)	
	i. Reduction of <i>o</i> -nitroaniline to <i>o</i> -phenylenediamine using Sn/HCl	
	ii. Reduction of <i>p</i> -nitro benzaldehyde to <i>p</i> -nitrobenzyl alcohol	
	using NaBH ₄ .	
	e. Bromination of an alcohol using CBr ₄ / triphenylphosphine.	
	f. Grignard reaction: Triphenylmethanol from benzoic acid ester	
	or benzophenone.	
	g. Aldol condensation: Dibenzal acetone from benzaldehyde	
	h. Acetoacetic ester condensation: Preparation of ethyl n-	
	butylacetoacetate or ethyl acetoacetate.	
	i. Cannizzaro reaction using 4-chlorobenzaldehyde as substrate.	
	j. Friedel Craft's reaction (any one):	
	i. using toluene and succinic anhydride	
	ii. Resorcinol to resacetophenone, benzene and maleic anhydride	
	to β-benzoylacrylic acid	
	k. Solvent free preparation of coumarin by the Knoevenagel	
	condensation under MW irradiation.	
	I. Preparation of oxidizing agent (any one): Pyridinium	
	chlorochromate-silica, pyridinium chlorochromate-alumina,	
	MnO ₂ .	
	m. Preparation of cuprous chloride.	
	4. Isolation from natural sources (Any two)	8
	i. Caffeine from tea powder.	
	ii. Piperine from pepper.	
	iii. Cinnamaldehyde from cinnamon	
	iv. Lemongrass oil from lemongrass	
Pedagogy:	Students should be given suitable pre- and post-lab assignments	
		L

	7
	and explanation revising the theoretical aspects of laboratory
	experiments prior to the conduct of each experiment. Each of the
	experiments should be done individually by the students.
References /	1. A.I. Vogel, A., R. Tatchell, B. S. Furniss, A.J. Hannaford, Vogel's
Readings	Textbook of Practical Organic Chemistry, 5 th Ed., Prentice Hall;
	2011.
	2. D. Pasto, C. Johnson and M. Miller, Experiments and
	Techniques in Organic Chemistry, 1 st Ed., Prentice Hall, 1991.
	3. L.F. Fieser, K.L. Williamson, Organic Experiments, 7 th edition D.
	C. Heath, 1992.
	4. K.L. Williamson, K.M. Masters, Macroscale and Microscale
	Organic Experiments, 6 th Edition, Cengage Learning, 2010
	5. R.K. Bansal, Laboratory Manual in Organic Chemistry, New Age
	International, 5 th Edition, 2016.
	6. S. Delvin, Green Chemistry, Sarup& Sons, 2005.
	7. O.R. Rodig, C.E. Bell Jr. and A.K. Clark, Organic Chemistry
	Laboratory Standard and Microscale Experiments, Saunders
	College Publishing, 3 rd edition, 2009.
	8. J. Mohan, Organic Analytical Chemistry, Narosa Publishing
	House, 2014.
Course	1. Students will be in a position to understand stoichiometric requirements
outcomes	during organic syntheses.
	2. Students will be in a position to understand Safe and good laboratory
	practices, handling laboratory glassware, equipment and chemical
	reagents.
	3. Students will be in a position to apply the practical knowledge to
	perform
	experiments involving common laboratory techniques like reflux,
	distillation, steam distillation, vacuum distillation, aqueous extraction,
	thin layer chromatography (TLC) etc.
	4. Students will get hands-on experience on isolation of some important
	natural products.

Course Code: CHO-522 Title of the course: Practical Course in Organic Chemistry-II

Number of Credits: 02

Prerequisites	Students should have studied chemistry practical courses at grad	uate level
for the	or must have cleared change of discipline entrance test conducted by Goa	
course	University.	,
Course	To translate certain theoretical concepts learnt earlier into exper	imental
Objective:	knowledge by providing hands on experience of basic laboratory	
	techniques required for organic syntheses.	
Content	Minimum 13 experiments from the list shall be conducted.	No of
	1. Introduction to laboratory equipments, apparatus and	hours
	safety	
	a. Common Hazards in Chemical Laboratory, Risk assessment	04
	b. Accidents and Emergency procedures	
	2. Laboratory Techniques (Any Two)	08
	a. Simple distillation	
	i. Simple distillation of thionyl chloride under anhydrous	
	condition	
	ii. Simple distillation under Nitrogen atmosphere	
	b. Fractional distillation	
	i. Chloroform-dichloromethane mixture using water	
	condenser.	
	ii. Toluene and cyclohexane by fractionating column.	
	c. Vacuum distillation under inert atmosphere	
	Dry Distillation of DMF, o-dichlorobenzene, POCl ₃	
	d. Thin layer Chromatography	
	i. Purification and isolation of mixture of acids by using	
	Preparative TLC.	
	ii. Purification and isolation of mixture of phenols by using	
	Preparative TLC.	
	iii. Purification and isolation of pharmaceutical drugs using	
	Preparative TLC.	
	3. Organic Synthesis (Any Four)	16
	a. <i>p</i> -lodonitrobenzene by Sandmeyer reaction	
	b. Pinacol- Pinacolone rearrangement	
	c. Hydrogenation of Maleic acid (Hydrogen balloon)	
	d. Preparation of nitrostyrene from aldehyde	
	e. Preparation of α , β -dibromocinnamic acid	
	f. Reduction of nitro compounds	
	g. Synthesis of Urea from ammonium cyanate	

	4. Solvent Free Organic synthesis (Any Two)	08
	a. Reduction using ball milling technique	
	b. Oxidation of 2° alcohol using KMnO ₄ /Alumina by grinding	
	technique.	
	c. Synthesis of (±)-Binol from β -naphthol	
	d. Hunsdiecker reaction of cinnamic acid derivatives	
	e. Beckmann rearrangement of oxime derivatives	
	5. Two-step Organic Synthesis (Any Two)	16
	a. Benzamide-Benzoic acid-Ethyl Benzoate	
	b. Phthalic anhydride – Phthalimide – Anthranilic acid.	
	c. Methyl benzoate- <i>m</i> -nitrobenzoate- <i>m</i> -nitrobenzoic acid	
	d. Chlorobenzene – 2, 4 – dinitrochlorobenzene – 2,4-	
	dinitrophenol	
	e. Acetanilide – <i>p</i> –Bromo acetanilide – <i>p</i> –Bromoaniline	
	f. Acetophenone – Oxime – Acetanilide	
	6. Separation, Isolation and Identification of Organic	08
	compounds (Any One)	
	a. Separation, purification and identification of compounds	
	of binary mixture (Solid-Solid, Solid-liquid and Liquid-liquid)	
	using the TLC and column chromatography, chemical tests.	
	IR spectra to be used for functional group identification.	
Pedagogy	Students should be given suitable pre- and post-lab assignments a	
	explanation revising the theoretical aspects of laboratory experim	ents
	prior to the conduct of each experiment.	
References	1. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's	Textbook
/ Readings	of Practical Organic Chemistry, 5 th Ed., Prentice Hall; 2011.	
	2. K. Tanaka, Solvent-free Organic Synthesis, Wiley-VCH, 2 nd Ed., 2	
	3. L. F. Fieser, K. L. Williamson "Organic Experiments" 7 th edit Heath, 1992.	ION D. C.
	4. K. L. Williamson, K. M. Masters, Macroscale and Microscale	Organic
	Experiments, 6 th Edition, Cengage Learning, 2010	
	5. R. K. Bansal, Laboratory Manual in Organic Chemistry, 1	
	International, 5 th Edition, 2016.	New Age
	6. S. Delvin, Green Chemistry, Sarup& Sons, 2005.	
	7. O. R. Rodig, C. E. Bell Jr., A. K. Clark, Organic Chemistry La	aboratory
	Standard and Microscale Experiments, Saunders College P	-
	3 rd edition, 2009.	······
	8. J. Mohan, Organic Analytical Chemistry, Narosa Publishing Hous	se, 2014.
Course	1. Students will be in a position to adopt Safe and good la	
outcomes	practices, handling laboratory glassware, equipment and	-
	reagents.	
	2. Students will be in a position to understand and calculate stoic	niometric
	requirements during organic syntheses.	

3. Students will be in a position to perform common laboratory techniques
including reflux, distillation, vacuum distillation, aqueous extraction, thin
layer chromatography (TLC).
4. Students will get hands-on experience on isolation of some important
natural products.

Course Code: CHP-500 Title of the course: General Physical Chemistry

Number of Credits: 04

Prerequisites for the course:	Students should have studied chemistry courses at graduate level have cleared change of discipline entrance test conducted by Goa Uni	
Course Objective:	 Introduction of various concepts on thermodynamics. Introduction of electro chemistry and kinetics. Learning quantum chemistry. 	
Content	1. Mathematical Preparations	No of
	a. Introduction to various functions and function plotting	hours
	(exponential, logarithmic, trigonometric etc.), functions of many	12
	variables. Complex numbers and complex functions.	12
	 b. Linear equations, vectors, matrices and determinants. c. Basic rules of differentiation and integration, Partial 	
	differentiation, location and characterization of critical points of	
	a function, Regression methods, curve fitting.	
	d. Introduction to series, convergence and divergence, power	
	series, Fourier series	
	e. Probability (permutations and combinations).	
	2. Quantum Chemistry	20
	a. Operators, Functions, Eigen value equations, Postulates.	
	b. Schrodinger equation, application to simple system viz. free	
	particle, particle in one dimensional, two dimensional and three-	
	dimensional box (quantization, separation of variables,	
	degenerate wave functions).	
	c. Hydrogen like atoms, Schrodinger equation and its solutions,	
	atomic orbital wave functions and interpretation. d. Hückel MO theory, Secular equations, Secular determinant,	
	delocalization energy, charge density, π -bond order, free	
	valence, applications to C_2H_4 , C_3H_5 (radical), C_4H_6 , C_4H_4 , C_6H_6 ,	
	C_6H_8 .	
	3. Thermodynamics	12
	a. Thermodynamic properties: Gas laws, Real gasses, Boyle	
	temperature, Critical temperature, State and path properties.	
	Intensive and extensive properties. Exact and inexact	
	differentials. Internal energy, enthalpy, entropy, free energy and	
	their relations and significances. Maxwell relations.	
	Thermodynamic equations of state	
	b. Joule-Thomson effect. Joule-Thomson coefficient for van der	

Waals' gas. Joule-Thomson effect and production of low temperature, adiabatic demagnetization, Joule-Thompson	
coefficient, inversion temperature.	
c. The third law of thermodynamics. Need for the third law.	
Apparent exceptions to third law. Application of third law. Use	
of thermodynamic functions in predicting direction of chemical	
change. Entropy and third law of thermodynamics.	
d. Phase equilibria: Phase rule, Discussion of two component	
systems forming solid solutions with and without maximum or	
minimum in freezing point curve. Systems with partially miscible	
solid phases.	
e. Three component systems: Graphical representation. Three	
component liquid systems with one pair of partially miscible	
liquids. Influence of temperature. Systems with two pairs and	
three pairs of partially miscible liquids. The role of added salts.	
4. Electrochemistry	8
a. EMF series, The cell potential: The Nernst equation, Cells at	o
equilibrium. Determination of thermodynamic functions.	
b. Decomposition potential and overvoltage, electronegativity,	
basic principles, completeness of deposition, Separation with	
controlled potentials, constant current electrolysis, composition	
of electrolyte, potential buffers, physical characteristics of metal	
deposits.	
c. Electroplating and electroless plating, electrosynthesis.	
d. Concepts of acid-base aqueous and non-aqueous solvents,	
hard and soft acid-base concept and applications.	
5. Chemical Kinetics	8
a. General introduction to various types of order of reaction	0
including fractional order, Molecularity of the reaction.	
b. Introduction to reversible and irreversible reactions and	
reactions leading to equilibrium. Van't Hoffs equation and	
analysis of Gibbs free energy of equilibrium reactions. c. Collision Theory and Maxwell Boltzmann distribution of	
energies of colliding molecules (derivation not required). The	
concept of collisional cross section and reactive cross section and its significance	
its significance.	
d. Comparative study of transition state and collision state theory (derivation not required)	
(derivation not required).	
e. Reaction Mechanisms: elementary reactions, Consecutive	
elementary reactions, steady state approximation, the rate	
determining step and pre-equilibria	
f. Free radical reactions, Complex reactions such as acetaldehyde	
decomposition and reaction between H ₂ and Br ₂ , Homogeneous	
reactions and acid-base catalysis.	

	g. Elementary enzyme reactions. Lineweaver-Burk plot and its analysis
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /
	presentations / self-study or a combination of some of these can also be
	used. ICT mode should be preferred. Sessions should be interactive in nature
	to enable peer group learning.
References /	1. P. W. Atkins and J. D. Paula, Physical Chemistry, 8 th Ed., Oxford University
Readings	Press, New Delhi. 2007
	2. G. M. Barrow, Physical Chemistry, 5 th Ed., Tata McGraw Hill, New Delhi.
	2016
	3. J. E. House, Principles of Chemical Kinetics, 2 nd Ed., Academic Press,
	Elsevier Burlington, USA, 2007
	4. I. N. Levine, Quantum Chemistry, 7 th Ed., Prentice-Hall, New Delhi. 1999
Course	1. Students should be in a position to understand and explain various
outcomes:	concepts in physical chemistry.
	2. Students should be in a position to apply these concepts during the lab
	course in physical chemistry.
	3. Students will understand concepts of electrochemistry.
	4. Students will be able to apply fundamentals of chemical kinetics for
	understanding reaction mechanisms.

Course Code: CHP-521 Title of the course: Practical course in Physical Chemistry-I

Number of Credits: 02

Prerequisites for the course:	Students should have studied chemistry courses at graduate level or must have cleared change of discipline entrance test conducted by Goa University.	
Course Objective:	 To develop experimental skills on basic lab techniques in physichemistry To acquire skills for data analysis and interpretation To help the students to develop research skills 	sical
Content	Minimum 13 Experiments to be performed per Semester Non-instrumental Experiments (any 7)	No of hours
	 To study the kinetics of hydrolysis of ethyl acetate and to determine a) Energy of activation b) Entropy of activation and c) Free energy change. 	30
	 To determine the order of reaction between potassium persulphate and potassium iodide by graphical, fractional change and differential methods. 	
	 To study the three-component system such as acetic acid, chloroform; and water and obtain tie line. To determine the molecular weight of polyvinyl alcohol 	
	 by viscosity measurement. 5. To study the electro-kinetics of rapid reaction between SO₄²⁻ and l⁻ in an aqueous solution. 	
	 6. To determine the buffer capacity of acidic buffer solution. 7. To determine the partial molal volume of ethanol-water mixture at a given temperature. 	
	 mixture at a given temperature. 8. To measure energy content of various types of plastics using bomb calorimetry 2. To determine number exercises medecular maintains. 	
	 9. To determine number average molecular weight of a polymer sample with an indirect titration method. 10. To investigate basic hydrolysis of ethyl acetate at four different temperatures and find out energy of activation 	
	Instrumental Experiments (any 6)	

		
	 11. To determine the degree of hydrolysis of salt of weak base and strong acid using conductometer. 12. To determine the dissociation constants of a tribasic acid (Phosphoric acid obtain derivative plot to get equivalence point. 13. To determine formal redox potential of Fe²⁺/Fe³⁺ and Ce³⁺/Ce⁴⁺ system obtain derivative plot to get equivalence point. 14. To study spectrophotometric titration of ferrous ammonium sulphate with potassium permanganate (or dichromate vs permanganate) 15. To determine the zeta potential of colloidal system and investigate the effect of different surfactants on stability of the colloids 17. To verify the Kohlrausch's law for weak electrolyte by conductometry 18. To determine the transport numbers of Cu²⁺ and SO₄²⁻ 	
	ions in CuSO ₄ solution by Hittorf's method.	
Pedagogy	Mainly pre-laboratory exercises Seminars / term papers /assignments / presentations / lab hand-out /self-study or a combination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning.	
References / Readings	 A. Finlay & J.A. Kitchener, Practical Physical Chemistry, Longman. F. Daniels & J.H. Mathews, Experimental Physical Chemistry, Longman. A. M. James, Practical Physical Chemistry, Longman. D.P. Shoemaker & C.W. Garland, Experimental Physical Chemistry, McGraw-Hill. 	
Course	1. Students will able to explain various fundamental lab techniques.	
outcomes:	2. Students should be in a position to apply the knowledge for their discortation and research work	
	dissertation and research work. 3. Students will be able to use spectrophotometric titrations for	
	appropriate analysis.	
	4. Students will be able to determine molecular weight of some	
	polymers.	

Course Code: CHP-522 Title of the course: Practical course in Physical Chemistry-II

Number of Credits: 02

Prerequisites for the	Students should have studied chemistry courses at graduate leve have cleared change of discipline entrance test.	l or must
course:		
Course	1. To develop experimental skills on basic lab techniques in physic	al
Objective:	chemistry	
	2. To acquire skills for data analysis and interpretation	
	3. To help the students to develop research skills	
Content	Minimum 13 experiments to be conducted per Semester	No of
	Non-instrumental Experiments (any 8)	hours
	1. To determine the radius of a molecule by viscosity measurements.	35
	2. To determine ΔG , ΔH and ΔS of silver benzoate by solubility product method	
	3. To investigate the adsorption of oxalic acid by activated	
	charcoal and test the validity of Freundlich and Langmuir's isotherms.	
	4. To determine the molecular weight of a given polymer by turbidimetry	
	5. To study the rate of reaction between ethyl bromoacetate and sodium thiosulphate kinetically.	
	6. To determine the percentage composition of a given mixture of two liquids by stalagmometer method.	
	7. To study the kinetics of hydrolysis of methyl acetate and to	
	determine a) Energy of activation b) Entropy of activation and c) Free energy change.	
	8. To study the kinetics of the reaction between Potassium per	
	sulphate $(K_2S_2O_8)$, and Potassium iodide (KI), and to	
	determine a) Energy of activation b) Entropy of activation	
	and c) Free energy change.	
	9. To determine the order of reaction for hydrolysis of ethyl	
	acetate by graphical, fractional change and differential	
	methods.	
	10.To determine the molecular weight of polystyrene by	
L		1

	viscosity measurement.	
	Instrumental Experiments (any 5)	
	11. To determine the relative strength of chloroacetic acid and	
	acetic acid by conductometry.	25
	12. To determine the degree of hydrolysis of salt of weak base	25
	and strong acid using conductometry.	
	13. To determine the composition of a mixture of acetic acid,	
	dichloroacetic acid and hydrochloric acid by conductometric	
	titration.	
	14. To determine the dissociation constants of monobasic acid	
	and dibasic acid and obtain derivative plot to get	
	equivalence point.	
	15. To determine the redox potential of Fe^{2+}/Fe^{3+} system by	
	titrating it with standard K ₂ Cr ₂ O ₇ solution.	
	16. To study the electrodeposition of metal.	
Pedagogy	Mainly pre-laboratory exercises Seminars / term papers /assign	-
	presentations / lab hand-out /self-study or a combination of	
	these can also be used. ICT mode should be preferred. Sessions sh	hould be
References /	interactive in nature to enable peer group learning. 1. A. Finlay & J.A. Kitchener, Practical Physical Chemistry, Longma	n.
Readings	2. F. Daniels & J.H. Mathews, Experimental Physical Chemistry, Lo	ngman.
	3. A. M. James, F. E. Prichard, Practical Physical Chemistry, Longm	
	 D.P. Shoemaker & C.W. Garland, Experimental Physical Chemis McGraw-Hill. 	u y,
Course	1. Students will gain knowledge of various fundamental lab technic	ques.
outcomes:	2. Students should be in a position to apply the knowledge for their	r
	dissertation and research work.	c .
	3. Students will be able to use spectrophotometric titrati	ons for
	appropriate analysis. 4. Students will be able to determine molecular weight of some po	lymers
		.,

Name of the Programme: M. Sc -I (Analytical Chemistry)

Course Code: CHA-501 **Title of the course:** Chemical methods of analysis

Number of Credits: 04

Prerequisites	Students should have studied analytical chemistry courses at M.Sc. Cl	nemistry
for the course:	in semester l	
Course	1. Introduction to the various chemical method of analysis, details of	
Objectives:	underlying principle of chemical methods, advantages and limitations	
	2. Application of chemical methods for qualitative and quantitative ana	alysis
Content	1. Acid-Base Titrations	No of
	a. Standard acids and Base solutions,	hours
	b. Theory of acid-base indicators for Acid-Base titrations	
	i. Colour change and range of indicator	10
	ii. Selection of proper indicator	
	iii. Indicator errors	
	c. Neutralization curves for strong acid-strong base; weak acid-	
	strong base and weak base-strong acid weak acid-weak base	
	titrations	
	d. Polyfunctional acids and bases; titration curves for poly	
	functional acids and bases; titration curves for amphiprotic	
	species	
	e. Determining the equivalence point; feasibility of acid - base	
	titrations; magnitude of the equilibrium constant; effect of concentration	
	f. Typical applications of acid-base titrations	
	2. Complexometric titrations	
	a. The complex formation reactions; Stability of complexes;	8
	stepwise formation constants	0
	b. Organic complexing agents; amino carboxylic acid titration	
	c. EDTA; acidic properties of EDTA; EDTA complexes with metal	
	ions; equilibrium calculations involving EDTA in solution;	
	condition of formation constants	
	d. EDTA titration curves; effect of other complexing agents on	
	EDTA; factors affecting the titration curves; completeness of	
	reaction	
	e. Indicators for EDTA titrations; Theory of common indicators	
	f. Titration methods using EDTA- direct titration; back titration	
	and displacement titration; indirect determinations; titration of	
	mixtures; selectivity, masking and damasking agents	
	g. Applications of EDTA titrations- hardness of water; magnesium	
	and Al in antacids; magnesium, manganese and zinc in a	

mixture.	
3. Precipitation titrations	
a. Introduction to precipitation titrations; feasibility of	6
precipitation titrations	
b. Titration curves	
i. Effect of titrant and analyte concentration on titration curves	
ii. Effect of reaction completeness on titration curves	
iii. Titration curves for mixture of anions	
c. Indicators for precipitation titrations	
d. The Volhard, the Mohr's and the Fajan's methods	
e. Titration of sulfate with barium	
4. Basic concepts in Electrochemical Titrations	
a. Faradic and non-Faradic currents	4
b. Reversible and irreversible cells	
c. EMF series; standard electrode potential; Nernst equation;	
calculation of cell potential; effect of current; ohmic potential;	
polarization; decomposition potential; over voltage;	
concentration polarization; mechanism of mass transport.	
d. Introduction to potentiometric methods	
5. Redox and potentiometric titrations	
a. Redox Titrations: Equilibrium constants for redox reactions-	8
electrode potentials in equilibrium systems; calculation of	_
equilibrium constants	
b. Redox titration curves- formal redox potentials; derivation of	
titration curves	
c. Factors affecting the shape of titration curves concentration;	
completeness of reaction; titration of mixtures- feasibility of	
redox titrations	
d. Detection of end point and redox indicators	
i. Structural aspect of redox indicators	
ii. Specific and nonspecific indicators	
iii. Choice of indicator	
iv. Potentiometric end point detection	
e. Sample preparation: pre-reduction and pre-oxidation	
f. Potentiometric titrations	
6. Gravimetric analysis	
a. Introduction to gravimetric method of analysis	
b. Properties of precipitates and precipitating reagents	6
i. Completeness of precipitates	0
ii. Super saturation and precipitate formation	
iii. Particle size and filterability of precipitates	
c. Colloidal precipitates and crystalline precipitates	
d. Purity of the precipitate; coprecipitation, post precipitation;	

	conditions for precipitation.	
	e. Fractional precipitation; precipitation from homogenous	
	solution;	
	f. Organic reagent as precipitants-dimethyl glyoxime, oxine,	
	cupferron, salicylaldoxime	
	g. Washing of precipitates; drying and ignition of precipitates;	
	calculation of results from gravimetric data;	
	h. Applications of gravimetric method	
	7. Clinical methods of analysis	
	a. Composition of Blood; Collection and Preservation of Samples;	10
	b. Immunoassay: Radioimmunoassay; its principle and	
	applications; instrumentation for radio bioassay	
	c. Clinical application of the radioimmunoassay of insulin,	
	estrogen and progesterone; receptor techniques of breast	
	cancer	
	d. Enzyme- linked immunosorbent assay; principles; practical	
	aspects; applications	
	e. Blood gas analyzer	
	f. Trace elements in the body	
	8. Environmental Sampling and Analysis	
	a. Acquiring meaningful Sample	8
	b. Air Sample Collection and Analysis	
	c. Water Sample Collection and Analysis	
	d. Soil and Sediment Sampling	
	e. Sample Preparation for Trace Organics	
	f. Methods and Performance-Based Analyses	
Pedagogy:	Mainly lectures and tutorials. Seminars / term papers /assign	-
	presentations / self-study or a combination of some of these can also	
	ICT mode should be preferred. Sessions should be interactive in n	ature to
	enable peer group learning.	
References /	1. G. D. Christian, Analytical Chemistry, 6 th Ed., John Wiley, New York, 2	
Readings:	2. D. A. Skoog, D. M. West & F. J. Holler, Fundamentals of Analytical Ch	emistry,
	9 th Ed., Sounders College publishing, 2014.	
	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, Vogel's Text	book of
	Quantitative Inorganic Analysis, 6 th Ed., Pearson Education Asia, 2000.	
	4. D. Harvey, Modern analytical chemistry, 1 st Ed., The McGraw-Hill, 20	
	5. G. H. Jeffery, J. Bassett, J. Mendham, R C. Denney, Vogel's Text	Book of
	Quantitative Chemical Analysis, 5 th Ed., John Wiley, New York, 1989.	
Course	1. Students will be able to explain the basic principle and chemistry	
outcomes:	behind different conventional method of analysis.	he to
	2. Students will know the limitation of method of analysis and will	
	position to choose an appropriate chemical method for particular analy	/SIS.

3. Students will understand the various types of titration techniques.
4. Students will understand and will be able to apply various sampling
techniques.

Course Code: CHA-502 Title of the course: Techniques in Analytical Chemistry - II

Number of Credits: 04

Prerequisites	Students should have studied analytical chemistry courses a	t M.Sc.
for the course:	Chemistry in semester I	
	 Provide understanding of the principle of optical analytical technicity like Nephelometry, Turbidimetry, and Polarimetry. Introduce the principles and applications of Absorption and E 	
Course	spectroscopic techniques.	
Objective:	3. Develop concepts in various Electroanalytical techniques such	as pH-
	metry, conductometry and Karl Fischer titration.	
	4. Acquaint the students to the basic principles of Radioar	nalytical
	techniques and solvent extraction techniques.	
Content:	1. Optical analytical techniques	No of
	a. Nephelometry and Turbidimetry: Introduction to principle, instrumentation and application of nephelometry,	hours
	 turbidimetry. Factors affecting measurement; comparison between nephelometry, turbidimetry, colorimetry and fluorimetry; applications of nephelometry and turbidimetry. b. Polarimetry: Introduction, principle and Instrumentation of Polarimetry; application of optical rotation method in rate constant determination; acid- catalysed mutarotation of glucose; inversion of cane sugar. Introduction to terms such as optical rotatory dispersion (ORD), cotton effect curves, circular dichroism, octant rule for ketones. 2. Introduction to Absorption and Emission Techniques Introduction, principles and applications of atomic absorption Spectroscopy (AAS) Atomic Emission spectroscopy (AES), and Flame Emission spectroscopy (FES). Excitation techniques, electrodes and their shapes, Quantitative and qualitative 	15
	application, brief introduction to ICP-MS, ICP-OES 3. Electroanalytical techniques a. Brief introduction to electroanalytical techniques.	15
	Voltammetry and polarography, cyclic voltammetry, coulometry, controlled potential coulometry and coulometric titrations, Stripping voltammetry, ion-selective electrodes and sensors; Evaluation and Calculation; Application to Inorganic and Organic Trace analysis b. Introduction to Ion selective electrodes; construction, application and selectivity coefficient of Ion selective	

	 electrode; pH measurement; buffer solution; glass electrode; instrument for pH measurement. c. Basic aspects of conductometric titration; types of conductometric titration; advantages and disadvantages of conductometric titration; Introduction; theory; instrumentation; advantages, disadvantages and applications of High frequency titrations. 	
	4. Karl Fischer Titration Introduction, theory, instrumentation, advantages and disadvantages Karl Fischer reagent, determination of water content in industrial samples.	5
	5. Radioanalytical techniques Theory and principles of radio analytical technique, detection of nuclear radiation, radiation detectors, pulse height analysis, counting error, analytical application of radioisotopes, neutron activation analysis and isotope dilution analysis.	8
	 6. Introduction to Extraction Techniques a. Liquid-liquid extraction/solvent extraction: partition coefficient, distribution ratio and percent extraction, choice of solvents, Solvent extraction of metal ions-ion association complexes and metal chelates, multiple batch extraction, Craig's counter-current distribution. b. Introduction to green analytical extraction methods: Supercritical Fluid Extraction, Pressurized Liquid Extraction, Ultrasound assisted Extraction, Microwave assisted Extraction, Enzyme assisted Extraction, Solid phase microextraction, Solid Phase Extraction. 	12
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignr presentations / self-study or a combination of some of these can used. ICT mode should be preferred. Sessions should be intera nature to enable peer group learning.	also be
References / Readings:	 G.D. Christian, Analytical Chemistry, 6th Ed.; Wiley, 2004. D. A. Skoog, D. M. West, F. J. Hollar, S. R. Crouch; Fundame Analytical Chemistry, 9th Ed.; Cengage Learning, 2014. F. J. Holler, D. A. Skoog, S. R. Crouch, Principles of Instru Analysis, 6th Ed.; Thomson Books, 2007. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, B. Siva Vogel's Text Book of Quantitative Chemical Analysis, 6th Ed.; P 2009. H. H. Willard, L. L. Merritt, J. A. Dean, F.A. Settle, Instru Methods of Analysis, 7th Ed.; CBS Publishing, 1988. J. H. Kennedy, Analytical Chemistry: Principles, 2nd Ed.; Sa College Publishing, 1990. 	imental Isankar, Pearson, Imental

	 G. W. Ewing, Instrumental Methods of Chemical Analysis, 5th Ed.; McGraw-Hill, 1985. R. A. Day, A. L. Underwood, Quantitative Analysis, 6th Ed.; Prentice Hall, 2001. B. K. Sharma, Instrumental methods of chemical analysis, Goel Publishing House, Meerut, 2004. R. D. Braun, Introduction to Instrumental analysis, Pharma Med Press, 2012. G. R. Chatwal, S. K. Anand, Instrumental Methods of Chemical Analysis, 5th Ed.; Himalaya publishing House, 2019. H. Gunzler, A. Williams, Handbook of Analytical Techniques, 1st Ed.; Wiley, 2001 M. A. Rostagno, J. M. Prado, Natural Product Extraction: Principles and Applications, RSC, 2013. E. Scholz, Karl Fischer Titration: Determination of Water, Springer,
	2011.
Course	1. Students will be able to explain the principle of Nephelometry,
outcomes:	 Turbidimetry, and Polarimetry. Students will be able to describe and differentiate between the absorption and emission techniques such as AAS, AES. Students will be able to illustrate the principle of Electroanalytical techniques such as voltammetry, conductometry and Karl Fischer titration. Students will be able to explain and apply the principles of
	Radioanalytical techniques and solvent extraction methods.

Course Code: CHA-503 **Title of the course:** Separation Techniques

Number of Credits: 04

Prerequisites	Students should have studied analytical chemistry courses a	t M.Sc.
for the course:	Chemistry in semester I	
Course	1. Introduction of various separation techniques.	
Objective:	2. Evaluate the use of chromatographic techniques for chemical a	nalysis.
Content:	1. Basic Separation Technique:	No of
	General aspects of separation techniques-role of separation	hours
	technique in analysis; separating the analyte from	
	interferents, general theory of separation efficiency:	10
	separation factor.	
	Classifying separation techniques: Separations based on size;	
	separations based on mass or density, separations based on	
	complexation reactions (Masking); separations based on a	
	change of state; separations based on partitioning between	
	phases.	
	(Note: Following techniques shall be discussed as	
	representative example)	
	Basic principles of distillation; theory of vacuum, steam,	
	azeotropic and fractional distillation.	
	Fractionation by solvent extraction: based on chemical	
	nature and based on polarity of analyte.	
	Membrane techniques: dialysis, reverse osmosis, ultrafiltration.	
	Centrifugation techniques: Sedimentation velocity,	
	Sedimentation equilibrium, analytical and preparative	
	centrifugation, differential centrifugation, density gradient	
	centrifugation; applications in separation.	
	2. Chromatographic Methods:	
	Introduction to chromatography: Principle of	30
	chromatographic technique, terms and parameters used in	
	chromatography, classification of chromatographic methods,	
	partition versus adsorption chromatography, qualitative and	
	quantitative analysis by chromatography;	
	Planar Chromatography (Paper and thin layer):	
	Paper Chromatography: Principle, types (ascending,	
	descending, circular, two dimensional paper	
	chromatography), choice of solvent, adsorbents, multiple	
	development, qualitative and quantitative measurement	

applications.

Thin Layer Chromatography (TLC): Principle; efficiency of thin layer plates, methodology (technique), criteria for selection of stationary and mobile phases (numerical to calculate elution strength of mixed solvents used as mobile phase), choice of adsorbents, preparation of plates, spotting (spot capacity), development of chromatogram, identification and detection using physical and chemical methods, reproducibility of Rf values and improving resolution, Two-dimensional TLC, comparison of TLC with paper chromatography and column chromatography, thin layer ionophoresis and electrophoresis, qualitative, quantitative evaluation and applications.

High-performance TLC (HPTLC): Introduction, theory, classification (classical, high performance, ultra, preparative HPTLC), difference between TLC and HPTLC with respects to the parameters, scanning densitometer, quantitative analysis and applications.

Column Chromatography: Introduction, types (conventional, flash, LPLC, Dry column vacuum chromatography), principle, packing, loading, eluting and collecting eluent in the column chromatography and experimental requirements, theory of development, migration rates of solutes, band broadening, resolution and column efficiency, variables that affect column efficiency, van Deemter equation, qualitative and quantitative analysis, numericals and applications.

Gas Chromatography (GC): Instrumentation, selection of operating condition, carrier gases, stationary phases, choices of GC column, temperature selection, sampling techniques, methods to prepare derivatives of samples (silylation, acylation, alkylation), factors affecting separation, working principle of GC detectors such as TCD, ECD, FID, quantification methods such as normalizing peak area, internal std., external std, standard addition, advances in GC, hyphenated techniques; GC-FTIR, GC-MS. Analysis of data obtained using GC chromatogram, GC-MS.

Liquid-Liquid Partition Chromatography: HPLC

Introduction, selection of stationary and mobile phase, types of bonded phase chromatography-NPC and RPC and stationary phases used, reversed phase partition chromatography, steps in HPLC method development in partition chromatography, elution techniques (isocratic and gradient), ion pairing agents, buffer agents, organic modifiers, optimization of capacity factor, gradient

· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	 selectivity factor and column plate numbers, numericals on method development using Snyder's polarity index, advances in LC, Preparative vs analytical HPLC, Chiral chromatography- Pirkle stationary phases, examples of enantiomer separation such as ibuprofen, calculation of enantiomeric excess. Choosing detectors- working principle of RI, UV-Vis, conductivity and ELSD, hyphenated techniques; LC-MS. Analysis of chemical data obtained using HPLC chromatogram, LC-MS. application of HPLC method development in food analysis/drugs, etc. 3. Other Chromatographic Methods: Size Exclusion Chromatography: Principle, types, stationary phases in gel chromatography, physical and chemical characteristics of gel, mechanism of gel permeation chromatography (GPC), instrumentation of GPC, applications 	10
	of GPC- determination of molecular weight of polymer with numericals. Supercritical-Fluid Chromatography: Introduction, important properties of supercritical-fluids, instrumentation and variables, SFC column vs other column, applications and data analysis. Affinity Chromatography: Principle, affinity matrix, ligands, mobile phase, separation mechanism, application in the separation of proteins, etc. Ion Exchange Chromatography: Introduction, mechanism of separation, types of stationary phases, factor affecting separation; Ion exclusion chromatography; separation mechanism- Donnan theory, application in the separation of alkaloids, carboxylic acids etc.	
	 A. Electrophoresis: Theory of electrophoresis, Types- Free solution and supporting medium electrophoresis, paper electrophoresis, capillary electrophoresis and gel electrophoresis. Capillary electrophoresis- Instrumentation, sample introduction in CE, types of CE methodology, electrophoretic mobility and electroosmotic mobility, total mobility, efficiency and resolution in CE column, numericals. Gel electrophoresis - types of gel, Polyacrylamide gel electrophoresis, factors affecting separation; Capillary Electrochromatography. Separation of neutral molecule by MEKC; Separation and determination of Vitamin B-complex by using CZE and MEKC. Staining and detecting electrophoresis band. 	10

Pedagogy:	Mainly lectures and tutorials. Seminars / term papers /assignments presentations / self-study or a combination of some of these can also be
	used. ICT mode should be preferred. Sessions should be interactive
	·
Defense /	nature to enable peer group learning.
References /	1. G. D. Christian, Analytical Chemistry, 6 th Ed.; John Wiley, 2004.
Readings:	2. D. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals Analytical Chemistry, 9 th Ed.; Cengage Learning, 2014.
	3. David. Harvey, Modern Analytical Chemistry, 1 st Ed.; The McGraw-H 2000.
	4. L. R. Snyder, J. J. Kirkland, J. W. Dolan, Introduction to modern liqu chromatography, 3 rd Ed.; John Wiley & Sons, 2009.
	5. H. H. Willard, L. L. Merritt, J. A. Dean, F. A. Settle, Instrument methods of Analysis, 7 th Ed.; CBS Publishing, 1986.
	6. G. H. Jeffery, J. Bassett, J. Mendham, R. C. Denney, Vogel's Text Bo of Quantitative Chemical Analysis, 5 th Ed.; John Wiley, 1989.
	7. H. Gunzler, A. Williams, Handbook of analytical techniques, 1 st Ed Wiley, 2002.
	8. F. W. Fifield, D. Kealey, Principles and Practice of Analytic Chemistry, 5 th Ed.; Blackwell Science Ltd., 2000.
	 A. Braithwaite, F. J. Smith, Chromatographic methods, 5th Ed.; Kluw academic publishers, 1999.
	10. J. Inczedy, Analytical Applications of Ion Exchangers, 1 st E
	Oxford Pergamon Press, 1966.
Course	1. Students will be able to select the separation techniques f
outcomes:	purification of analytes from interferents.
	2. Students will be able to analyse data and interpret chromatogram.
	3. Students will be able to perform qualitative and quantitati
	estimation using HPLC data.
	4. Students will understand and will be able to apply vario
	chromatographic techniques.

Course Code: CHA-504 Title of the course: Instrumental Methods of Analysis

Number of Credits: 04

Prerequisites	Students should have studied analytical chemistry courses a	t M.Sc.
for the course:	Chemistry in semester I	
Course Objective:	 Introduction of various instrumental methods for analysis. Understanding the utility of various instrumental method qualitative and quantitative analytical tool. 	ls as a
Content:	1. Diffraction Techniques: X-ray and Neutron Diffraction	No of
	a. Introduction to X-rays; interaction of X-rays with matter; X-	hours
	ray diffraction by crystals, Bragg's law.	15
	b. Powder X-ray diffraction: instrumentation and applications. Interpretation of powder X-ray diffraction pattern. calculation	15
	of lattice parameters.	
	c. Powder diffraction file and other crystallography databases.	
	d. Powder Neutron diffraction: theory, instrumentation and	
	applications.	
	2. X-ray Spectroscopic Techniques:	15
	a. X-ray spectroscopy, theory of X-ray absorption and	
	emission.	
	b. X-ray fluorescence (XRF) spectroscopy: introduction, instrumentation, wavelength dispersive and energy dispersive	
	XRF, applications.	
	c. Energy dispersive X-ray (EDX) spectroscopy and Electron	
	probe microanalysis (EPMA): introduction, instrumentation	
	and their applications.	
	d. Introduction to X-ray absorption near edge structure	
	(XANES), Extended X-ray absorption fine structure (EXAFS) and	
	their applications.	-
	 Electron Spectroscopic Techniques: a. Introduction to Electron spectroscopy techniques. 	5
	b. X-ray and UV Photoelectron spectroscopy (XPS, UPS):	
	theory, instrumentation and their applications.	
	c. Introduction to Auger electron spectroscopy (AES) and	
	electron energy loss spectroscopy (EELS) and their	
	applications.	
	4. Microscopic Techniques:	10
	a. Optical microscopy: components of microscope, different	
	types of optical microscopy techniques; significance and	

10
5
nts /
o be
ve in
,

	 4. T. G. Rochow and E. G. Rochow, An Introduction to Microscopy by Means of Light, Electrons, X-Rays, or Ultrasound, 2nd Ed.; Springer, 2012 5. Y. Leng, Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, 2nd Ed.; Wiley-VCH, 2013. 6. A. M. Garcia-Campana, Chemiluminescence in Analytical Chemistry, 1st Ed.; CRC Press. 2001. 7. R. F. Egerton, Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM, 2nd Ed.; Springer, 2016. 8. E. H. Kisi and C. J. Howard, Applications of Neutron Powder Diffraction, 1st Ed., Oxford Science Publications, 2008. 9. G. D. Christian, Analytical Chemistry, 6th Ed. Wiley, 2004.
Course outcomes:	 Students will be able to explain theory and instrumentation of various instrumental methods of analysis. Students will be able to judge suitability of different instrumentation methods for qualitative and quantitative analysis. Students will understand and will be able to apply various techniques of X-Ray analysis. Students will understand and will be able to apply various microscopi techniques.

M.Sc. Organic/Inorganic/Analytical/Physical Chemistry Part-II syllabus for AY 2023-24 (SEM III and SEM IV) based on NEP 2020

		SEM III & IV		
	Research Specific Elective (RSE) Courses			
Sr. No.	Subject code	Paper title	Credits	
1.	<u>CHO-600</u>	Practical Course in Organic Chemistry-III	4	
2.	<u>CHO-601</u>	Practical Course in Organic Chemistry-IV	4	
3.	<u>CHO-602</u>	Retrosynthesis and Heterocyclic Chemistry	4	
4.	<u>CHO-603</u>	Chemistry of Natural Products	4	
5.	<u>CHI-600</u>	Practical Course in Inorganic Chemistry-III	4	
6.	<u>CHI-601</u>	Practical Course in Inorganic Chemistry-IV	4	
7.	CHI-602	Principles and applications in catalysis	4	
8.	CHI-603	Selected Topics in Inorganic Chemistry	4	
9.	CHA-600	Practical Course in Analytical Chemistry-III	4	
10.	CHA-601	Practical Course in Analytical Chemistry-IV	4	
11.	CHA-602	Advanced Mass Spectrometry	4	
12.	CHA-603	Selected Topics in Analytical Chemistry	4	
13.	CHP-600	Practical Course in Physical Chemistry-III	4	
14.	CHP-601	Practical Course in Physical Chemistry-IV	4	
15.	<u>CHP-602</u>	Heterogeneous Catalysis: Fundamentals and Applications	4	
16.	<u>CHP-603</u>	Applied Electrochemistry	4	
17.	<u>CHC-600</u>	Research Methodology and instrumental techniques-I	4	
18.	<u>CHC-601</u>	Research Methodology and instrumental techniques- II	4	
19.	<u>CHC-651</u>	Discipline Specific Dissertation	16	
C. N.	Generic Elective (GE) Courses			
Sr. No.	Subject code	Paper title	Credits	
1.	<u>CHO-621</u>	Polymer Chemistry: Concepts, Synthesis and Processing of Polymers	4	
2.	<u>CHO-622</u>	Concepts in Medicinal Chemistry	4	
3.	СНО-623	Concepts in Green Chemistry	4	
4.	СНО-624	Chemistry of Life	4	
5.	<u>CHO-625</u>	Organometallic Chemistry and Rearrangement Reactions	4	
6.	<u>CHI-621</u>	Bioinorganic Chemistry	4	
7.	CHI-622	Chemistry of p-block elements & their compounds	4	

8.	<u>CHI-623</u>	Environmental Chemistry	4
9.	<u>CHI-624</u>	Inorganic Chemistry: Industrial Perspective	4
10.	<u>CHA-621</u>	Fundamentals of Crystallography	4
11.	<u>CHA-622</u>	Advanced NMR and combined Spectroscopy	4
12.	<u>CHA-623</u>	Bioanalytical Techniques	4
13.	<u>CHA-624</u>	Calibration and Validation in Analytical Chemistry	4
14.	<u>CHP-621</u>	Solid State Chemistry: Concepts and Applications	4
15.	<u>CHP-622</u>	Nanoscience: Concepts and Applications	4
16.	<u>CHP-623</u>	Physical aspects of Polymer Chemistry	4
17.	<u>CHP-624</u>	Colloids and Surface Chemistry	4
		Dissertation	
1.	<u>CHC-651</u>	Discipline Specific Dissertation	16

	SEM III ANALYTICAL CHEMISTRY		
Sr. No.	Subject	Paper title	Credits
	code		
1	CHA-600	Practical Course in Analytical Chemistry-III	4
2	CHA-601	Practical Course in Analytical Chemistry-IV	4
3	CHC-600	Research Methodology and instrumental techniques-I	4
4	CHC-601	Research Methodology and instrumental techniques-II	4
5	CHA-621	Fundamentals of Crystallography	4
6	CHA-622	Advanced NMR and combined Spectroscopy	4
7	CHA-623	Bioanalytical Techniques	4
8	CHA-624	Calibration and Validation in Analytical Chemistry	4
		SEM-IV ANALYTICAL CHEMISTRY	
Sr. No.	Subject	Paper title	Credits
	code		
1	CHA-602	Advanced Mass Spectrometry	4
2	CHA-603	Selected Topics in Analytical Chemistry	4
3	CHC-651	Discipline Specific Dissertation	16

M.Sc. Analytical Chemistry Part-II syllabus for AY 2023-24 (SEM III and SEM IV)

Course Code: CHA-600 **Title of the course:** Practical Course in Analytical

Chemistry - III

Number of Credits: 4

Prerequisites	Should have studied Analytical chemistry practical course a	t M.Sc.
for the course:	Part-I.	
Course	1. To study various experimental techniques for analysis.	
Objectives:	2. To learn data analysis, handling and interpretation of spectra	a.
Content	 The formulate analysis, naturing and interpretation of spectral This course consists of 10 units of experiments in various areas of Analytical chemistry. Minimum 20 experiments which include at least 02 experiments from each unit shall be conducted. Unit 1: Analysis of Pharmaceutical Tablets/Samples (Titrimetry) Estimation of Paracetamol by titrimetry. Estimation of streptomycin in tablet sample by Maltol method. Estimation of iron using Zimmermann-Reinhardt reagent by titrating against KMnO₄. 	No of hours 120 12
	 Unit 2: Ion exchange Chromatography and Solvent Extraction Method Determination of capacity of a cation exchange resin. Concentration and determination of copper (II) ions from a brine solution using a chelating ion exchange resin and AES/AAS Separation of organic mixture (acidic + basic + neutral) by extraction. 	12
	 Unit 3: Planar and Column Chromatography i. Thin layer chromatography analysis of commercially available analgesic/antipyretic/antihistamine etc and to identify the active ingredients. ii. Purification and determination of amount of paracetamol from commercial tablet by column chromatography. iii. Separation of a mixture of benzoin and benzil on silica gel column. 	12
	Unit 4: Spectrophotometric Method i. Determination of pk value of methyl red indicator.	12

r		
ii.	Determination of stoichiometry and stability constant of ferric salicylic acid complex by Job's method and mole ratio method.	
iii.	Determination of the Fe ion as Fe-oxine complex.	
Unit 5:	HPLC Analysis	12
i.	Analysis of a mixture (benzene and toluene or nitrobenzene and toluene) by normal/reverse phase-HPLC.	
ii.	HPLC analysis of an analgesic (e.g. Ibuprofen)/or any other drug with method development and validation.	
iii.	Quantitative analysis of Paracetamol tablet by HPLC	
	Determination of plate height/number of theoretical plates by HPLC using Acetophenone as a reference material.	
v.	Study of HPLC method development by using linear/stepwise gradient elution for binary system.	
vi.	Determination of caffeine content in Tea or Coffee	
Unit 6:	Electrochemical Method	12
i.	pH-metric determination of the acid-base dissociation constant and isoelectric point of amino acid.	
ii.	Determination of moisture content in tablet powder by Karl Fischer titration.	
iii.	Analysis of mixture of carbonate/bicarbonate present	
	in water sample using pH metry or Potentiometry.	
Unit 7:	Gas Chromatographic Analysis	12
i.	GC analysis of a given sample mixture (e.g. perfumes, cosmetics).	
	GC analysis of non-volatile analyte by derivatization. Quantitative analysis of a mixture of chloroform and carbon tetrachloride.	
iv.	Gas chromatographic analysis for a mixture of gases like O ₂ , N ₂ and CO ₂ .	
v.	Determination of alcoholic content in Beer or wine	
Unit 8:	Analysis of Ores/Minerals/Industrial Material	12
i.	Analysis of Iron Ore or Bauxite (from Goa).	
	Analysis of cement or plaster of Paris.	
iii.	Analysis of limestone or dolomite.	

	Unit 9: Other Instrumental Techniques	12
	 i. Electrophoretic techniques for the separation of nucleic acids or proteins ii. Study the dissolution rate of commercial tablets. iii. Determination of optical rotation of Chiral compounds using polarimeter (e.g. Amino acids, drugs, natural products, lactic acid, tartaric acid etc) iv. Determination of sulphate ion content by turbidimetry. v. Determination of turbidity in water sample. vi. TG/DTA analysis of sample or mixture (e.g. MgCO₃-MgO). vii. Determination of molar composition of Toluene-Anisole mixture by qNMR. 	12
	 Unit 10: Demonstration/Interpretation Exercises Demonstration/Interpretation of LC-MS spectra. Demonstration/Interpretation of NMR spectra of Ethyl cinnamate/Vanilin. Assessment of TG-DTA plot. Statistical Evaluation of Data including Linear Regression Analysis. Analysis of materials using Microscopic Techniques. Demonstration of XRD and interpretation of diffraction pattern. 	12
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-o combination of some of these. Sessions shall be interactive in to enable peer group learning.	nature
References / Readings	 J. H. Kennedy, Analytical Chemistry Principles, 2nd Ed., Saunders College Publishing, 1990. G. D. Christian, Analytical chemistry, 5thEd., John Willey and Sons, 1994 J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B. Sivasankar, Vogel's Textbook of Quantitative Chemical Analysis, 6thEd., Pearson Education Asia 2009. A. J. Elias, Collection of interesting chemistry experiments, University press, 2002. R.A. Day & A.L. Underwood, Quantitative Analysis, 6thEd., Prentice Hall, 2001. J. Kenkel, Analytical Chemistry for Technicians, 3rdEd., Lewis publishers, 2002. 	

Course	1. Students will be able to use different techniques for qualitative
Outcomes:	and quantitative estimation.
	2. Students will be able to interpret spectra and use statistical
	methods to analyse data.
	3. Students will be able to use different techniques for mixture separation.
	 Students will be able to analyse pharmaceutical samples.

Course Code: CHA-601 **Title of the course:** Practical Course in Analytical

Chemistry - IV

Number of Credits: 4

Prerequisites	Should have studied Analytical chemistry practical course at M	Sc. Part-
for the course:	I.	
Course	1. To understand of various experimental techniques for analysis.	
Objectives:	2. To learn data analysis, handling and interpretation of spectra.	
Content	This course consists of 10 units of experiments in various	No of
	areas of Analytical chemistry. Minimum 20 experiments which	hours
	include at least 02 experiments from each unit shall be	
	conducted.	120
	Unit 1: Analysis of Pharmaceutical Tablets/Samples	
	i. Estimation of Ibuprofen by titrimetry.	
	ii. Estimation of iron from given pharmaceutical drug	12
	sample using thioglycolic acid.	12
	iii. Estimation of sulphadiazine / sulphonamide	
	Unit 2: Ion exchange Chromatography and Solvent	
	Extraction Method	
	i. Determination of capacity of anion exchange resin	
	ii. Separation and estimation of zinc and nickel ions using	12
	an anion exchange resin	12
	iii. Separation of organic mixture (acidic + basic +	
	neutral) by extraction	
	Unit 3: Planar and Column Chromatography	
	i. Separation of alpha amino acids by paper	
	chromatography and to study effect of mobile phase on	
	resolution.	
	ii. Thin layer chromatography analysis of commercially	12
	available analgesic/antipyretic/antihistamine etc and to	12
	identify the active ingredients.	
	iii. Separation of a mixture of benzaldehyde and benzoic	
	acid on silica gel column	
	Unit 4: Spectrophotometry Method	
	i. To estimate Cd/Hg by AES/AAS method.	
	ii. To record the UV absorption spectrum of acetone in n-	12
	hexane and identify the various transitions.	
	iii. Determination of phosphorous content from fruit juice.	

Unit 5 i.	: HPLC Analysis Analysis of a mixture of hydrocarbons by reverse phase-HPLC	
iii. iv.	Quantitative analysis of Aspirin tablet by HPLC. To determine the number of theoretical plates/plate height by HPLC of aromatic ketone or alcohols. Study of HPLC method development by using linear/stepwise gradient elution for binary system. Determination of caffeine content in Soft drinks or Chocolates.	12
Unit 6	: Electrochemical Method	
	Determination of moisture content in tablet powder by Karl Fischer titration.	
	pH metric determination of dissociation constant of dibasic, oxalic acid Potentiometric determination of dissociation constant for Cu-ammonia complex.	12
Unit 7	: Gas Chromatographic Analysis	
i.		
ii	and fragrances) Quantitative analysis of a mixture of chlorinated	
	solvents.	10
iii.	Optimum flow rate for the determination of	12
	chloroform using van Deemter equation.	
iv.	Determination of alcoholic content in Rum or Local drinks.	
Unit 8	: Analysis of Ores/Minerals/Industrial Material	
i.	Analysis of steel	
	Analysis of solder	12
	Analysis of an aluminium alloy Analysis of talcum powder	
1.	marysis of mount powder	
Unit 9	: Other Instrumental Techniques	
i	Electrophoretic techniques for the separation of DNA	
ii.	Determination of optical rotation of Chiral compounds using polarimeter eg. Amino acids, drugs, natural products etc	12
iii.	Determination of chloride ion content by turbidimetry	
iv.	Determination of turbidity in water sample.	

	v. Study the dissolution rate of pharmaceutical tablets.	
	vi. Determination of molar composition of Toluene- methyl benzoate mixture by qNMR.	
	Unit 10: Demonstration/Interpretation Exercises	
	i. Demonstration/Interpretation of GC-MS spectra.ii. Demonstration/Interpretation of NMR spectra	
	iii. Assessment of TG-DTA plot.	
	iv. Statistical Evaluation of Data including Linear	
	Regression Analysis.	
	v. Analysis of materials using Microscopic Techniques.vi. Demonstration of XRD and interpretation of	
	diffraction pattern.	
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-out or a combination of some of these. Sessions shall be interactive in nature to	
	enable peer group learning.	
	1. J. H. Kennedy, Analytical Chemistry Principles, 2 nd Ed. Saunders College Publishing, 1990.	
References /	 G. D. Christian, Analytical chemistry, 5th Ed., Wiley, 1994. 	
Readings	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B.	
	Sivasankar, Vogel's Textbook of Quantitative Chemical Analysis, 6 th Ed., Pearson Education Asia 2009.	
	4. A. J. Elias, Collection of interesting chemistry experiments, University press, 2002.	
	5. R. A. Day & A.L. Underwood, Quantitative Analysis, 6 th Ed.,	
	 Prentice Hall, 2001. 6. J. Kenkel, Analytical Chemistry for Technicians, 3rd Ed., Lewis 	
	publishers, 2002.	
Course	1. Students will be able to use different techniques for qualitative and	
Outcomes:	quantitative estimation.2. Students will be able to interpret spectra and use statistical methods to	
	analyse data.	
	3. Students will be able to use different techniques for mixture	
	separation.	
	4. Students will be able to analyse pharmaceutical samples.	

Course Code: CHA-602 Title of the course: Advanced Mass Spectrometry

Number of Credits: 4

Prerequisites	Students should have studied analytical chemistry course at M.Sc. P	art I.
for the		
course:		
Course	1. To study various ionisation sources and mass analyser.	
Objective:	2. To introduce tandem mass spectrometry techniques.	
-	3. To learn interpretational aspects of spectral data obtained	d from
	hyphenated techniques.	
Content	1. Ionization methods:	No of
	a. Mass spectrometry: introduction, principle, general	hours
	instrumentation, general interpretation procedure for mass	
	spectra;	15
	b. Gas Phase ionization: electron ionization (EI), chemical	
	ionization (CI), Field ionization and field desorption (FI,	
	FD)	
	c. Particle Bombardment: Fast atom bombardment (FAB),	
	Secondary ion mass spectrometry (SIMS).	
	d. Atmospheric pressure Ionization: electrospray ionization	
	(ESI), atmospheric pressure ionization (APCI).	
	e. Laser Desorption: MALDI.	
	f. Inorganic ionization sources: thermal ionization, Spark	
	source, Glow discharge, Inductively coupled plasma	
	(ICP).	
	g. Problem solving using mass spectrometry.	
		1.5
	2. Mass analyzers:	15
	a. Characteristics of analysers: nominal mass, mass	
	accuracy, resolving power, resolutions, isotopic	
	composition, numericals to calculate nominal and accurate	
	mass.	
	b. Magnetic, electromagnetic and double focusing	
	c. Single Quadrupole and triple quadrupole	
	d. Time of flight analyzer	
	e. Ion cyclotron resonance analyzer	
	f. Hybrid instrumentation	
	g. Detectors: electron multiplier, photon multiplier, Faraday	
	cup	
	Note: instrumentation, working principles, characteristic	
	features, advantages, practical consideration shall be	
	discussed.	

	3. Hyphenated Techniques:	15
	 a. Coupled techniques, Importance of hyphenation of two analytical techniques, Interface and their characteristic features. b. Introduction, principle and instrumentation of following techniques: GC-MS, LC-MS, ICP-MS, CE-MS, TG-MS. c. Tandem mass (MS-MS): Introduction, concepts of tandem mass spectrometry, Ion activation methods. d. Analysis of chromatogram: Total ion chromatogram (TIC), Extracted Ion Chromatogram (XIC). e. Analysis of chemical data of natural product, drugs, etc. Dereplication using hyphenated technique. 	
	4 Tandam Mass spectrometry applications:	15
	4. Tandem Mass spectrometry applications:a. Pharmacokinetic studies: Fate of drug in living organisms,	1.5
	 a. Pharmacokinetic studies: Fate of drug in living organisms, metabolite identification, biotransformation of ziprasidone. b. Tandem MS and fragmentation pattern of following drugs: Paracetamol, 2-mercaptonicotinic acid, Sulfasalazine, amphetamine, Trocade. c. Analysis of biomolecules: Proteins, Peptides, Oligonucleotides, structure and sequence determination 	
	using fragmentation, solve problems based on MS/MS data.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assign presentations / self-study or a combination of some of these can used. ICT mode should be preferred. Sessions should be interact nature to enable peer group learning.	also be
References /	1. H. Jürgen, Mass Spectrometry: A Textbook Gross, 2 nd Ed, S	Springer
Readings	 publisher, 2011. 2. E. De Hoffmann, V. Stroobant, Mass Spectrometry: Princip Applications, 2nd Ed, Wiley, 2007. 3. R. B. Cole, Electrospray and MALDI Mass Spectrometers 	les and ometry: ological ometry: tion, 4 th emistry n Using

Practice), 1 st Ed, Springer publisher, 2000.				
	8. J. K. Prasain, Tandem Mass Spectrometry-Applications and Principles,			
	InTech publisher, 2012.			
Course Outcome:	 Students will be able to explain principle behind different ionizations sources. Students will be able to select mass analysers and ionization sources for analysis of particular type of analyte. Students will be able to deduce structures of simple to moderately complex molecules/biomolecules by combining the spectral data obtained from hyphenated techniques. Students will be able to apply tandem Mass spectrometry for biomolecules analysis 			
	biomolecule analysis.			

Course Code: CHA-603 **Title of the course:** Selected topics in analytical chemistry

Number of Credits: 4

Prerequisites	Students should have studied analytical chemistry course at M.Sc. Part I.		
for the			
course:		-	
Course	1. To understand the basic importance of Quality in industrial products.		
Objective:	2. To provide basic understanding of medical laboratory	clinical	
	chemistry.		
	3. To understand Packaging and regulatory aspects for food, dr cosmetics industries.	ugs and	
	4. To understand the use of computers in chemistry		
Content	1. Introduction to Quality Control and Quality Assurance:	No of	
	a. Basic concepts; quality assurance; aspect of specification	hours	
	and tolerance; quality acceptance; sampling reality; cost		
	aspect of quality decisions; quality control in raw materials;	8	
	production; finished product;		
	b. Law related to quality control; case studies of quality control		
	in various industries like agrochemicals, petrochemicals,		
	pharmaceuticals, dyes, plastics and polymers.		
	2. Packaging and Regulatory Aspects:	12	
	a. Introduction; types of packing material and regulations acts		
	in Food and Pharmaceutical industries; testing of material		
	for packing; legal consideration in packing; regulatory		
	aspects of food, drugs and cosmetics;		
	b. The Drug and Cosmetic Act, 1940; the Drug and Cosmetic		
	Rules 1945; prevention of food adulteration; the		
	Preventation of Food Adulteration Act, 1954; Fruit Product		
	Order; Meat Product Order; I.S.I., Agmark and other		
	standard for foods and Cosmetic particularly with reference		
	the testing of foods, drug and cosmetic and the raw material concerned;		
	c. The Government authorities concerned with the testing-their		
	qualification, duties, powers and procedure to be followed;		
	Record to be maintain under the Acts; C.G.M.P. and		
	C.G.L.P.S. requirements of QC; Department of 'WHO'		
	certification.		
	3. Computers in Chemistry:	10	
	The students shall learn how to operate a PC and run standard	1.0	
	programs and packages like MS-WORD, EXCEL, ORIGIN,		
	SIGMA PLOT, and CHEM SKETCH; to solve Chemistry		
	steart reat, whe effert offeren, to borte endinistry		

	numerical (numerical taken preferably from Physical Chemistry for plotting first and second derivative curves, linear plots); numerical from Analytical Chemistry, Chemical Kinetics, Electrochemistry, Spectroscopy and other related topics; writing the structures of inorganic and organic molecules, chemical equations, and other applications.	
	 4. Clinical Chemistry: Composition body fluid; detection of abnormal levels of certain constituents leading to diagnosis of diseases; sample collection and preservation of physiological fluids. Analysis of physiological fluids - blood, urine and serum; estimation of blood glucose, cholesterol, urea, haemoglobin; urine-urea, uric acid, albumin, globulins, barbiturates, acid and alkaline phosphates. Human-nutrition: Estimation of enzymes, carbohydrates, essential amino acids, proteins and lipids. 	
	 6. Food Analysis, Processing and Preservation: a. Analysis of food such as milk, milk products, tea, coffee and beverages (soft drinks, alcoholic drinks), Flour, starch, honey, jams and edible oils. Analysis of preservatives, colouring matter, micronutrients. b. Food processing and food preservation: Refining milling, canning, concentration, freezing Drying, pasteurisation sterilization irradiation. 	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments presentations / self-study or a combination of some of these can also l used. ICT mode should be preferred. Sessions should be interactive nature to enable peer group learning.	be
References / Readings	 F. W. Fifield and D. Kealy, Principles and Practice of Analytic Chemistry; 5th Ed. Backwell Science Ltd. London, 2020. G. D. Christian, Analytical chemistry, 5th Ed., Wiley, 1994. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B. Sivasanka Vogel's Textbook of Quantitative Chemical Analysis, 6th Ed Pearson Education Asia 2009. H. Kaur, Instrumental Methods of Chemical Analysis; Praga Prakashan, 2012 Indian Pharmacopeia; Volume I and II, 2018 W. Funk, V. Dammann, G. Donnevert, Quality Assurance Analytical Chemistry; VCH Weinheim, 1995 E. Prichard, Quality in the Analytical Chemistry Laboratory; Joh 	ar, d., ati

	8. R. C. Gribbin, Principals of package Development, 2 nd Ed. Springer, 2012
	9. Modern Packaging Encyclopedia, Volume 30, McGraw-Hill Publisher, 1957
	10. Modern Packaging Encyclopaedia and planning guide, McGraw- Hill Publications, 1972
	11. M. L. Mehra, The Handbook of Drug Laws, Univ. Book Agency, 1997.
	12. Government of India Publications of Food Drug Cosmetic Acts and Rules. https://cdsco.gov.in/opencms/opencms/en/Acts-Rules/
	 13. D. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of Analytical Chemistry; 9th Ed. Brooks Cole Publisher, 2013
	14. K. V. Raman, Computers in chemistry, Tata Mc.Graw-Hill, 1993.15. S. K Pundir, A. bansal, Computers for Chemists, Pragati prakashan, 2018
	 C. S. James, Analytical Chemistry of Foods, Blackie Academic and Professional Publisher, UK, 1995.
	17. R. L. Nath, Practical Biochemistry in Clinical Medicine, 2nd Ed. Academic Publishers, 1990,
	 V. Malik, Drug and Cosmetics Act, 25th Ed. Eastern book company, 2016,
	19. A. H. Beckett, J.B. Stenlake, Practical Pharmaceutical Chemistry (Part-1), 4 th Ed. CBS publisher, 2006,
	20. S. R. Mikkelsen, E. Corton, Bioanalytical Chemistry, 2 nd Ed. John Wiley and Sons, 2016,
	 M. B. Jacob, Chemical Analysis of Food and Food Products, 3rd Ed. CBS publisher, 2013.
	22. Encyclopaedia of Analytical Chemistry, Volume 3, Academic Press, 1995.
	23. D. White, N. Lawson, P. Masters, D. McLaughlin, Clinical Chemistry, CRC press, 2016
	24. W. J. Marshall, M. Lapsley, A. Day, K. Shipman, Clinical Chemistry, Elsevier, 2020
6	
Course Outcome:	1. Students will understand the basic importance of Quality in industrial products and apply the knowledge in Quality Control and Quality Assurance.
	2. Students will understand the medical laboratory clinical chemistry.
	3. Students will understand the Packaging and regulatory aspects and
	apply the knowledge in food, drugs and cosmetics industries.
	4. Students will understand the use of computers in chemistry

Course Code: CHA-621 **Title of the course:** Fundamentals of Crystallography

Number of Credits: 4

Prerequisites for the	Students should have studied M.Sc. Part-I.	
course:		
Course	1. To introduce basic concepts of crystallography.	
Objective:	2. To impart knowledge of single crystal and powder X-ray diffraction	on
	methods.	
	3. To analyse Materials and understand Structure.	
	4. To familiarize students with various applications of Crystallograp	
Content	1. Basics of Crystallography	No of
	a. The Crystalline state, symmetry elements.	hours
	b. Lattices, unit cell, crystallographic directions, planes, point	
	groups and symmetry classes.	10
	c. The Laue classes, the seven crystal systems, Bravais lattices, space groups and International Tables.	
	d. Description of crystal structures, unit cell projections and	
	atomic coordinates, unit cell content.	
	e. Ionic crystals, molecules and molecular crystals, protein	
	crystals, physical properties of crystals.	
	2. Diffraction of X-rays by Crystals:	10
	a. Interaction of X-rays with matter.	
	b. Scattering of X-rays by an electron, atom, atomic scattering	
	factor, temperature factor, scattering by molecule or unit cell.	
	c. Diffraction by crystals, structure factor, Bragg's law, the	
	reflection and the limiting spheres, symmetry in reciprocal	
	space, systematic absences, diffraction intensities.	
	d. Experimental methods in X-ray crystallography: X-ray	
	sources, monochromatization, collimation, and focusing of X-	
	rays.	
	3. Single Crystal X-ray Diffraction:	10
	a. Crystals and their properties: crystallization, growing and	-
	choosing crystals, microscopic observation	
	b. Data collection techniques for single crystals, diffractometer	
	geometry, measurement of the integrated intensities, data	
	collection with area detectors,	
	c. Data reduction: Lorentz correction, polarization correction,	
	absorption corrections, radiation damage corrections, relative	
	scaling.	

 d. Solution and refinement of crystal structures: Wilson plot, the heavy atom method, Direct methods, phase determination procedures, figures of merit, e. Completing and refining the structure: difference Fourier method, least-squares method, absolute configuration. f. Introduction to crystallographic softwares (e.g. APEX 4, Olex2 etc) and IUCr validation of the data (CIF) 	
 4. Powder X-ray Diffraction: a. Origin of powder diffraction pattern, position, shape, and intensity of powder diffraction peaks. b. Powder diffractometry: beam conditioning, goniometer design, nonambient powder diffractometry. c. Collecting quality powder diffraction data: sample preparation, data acquisition, quality of data, data processing. d. Determination of unit cell: indexing methods. e. Introduction to the Rietveld method. d. Introduction to powder diffraction softwares for indexing, unit cell refinement (e.g. Winplotr, UnitCell). 	10
 5. Applications of Crystallography: a. Chemistry and Materials science: understanding crystal structures of compounds, alloys, metals, polymers, phase transitions etc. b. Geology, mineralogy, gemology. c. Pharmaceuticals: polymorphs, excipient analysis, active pharmaceutical ingredients. d. Forensics and environmental analysis. e. Nano materials characterization. f. Biomolecules: determination of structures of proteins, nucleic acids and other biological macromolecules. g. Other diffraction techniques: neutron diffraction, thin film, microstructure properties, pair distribution function analysis, etc. 	10
 6. Analysis of Materials and Structural Understanding: a. Characterisation of Solids using diffraction techniques. b. Introduction to databases: powder diffraction files, inorganic and organic crystal structure database, protein data bank etc. c. Inspection of crystals/powders with light microscope. d. Visualization of crystal structures using softwares (e.g. Diamond, VESTA). e. Beyond ideal crystals: crystal twins, modulated structures, quasicrystals. 	10

Dedegegy	Mainty leatures and tytewists Cominger / terms non-one / againments /				
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /				
	presentations / self-study or a combination of some of these can also be				
	used. ICT mode should be preferred. Sessions should be interactive in				
	nature to enable peer group learning.				
References /	1. M. Milanesio, G. Zanotti, G. Gilli, M. Catti, H. Monaco, G. Ferraris,				
Readings	G. Artioli, P. Gilli, D. Viterbo, C. Giacovazzo - Fundamentals of				
	Crystallography, 3 rd Ed., Oxford University Press, 2015.				
	2. C. Hammond - The Basics of Crystallography and Diffraction				
	(International Union of Crystallography Texts on Crystallography) 4 th				
	Ed., Oxford University Press, 2015.				
	3. R. West, Solid State Chemistry and Its Applications, 2 nd Ed.; Wiley,				
	2022.				
	4. F. Hoffmann, Introduction to Crystallography, 1 st Ed. Springer, 2020.				
	5. D. Sherwood, Crystals, X-rays and Proteins: Comprehensive Protein				
	Crystallography, 1st Ed. Oxford University Press, 2015.				
	6. A. Hofmann, S. Clokie, Wilson and Walkers Principles and				
	Techniques of Biochemistry and Molecular Biology, 8 th Ed.;				
	Cambridge University Press, 2018.				
	7. V. Pecharsky and P. Zavalij, Fundamentals of Powder Diffraction and				
	Structural Characterization of Materials, 2 nd Ed.; Springer, 2009.				
	8. R. Young, The Rietveld Method, 1 st Ed., Oxford University Press,				
	1995				
	9. W. David, K. Shankland, L. McCusker, C. Bärlocher, Structure				
	Determination from Powder Diffraction Data, 1st Ed., Oxfor				
	University Press, 2006.				
	10. B. He, Two-dimensional X-ray Diffraction, 1 st Ed., Wiley, 2009.				
	11. W. Massa, Crystal Structure Determination, 2 nd Ed., Springer, 2010.				
	12. R. Dinnebier, S. Billinge, Powder Diffraction: Theory and Practice, 1 st				
	Ed., Royal Society of Chemistry, 2008.				
Course	1. Student will acquire fundamental concepts of crystallography.				
Outcome:	2. Students will gain insights into single crystal and powder X-ray				
	diffraction methods.				
	3. Students will be able to use X-ray diffraction methods for materials				
	characterization.				
	4. Students will be able to correlate crystal structure and materials				
	properties				
	properties				

Course Code: CHA-622 **Title of the course:** Advanced NMR and combined

Spectroscopy

Number of Credits: 4

Prerequisites for the	Students should have studied Chemistry courses in MSc Part-I.	
course:		
Course	1. To understand advance 2D NMR techniques.	
Objective:	2. To develop skills of interpreting spectral data pertaining to two or m	nore 2D
	NMR techniques.	
	3. To train students to interpret NMR for quantitative analysis.	
	4. To understand NMR hyphenated techniques.	
Content	1. Selected concepts in IR and MS	No of
	a. IR: Spectral data interpretation for common functional groups	hours
	like keto, aldehyde, acid, ester, amides, nitro, etc., Correlation	
	of common functional groups with IR spectral differences.	5
	b. MS: Factors governing Mass fragmentation processes, β -	
	cleavage, cleavage α to heteroatoms, cleavage α to carbonyl	
	groups, retro Diels-Alder reaction, McLafferty rearrangement.	
	2. Selected concepts in NMR	
	a. Chemical Shifts spectral data for proton and carbon nuclei	
	like aliphatic, aromatic, acyl, methoxy, etc., Correlation of	
	common proton and carbon nuclei with NMR signal	
	differences.	
	b. Nuclear Overhauser Effect	10
	c. Decoupling in ¹³ C NMR Spectroscopy (DEPT-45, DEPT-90,	
	DEPT-135), Proton coupled CMR.	
	d. ¹⁵ N-NMR, ¹⁹ F-NMR, ²⁹ Si-NMR, & ³¹ P-NMR spectroscopy:	
	Chemical shift range for ¹⁵ N, ¹⁹ F, ²⁹ Si & ³¹ P in NMR spectra,	
	coupling with neighbouring nuclei and splitting pattern.	
	3. 2D-NMR	
	a. Introduction to 2D-NMR, General Principles, Classification	
	of 2D-NMR experiments.	
	b. Homonuclear Correlation Spectroscopy	
	Proton-Proton Interactions - COSY, DQF-COSY, TOCSY,	
	NOESY, REOSY.	10
	Carbon-Carbon Interactions - INADEQUATE.	
	c. Heteronuclear Correlation Spectroscopy HETCOR	
	Heteronuclear Single Bond Correlation - HSQC, HMQC and me-	
	HSQC	
	Heteronuclear Multiple Bond Correlation - HMBC	

-		1
	 d. Analysing and interpreting spectral data from above 2D spectra for small molecules. e. Assigning NMR signals based on PMR, CMR, ¹H-¹H &¹H-¹³C Correlation Spectra. 	
	*	
	4. Structural analysis of simple compounds using some combined	
	spectral techniques:	20
	PMR, CMR, COSY, HSQC, me-HSQC, HMBC, TOCSY, NOESY,	20
	INADEQUATE, along with IR, UV and MS data wherever	
	necessary. 5. Quantitative NMR analysis	
	a. Analysis of mixture of compounds using qNMR technique,	
	Relative proportions (mole %) of the 2 or 3 components from	
	NMR integrals.	
	b. Calibration standards, Selection criteria for suitable Reference	10
	material.	
	c. Molar concentration Determination, Purity or Yield	
	Determination.	
	6. Hyphenated NMR techniques	
	a. Development of LC-NMR, Technical Considerations	
	regarding LC-NMR: Solvent Compatibility, Solvent	
	Suppression, NMR Flow Cell, LC-NMR Sensitivity. Modes	
	of Operation: On-Flow Mode, Stop-Flow Mode. Applications	
	of LC-NMR.	5
	b. Introduction to other hyphenated NMR techniques, Technical	
	Considerations regarding LC-MS-NMR: Modes of Operation,	
	Online coupling in series or in parallel, Challenges in	
	Hyphenated NMR techniques.	
Pedagogy	Mainly lectures and tutorials, Seminars / assignments / presentations	s / self-
	study or a combination of some of these can also be used. ICT mode sh	
	preferred. Sessions shall be interactive in nature to enable peer group le	
	(Note: More emphasis shall be given for structural elucidation	i using
	combined spectroscopic data)	_
References	1. W. Kemp; Organic Spectroscopy; 3 rd Ed, Palgrave, 1991.	
/Reading	2. R. M. Silverstein, F. X. Webster; Spectrometric identifica	tion of
	Organic Compounds; 6 th Ed, Wiley, 2011.	
	3. R. M. Silverstein, F. X. Webster, D. J. Kiemle, D. L. Bryce	e, S. D.
	Samant, V. S. Nadkarni; Spectrometric identification of	Organic
	Compounds; An Indian Adaptation, 8 th Ed, Wiley, 2022.	
	4. P. S. Kalsi; Spectroscopy of Organic Compounds; 6 th Ed, No	ew Age
	International, 2009.	
	5. E. Pretsch, P. Buhlmann, C. Affolter; Structural Determina	tion of
	Organic Compounds, 2 nd Ed, Springer, 2005.	
	6. L. D. Field, S. Sternhell, J. R. Kalman; Organic Structures from S	Spectra,
	4 th Ed, Wiley, 2007.	

	7. L. D. Field, H. L. Li, A. M. Magill; Organic Structures from 2DNMR		
	Spectra, Wiley, 2015.		
	8. W. Kemp; NMR in Chemistry: A Multinuclear Introduction,		
	Macmillan, 1986.		
	9. D. H Williams, I. Fleming; Spectroscopic methods in organic chemistry,		
	6 th Ed, Tata Mcgraw Hill Education, 2011.		
	10. J. H. Simpson; Organic Structure Determination using 2-D NMR		
	Spectroscopy, Elsevier, 2008.		
	11. H. Friebolin; Basic One- and Two-Dimensional NMR Spectroscopy,		
	Wiley, 2011.		
	12. K. S. Parikh, H. H. Gadape; Quantitative NMR Spectroscopy in		
	Pharmaceuticals, Lambert Academic Publishing, 2012.		
	13. U. Holzgrabe, I. Wawer, B. Diehl; NMR Spectroscopy in		
	Pharmaceutical Analysis, Elsevier, 2008.		
	14. M. V. Silva Elipe; LC-NMR and Other Hyphenated NMR Techniques:		
	overview and applications, Wiley, 2012.		
Course	1. Students will be able to understand various 2D NMR techniques and		
Outcome:	analyse the 2D NMR spectra of small molecules.		
	2. Students will be skilled to interpret combined spectral data pertaining to two		
	or more 2D NMR techniques for structural analysis.		
	3. Students will be skilled to interpret qNMR data for quantitative analysis.		
	4. Students will be able to understand and apply hyphenated NMR techniques		
	for analysing mixtures.		

Course Code: CHA-623 **Title of the course:** Bioanalytical Techniques

Number of Credits: 4

Prerequisites	Students should have studied Chemistry courses at M.Sc. Part-I	
for the		
course:		
	1. To introduce various bioanalytical techniques used in bio	chemical
	analysis and diagnosis.	
Course	2. To depict the various concepts used in Biomolecular tec	hniques,
Objective:	Immunochemical Techniques, Radioisotope tracer Tec	hniques,
	Computed Tomography, and Magnetic Resonance Technol	ogy and
	their significance in clinical analysis.	
Content	1. Biomolecular techniques	No of
	a. Introduction, Structure of nucleic acid, Isolation of	hours
	DNA: Conventional methods of extraction; kit-based	
	extraction; detection of DNA, Extraction of RNA:	12
	Conventional methods of extraction; kit-based RNA	
	extraction, DNA sequencing methods: Sequencing by	
	chemical degradation method; Dideoxy chain	
	termination method	
	b. Polymerase Chain Reaction Thermocycler (PCR	
	thermocycler): Principle; components of PCR, thermal	
	cycler, optimization of PCR, Analysis of PCR product,	
	Reverse Transcriptase PCR(RT-PCR): Steps of RT-PCR;	
	application of RT-PCR, Real-time PCR(q-PCR):	
	Application of PCR	
	c. Protein DNA Interaction Assays: Specific and non-	
	specific interactions	
	d. Microarrays: DNA-based microarrays and protein	
	microarrays	
	2. Immunochemical Techniques	12
	a. Introduction: Development of immune system,	
	Harnessing the immune system for antibody production;	
	antibody structure and function	
	b. Antibody preparation: Polyclonal antibody production;	
	monoclonal antibody production; Cell banking; Growing	
	hybridomas for antibody production; Antibody	
	recognizing small molecules; Anti-Idiotypic antibodies;	
	Phage display for development of antibody fragments;	
	Antibody Purification; Antibody modification	
	c. Immunoassay formats: Enzyme immunosorbent Assays;	

	Double antibody Sandwich ELISA (DAS ELISA); Triple	
	antibody Sandwich ELISA (TAS ELISA); Enhanced	
	ELISA system; Competitive ElISA; Modification of	
	traditional sandwiched ELISA	
d.	Immunomicroscopy: Immunoflurosecence Microscopy;	
	Immunosorbent electron microscopy	
e	Lateral Flow devices; Epitope mapping;	
0.	Immunoblotting; Fluorescence-Activated Cell Sorting	
	(FACS); Cell and Tissues staining Techniques;	
	Immunoaffinity Chromatography; Antibody-Based	
	biosensors; Luminex Technology; Therapeutics	
	Antibodies	
	Annooues	
3. Rad	lioisotope tracer Techniques	6
	Introduction, Autoradiography: Principle of	
	Autoradiography, Selection of emulsion and film.	
	Choice of isotopes; Background; Time of exposure.	
	Practical techniques for use of autoradiography	
4. X-R	ay Imaging	8
a.	Introduction to X-ray imaging, Background: History and	
	basic physics	
b.	Instrumentation, Components; Beam Generation;	
	Reduction of Scattered Radiation; Image Detection,	
c.	Clinical Applications: Diagnostic Devices; Projection	
	Radiography; Mammography; Fluoroscopy;	
	Angiography	
5. Cor	nputed Tomography	10
a.	Introduction to Computed Tomography	
b.	Instrumentation: X-ray Tube and Generator; MDCT	
	Detector Design and Slice Collimation	
c.	Data Rates and Data Transmission; Dual Source CT;	
c.	Data Rates and Data Transmission; Dual Source CT; Measurement Techniques; MDCT Sequential (Axial)	
c.		
c.	Measurement Techniques; MDCT Sequential (Axial)	
c. d.	Measurement Techniques; MDCT Sequential (Axial) Scanning; 109 MDCT Spiral (Helical) Scanning, Pitch;	
	Measurement Techniques; MDCT Sequential (Axial) Scanning; 109 MDCT Spiral (Helical) Scanning, Pitch; Collimated and Effective Slice Width Multi slice Linear Interpolation and z-Filtering; Three-	
	Measurement Techniques; MDCT Sequential (Axial) Scanning; 109 MDCT Spiral (Helical) Scanning, Pitch; Collimated and Effective Slice Width Multi slice Linear Interpolation and z-Filtering; Three- Dimensional Back projection and Adaptive Multiple	
	Measurement Techniques; MDCT Sequential (Axial) Scanning; 109 MDCT Spiral (Helical) Scanning, Pitch; Collimated and Effective Slice Width Multi slice Linear Interpolation and z-Filtering; Three- Dimensional Back projection and Adaptive Multiple Plane Reconstruction (AMPR); Double z-Sampling,	
	Measurement Techniques; MDCT Sequential (Axial) Scanning; 109 MDCT Spiral (Helical) Scanning, Pitch; Collimated and Effective Slice Width Multi slice Linear Interpolation and z-Filtering; Three- Dimensional Back projection and Adaptive Multiple Plane Reconstruction (AMPR); Double z-Sampling, ECG-Triggered; and ECG-Gated Cardiovascular CT	
d.	Measurement Techniques; MDCT Sequential (Axial) Scanning; 109 MDCT Spiral (Helical) Scanning, Pitch; Collimated and Effective Slice Width Multi slice Linear Interpolation and z-Filtering; Three- Dimensional Back projection and Adaptive Multiple Plane Reconstruction (AMPR); Double z-Sampling, ECG-Triggered; and ECG-Gated Cardiovascular CT Principles of ECG-Triggering and ECG-Gating; ECG-	
d.	Measurement Techniques; MDCT Sequential (Axial) Scanning; 109 MDCT Spiral (Helical) Scanning, Pitch; Collimated and Effective Slice Width Multi slice Linear Interpolation and z-Filtering; Three- Dimensional Back projection and Adaptive Multiple Plane Reconstruction (AMPR); Double z-Sampling, ECG-Triggered; and ECG-Gated Cardiovascular CT Principles of ECG-Triggering and ECG-Gating; ECG- Gated Single-Segment and Multisegmented	
d.	Measurement Techniques; MDCT Sequential (Axial) Scanning; 109 MDCT Spiral (Helical) Scanning, Pitch; Collimated and Effective Slice Width Multi slice Linear Interpolation and z-Filtering; Three- Dimensional Back projection and Adaptive Multiple Plane Reconstruction (AMPR); Double z-Sampling, ECG-Triggered; and ECG-Gated Cardiovascular CT Principles of ECG-Triggering and ECG-Gating; ECG-	

	g. Clinical Applications of Computed Tomography	
	6. Magnetic Resonance Technology	12
	 a. Introduction, Magnetic Nuclei Spin in a Magnetic Field: A Pulsed rf Field Resonates with Magnetized Nuclei, the MR Signal, Spin Interactions Have Characteristic Relaxation Times b. Image Creation: Slice Selection; The Signal Comes 	
	 Back—The Spin Echo; Gradient Echo, Image Reconstruction: Sequence Parameters, Image Resolution, Noise in the Image—SNR, Image Weighting and Pulse Sequence Parameters TE and TR: T2-Weighted Imaging; T*2 -Weighted Imaging; Proton-Density-Weighted Imaging; T1-Weighted Imaging c. Clinical applications: A Menagerie of Pulse Sequences: 	
	EPI; FSE; Inversion-Recovery; DWI; MRA; Perfusion, Enhanced Diagnostic Capabilities of MRI—Contrast Agents, Molecular MRI, Functional MRI	
Pedagogy	Mainly lectures and tutorials. Seminars/term papers /as presentations /or a combination of some of these can also be used. should be preferred. Sessions should be interactive in nature to a group learning.	
References	1. R. Salzer, Biomedical Imaging: Principles and Application	ons, 1 st Ed.
/ Readings	 Wiley; 2012. 2. K. Wilson, J. Walker, Principles and Techniques on Biochemistry; 8th Ed. Cambridge University Press; 2010. 3. S. Ghosal, A. S. Avasthi, Fundamentals of Bioanalytical 7 and Instrumentation, 2nd Ed. PHI learning Pvt. Ltd. Delhi, 2 4. D. J. Holme, H. Peck.; Analytical Biochemistry; 3rd Ed. Pro- Pearson Education Limited; 1998. 5. B. M. Dale, M. A. Brown, R. C. Semelka, MRI: Basic print 	Techniques 010. entice Hall,
~	applications, 5 th Ed. Wiley, 2015.	
Course	1. Students will be able to identify, formulate, analyze and solve	problems
Outcome:	 in the analysis of biological compounds. 2. Students will be able to differentiate between various method and procedures which will enable them to understand/ana substances present in living organisms/ chemical reactions. 3. Students will understand the applications of various of techniques used in clinical analysis. 4. Students will understand various imaging techniques. 	alyze the

Name of the Programme: M.Sc. Part-II (Analytical Chemistry)

Course Code: CHA-624 **Title of the course:** Calibration and Validation in Analytical

Chemistry

Number of Credits: 4

Prerequisites	Students should have studied M.Sc. Part-I.			
for the				
course:				
Course	1. To understand the terminologies used in measurement science			
Objectives:	2. To classify the nature of errors involved in measurements			
	3. To study the concept of calibration and matrix effect in Analysi	s		
	4.To comprehend the role method validation and develop	oment in		
	Analytical laboratories of pharmaceutical, clinical, environme	ental and		
	forensic studies.			
	5. To gain the knowledge on application of statistical tools in Ana	alysis		
Content	1. Introduction	No of		
	a. The vocabulary of analytical chemistry: Analysis,	hours		
	determination and measurement; techniques, methods,			
	procedures, and protocols	10		
	b. Classifying analytical techniques: Qualitative, quantitative			
	and structural determination, separation and hyphenated			
	techniques, basic principle of analysis and limitations			
	c. Selecting an analytical method: Identification of analytical			
	problem, understanding the selection criteria viz.			
	accuracy, precision, sensitivity, selectivity, robustness,			
	ruggedness, scale of operation, analysis time, availability			
	of equipment, and cost; developing analytical procedure			
	d. Errors in analytical measurements: Classification, methods			
	of minimization of errors, significance of gaussian curve,			
	probability distribution of errors.			
	2. Calibration and Statistical treatment of data	22		
	a. Calibration in analytical chemistry: Significance and need			
	for calibration, compensating for interferences (method			
	blank), chemical standard, reference material, calibration			
	of glassware and its tolerance limit (standard deviation)			
	b. Matrix effect: Effect of matrix on signal measurement,			
	importance of correlation coefficient, concept of curve			
	fitting, linear regression of good data, linearity and			
	sensitivity of instrumental measurement			
	c. Calibration methods: External standard, standard additions			
	and Internal standard method, case scenario to understand			

	the suitability of each method for a given analysis.	
	d. Statistical evaluation of analytical results: Confidence	
	limits and interval, testing for significance, detection of	
	bias and presence of outliers, control charts	
	e. Calibration of important analytical instruments: UV-	
	visible spectrophotometer, FTIR spectrophotometer,	
	conductivity meter, GC, HPLC.	
	3. Validation	18
	a. Quality in Analytical Laboratories: Good laboratory	
	practices, quality control, quality assurance, accreditation	
	system.	
	b. Validation and qualification: Overview of installation,	
	operation, and performance qualification (IQ, OQ, PQ) of	
	analytical equipment.	
	c. Method validation in pharmaceutical industry: Regulatory	
	requirements for analytical method validation	
	International conference on harmonization (ICH)	
	guideline Q2R1, method validation parameters and	
	timeframe as per ICH guidelines, linearity and range	
	criteria and their role in instrumental method validation,	
	detailed discussion on accuracy and precision role in the	
	method validation, Role of quantification limit and	
	specificity -Limit of Detection (LOD) and Limit of	
	Quantification (LOQ) for a given method.	
	4. Case study of method development and modifications	10
	a. Environment sample monitoring: Estimation of nitrite,	
	lead in wastewater, Measurement of calcium by flame	
	emission spectroscopy	
	b. Food and medicine: Generic drugs, health supplements,	
	nutritional labels and daily nutritional requirement	
	c. Clinical studies: Determination of glucose in human blood	
	and urine, preservation of biological fluid for analysis of	
	different analytes.	
	b. Forensic analysis: Determination of blood alcohol content,	
	Analysis of narcotic drugs, adulterations.	
Pedagogy:	Mainly lectures and tutorials, Seminars / assignments / presentation	ons/self-
- cangogj.	study or a combination of some of these can also be used. IC	
	should be preferred. Sessions shall be interactive in nature to en	
		able peer
	group learning.	

References/	1. M. E. Swartz, I. S. Krull, Analytical method development &
	· · ·
Readings	validation, CRC Press book, 1997.
	2. G. H. Jeffery, J. Bassett, J. Mendham, R C. Denney, Vogel's Text
	Book of Quantitative Chemical Analysis, 5 th Ed. Wiley, 1989.
	3. A. H. Wachter, R. A. Nash, Pharmaceutical Process Validation,
	Marcel Dekker Inc, 2003.
	4. L. Huber, Validation and Qualification in Analytical Laboratories,
	Informa Healthcare USA Inc; 2007.
	5. M. Valcarcel, Principles of analytical chemistry: A text book,
	Springer Publications, 2000.
	6. D. Harvey, Modern Analytical Chemistry, MC Graw Hill, 2000.
	7. D. A. Skoog, D. M. West, F. J. Holler, Fundamentals of Analytical
	Chemistry, 9 th Ed. Sounders College publishing, 2014.
	8. B. W. Wenclawiak, M. Koch, E. Hadjicostas, Quality Assurance in
	Analytical Chemistry, Springer, 2004.
	9. G. D. Christian, Analytical Chemistry, 6 th Ed.; Wiley, 2004.
	10. J. H. Kennedy, Analytical Chemistry: Principles, 2 nd Ed.; Saunders
	College Publishing, 1990.
	11. B. Magnusson, U. Ornemark, The Fitness for Purpose of Analytical
	Methods - A Laboratory Guide to Method Validation and Related
	Topics, 2 nd Ed; Eurachem, 2014
	12. Willard, Instrumental Methods of Analysis, 7 th Ed., CBS Publishers,
	1986
Course	1. Students will be able to differentiate between technique, method,
Outcomes:	protocol and procedure.
	2. Students should be able to identify and correct any measurement errors.
	3. Students will be able to analyse the reliability of results for a chosen
	method of analysis
	4. Student will be able to evaluate the suitability of method for intended
	purpose
	5. Student will learn to draw conclusions based on statical method.
	s. Statent will fearly to draw conclusions based on statical method.

Name of the Programme: M.Sc. Part-II (Chemistry)

Course Code: CHC-600 **Title of the course:** Research Methodology and instrumental

techniques-I

Number of Credits: 4

Prerequisites	Students should have studied chemistry courses at MSc-I level.		
for the			
course:			
Course	1. To introduce various aspects of research methodology.		
Objective:	2. To provide understanding ethics & scientific conduct.		
	3. To introduce academic writing.		
	4. To introduce databases used in chemistry.		
	5. To provide understanding and importance of lab safety.		
	6. To understand the usefulness of various instrumental techn	iques in	
	characterization of chemical compounds.		
Content	1. Introduction to Research Methodology	No of	
	Research- meaning, objectives, motivation, types and	hours	
	methodology.		
	Process- formulating the research problem; literature survey;	5	
	developing the hypothesis and the research design; sample		
	design and collection of the data; execution of the project;		
	analysis of data; testing of hypothesis; generalizations and		
	interpretation, and preparation of the report or presentation of		
	the results & conclusions.		
	2. Scientific conduct and ethics	5	
	Ethics: definition, nature of moral judgements and reactions,		
	Ethics with respect to science and research.		
	Intellectual honesty and research integrity.		
	Scientific misconducts: Falsification, Fabrication, and		
	Plagiarism (FFP).		
	Redundant publications: duplicate and overlapping		
	publications.		
	Selective reporting and misrepresentation of data.	5	
	3. Academic writing Publication othios: dofinition introduction and importance	5	
	Publication ethics: definition, introduction and importance Conflicts of interest		
	Publication misconduct: definition, concept, problems that lead		
	to unethical behaviour and vice versa		
	Violation of publication ethics, authorship and contributorship		
	Identification of publication misconduct, complaints and		
	appeals		
	Predatory publishers and journals		
	r reducer y publishers and journais		

		2
	4. Data bases and research metrics	3
	Databases: 1. Indexing databases 2. Citation databases: Web of	
	Science, Scopus, UGC-Care List etc.	
	Research Metrics: 1. Impact Factor of journal as per Journal	
	Citation Report, SNIP, SJR, IPP, Cite Score 2. Metrics: h-index,	
	g index, i10 index etc	
	5. Safety aspects in Chemistry	5
	Good laboratory practices.	
	Handling of various chemicals, solvents & glassware.	
	Fires and fighting with fires.	
	Hazardous substances, classification and handling	
	Safety Data Sheet	
	6. Softwares in Chemistry	7
	Data plotting	
	Structure Drawing	
	Reference management software	
	7. Instrumental methods of analysis:	30
	Demonstration and/ or data analysis in following techniques:	
	Elemental analysis: CHNS analysis and AES	
	Infrared (IR), Raman, Ultraviolet-Visible (UV-Vis)	
	Nuclear magnetic resonance $(^{1}H, ^{13}C)$	
	Chromatographic techniques: HPLC, GC,	
	Hyphenated Techniques: LC-MS & GC-MS,	
	Diffraction methods: XRD	
	Thermal analysis: DSC	
	Microscopy: SEM, TEM	
	Methods for determination of magnetic & dielectric	
	properties.	
	Cyclic voltammetry	
Pedagogy	Mainly lectures/recorded video lectures/ tutorials, discussions, se	minars,
	internal exams/ assignments, / demonstration/ self-study	
	combination of some of these. ICT mode should be preferred. S	Sessions
	should be interactive in nature to enable peer group learning.	
References /	1. C. R. Kothari, Research Methodology: Methods & Tech	niques,
Readings	New Age International Pvt. Ltd., 2004.	1
8	2. Bird, Philosophy of Science, Routledge, 2006.	
	3. M. Coghill & L. R. Garson, The ACS Style Guide: E	ffective
	Communication of Scientific Information, American C	
	Society Washington, DC & OXFORD University Pres	
	York, 2006.	
	4. Y. K. Singh, Fundamentals of Research Methodol	ogy &
	Statistics, New Age International Pvt. Ltd., 2006.	~~
	5. National Research Council, Prudent practices in the lab	oratory:
	handling and management of chemical hazards, The N	•
<u> </u>		

	Academies Press, USA, 2011.
	6. B. S. Furniss, A. J. Hannaford, P. W. G. Smith & A. R. Tatchell,
	Vogel's Text book of Practical Organic Chemistry, 5 th Ed.;
	Longmann, 1989
	7. E. A. V. Ebsworth, D. W. H. Rankin & S. Craddock, Structural
	Methods in Inorganic Chemistry, Blackwell Scientific Publishers.
	1986.
	8. R. S. Drago, Physical Methods in Chemistry, 2 nd Ed. W. B.
	Saunders Co. Ltd. 2016
	9. R. M. Silverstein, F. X. Webster; Spectrometric identification of
	Organic Compounds; 6 th Ed, Wiley, 2011.
	10. J. Mendham, R. C. Denny, J. D. Barnes & M. Thomas, Vogel's
	Textbook of Quantitative Chemical Analysis, 6 th Ed.; Pearson
	Education Asia, 2002.
	11. H. V. Keer, Principles of the Solid State, 1 st Ed. New Age
	International (P) Ltd., 2005.
	12. G. D. Christian, Analytical Chemistry, 6 th Ed.; Wiley, 2004.
	13. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of
	Analytical Chemistry, 9 th Ed.; Cengage learning.
	14. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental
	Analysis, 7 th Ed.; Cengage learning.
	15. P. G. Lampman, G. Kriz and J. Vyvyan, Introduction to Organic
	Spectroscopy, 5 th Ed.; Cengage Learning, 2015.
	16. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T.
	T. Eisenhart, and J. L. Dempsey, A Practical Beginner's Guide to
	Cyclic Voltammetry, J. Chem. Educ. ACS, 2018, 95, 197–206.
	17. V. Rajaraman, Computer Programming in Fortran 90 And 95,
	PHI Learning Pvt. Ltd., 2013.
	18. Szabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction
	to Advanced Electronic Structure Theory, Dover Publications,
	Inc. Mineola, 1989.
Course	1. Students will be able to apply research methodology concepts.
Outcome:	 Students will be able to apply research methodology concepts. Students will be able to apply computer technology to solve their
Juiconie.	research problems in chemistry.
	 Students will know in advance the safety precautions to be taken
	in the chemical lab.
	4. Students will gain fundamental knowledge on characterization
	techniques.

Name of the Programme: M.Sc. Part-II (Chemistry)

Course Code: CHC-601 **Title of the course:** Research Methodology and instrumental

techniques-II

Number of Credits: 4

Prerequisites	Students should have studied chemistry courses at MSc-I.	
for the course:		
Course	1. To introduce various aspects of research methodology.	
Objective:	2. To provide understanding ethics & scientific conduct.	
	3. To introduce academic writing.	
	4. To introduce databases used in chemistry.	
	5. To provide understanding and importance of lab safety.	
	6. To understand the usefulness of various instrumental tec	hniques
	in characterization of chemical compounds.	
Content	1. Research Methodology, Scientific conduct, ethics &	No of
	academic writing	hours
	Research- meaning, objectives, motivation, types and	
	methodology.	15
	Process- formulating the research problem; literature survey;	
	developing the hypothesis and the research design; sample	
	design and collection of the data; execution of the project;	
	analysis of data; testing of hypothesis; generalizations and	
	interpretation, and preparation of the report or presentation	
	of the results & conclusions.	
	Ethics: definition, nature of moral judgements and reactions,	
	Ethics with respect to science and research.	
	Intellectual honesty and research integrity.	
	Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP).	
	Redundant publications: duplicate and overlapping	
	publications.	
	Selective reporting and misrepresentation of data.	
	Publication ethics: definition, introduction and importance	
	Conflicts of interest	
	Publication misconduct: definition, concept, problems that	
	lead to unethical behaviour and vice versa	
	Violation of publication ethics, authorship and	
	contributorship	
	Identification of publication misconduct, complaints and	
	appeals	
	Predatory publishers and journals	
	2. Softwares in chemistry, Data bases and Research metrics	10

	Data plotting using GNU plot; Structure Drawing using	
	ChemSktech; Reference management software such as	
	Mendeley and Zotero.	
	Databases: Indexing databases, Citation databases: Web of	
	Science, Scopus, UGC-Care List, Scimago etc.	
	Research Metrics: Impact Factor of journal as per Journal	
	Citation Report, SNIP, SJR, IPP, Cite Score; Metrics: h-	
	index, g-index, i10-index etc	
	Molecular Docking software	
	3. Safety practices in Chemical research	5
	Introduction to lab safety.	-
	Handling of various chemicals, solvents & glassware.	
	Fires and fighting with fires.	
	Hazardous substances, classification and handling	
	Safety Data Sheet	
	4. Instrumental methods	30
	UV-Visible spectroscopy in elucidation of mechanisms of	50
	C-H activation reactions, epoxidation etc by transition metal	
	catalyst.	
	Understanding water oxidation reaction using Cyclic	
	voltammetry (CV) & Linear Sweep voltammetry (LSV)	
	Determining capacity of supercapacitors using	
	Galvanostatic Charge-Discharge (GCD)	
	Electrochemical Impedance Spectroscopy (EIS)	
	Resonance Raman and isotope labelling studies.	
	Infrared (IR) spectroscopy applications	
	¹ H, ¹³ C- NMR spectroscopy and applications	
	Selected chromatographic techniques such as HPLC, GC.	
	Hyphenated Techniques/applications: LC-MS, GC-MS, LC-	
	NMR-MS, GC-IR, ICP-MS	
	Diffraction methods: High temperature XRD	
	Thermal analysis: TG/DTA/DSC	
	Microscopy: Fe-SEM, HR-TEM	
	Methods for determination Ms, Mr, Hc, Tc, ε^{l} and Tan δ .	
	Potentiometry	
Pedagogy	Mainly lectures/recorded video lectures/ tutorials, disc	ussions,
	seminars, internal exams/ assignments, / demonstration/ self-stu	idy or a
	combination of some of these. ICT mode should be preferred. S	Sessions
	should be interactive in nature to enable peer group learning.	
References /	1. C. R. Kothari, Research Methodology: Methods & Tech	nniques,
Readings	New Age International Pvt. Ltd., 2004.	
	2. Bird, Philosophy of Science, Routledge, 2006.	66
	3. M. Coghill & L. R. Garson, The ACS Style Guide: E	
	Communication of Scientific Information, American C Society Washington, DC & OXFORD University Press New	
	Bolicity washington, DC & OAPORD University Fless Net	w TOIK,

	 2006. Y. K. Singh, Fundamentals of Research Methodology & Statistics, New Age International Pvt. Ltd., 2006. National Research Council, Prudent practices in the laboratory: handling and management of chemical hazards, The National Academies Press, USA, 2011. B. S. Furniss, A. J. Hannaford, P. W. G. Smith & A. R. Tatchell, Vogel's Text book of Practical Organic Chemistry, 5th Ed.; Longmann, 1989 E. A. V. Ebsworth, D. W. H. Rankin & S. Craddock, Structural Methods in Inorganic Chemistry, Blackwell Scientific Publishers. 1986. R. S. Drago, Physical Methods in Chemistry, 2nd Ed. W. B. Saunders Co. Ltd. 2016 R. M. Silverstein, F. X. Webster; Spectrometric identification of Organic Compounds; 6th Ed, Wiley, 2011. J. Mendham, R. C. Denny, J. D. Barnes & M. Thomas, Vogel's Textbook of Quantitative Chemical Analysis, 6th Ed.; Pearson Education Asia, 2002. H. V. Keer, Principles of the Solid State, 1st Ed. New Age International (P) Ltd., 2005. G. D. Christian, Analytical Chemistry, 6th Ed.; Wiley, 2004. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of Analytical Chemistry, 9th Ed.; Cengage learning. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysis, 7th Ed.; Cengage learning. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysis, 7th Ed.; Cengage learning. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, A Practical Beginner's Guide to Cyclic Voltammetry, J. Chem. Educ. ACS, 2018, 95, 197–206. V. Rajaraman, Computer Programming in Fortran 90 And 95, PHI Learning Pvt. Ltd., 2013. Attila Szabo, Neil S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Publications, Inc. Mineola, 1989. Leach, Molecular Modelling, Principles and applications, Longm
	Accounts of Chemical Research, 2007, Volume 40 & references cited therein.
Course Outcome:	 Students will be familiar with research methodology concepts. Students will be able to apply computer technology to solve their research problems in chemistry. Students will know in advance the safety precautions to be taken in the chemical lab. Students will gain fundamental knowledge on characterization techniques.

Name of the Programme: M.Sc. Part-II (Chemistry)

Course Code: CHC-651 **Title of the course:** Discipline Specific Dissertation

Number of Credits: 16

Prerequisites	Students should have studied chemistry courses at MSc-I level.		
for the course:			
Course	To develop the skills of preparing and conducting indeper	ndent research.	
Objective:			
Content	As per OA-35	No of Hours	
		480	
Pedagogy:	Dissertation carried out individually by each student	throughout the	
	academic year.		
References /	As required for the development of review and methodology.		
Readings:			
Course	Students will be able to understand and apply the tools and techniques of		
Outcome:	chemistry in conducting independent research.		