		MCA	A (2 y	ears) - Prog	gramme	Structure				
	SEMESTER-1					5	SEMESTER-2				
Course_Name		rse_Name Contact_Hours/week		Credits	Course_Name		Contact_Hours/ week			Credit s	
		L	Т	Р				L	Т	Р	
CSC-101	Data Structures & Algorithms	3	0	0	3	CSC-201	Web Development	3	0	0	3
CSC-102	Object Oriented Concepts	2	0	0	2	CSC-202	Database Management Systems	3	0	0	3
CSC-103	Operating Systems	4	0	0	4	CSC-203	Mathematics for Computer Science	4	0	0	4
CSC-104	Internet Technologies	3	0	0	3	CSC-204	Software Design & Engineering LAB	0	2	4	4
CSC-105	Data Structures & Algorithms LAB	1	0	4	3	CSC-205	Web Development LAB	1	0	4	3
CSC-106	Object Oriented Programming LAB	1	0	4	3	CSC-206	Database Management Systems LAB	1	0	4	3
CSC-107	LINUX LAB	2	0	4	4		Elective - 1	4	0	0	4
CSC-108	Communication Skills	2	0	0	2			To	otal_	Credits	24
		Total_	Credits		24						
	SEMESTER-3					5	SEMESTER - 4				
Course_N	ame	Contact_	Hours/	week	Credits	Course_N	ame				Credit s
		L	Т	Р							
CSC-301	Machine Learning	3	0	0	3	Industry In	nternship/ Project				16
CSC-302	Modern Development Platforms	Modern Development 3 0 0 3 Platforms Total_Credits		16							
CSC-303	Machine Learning LAB	1	0	4	3						
CSC-304	Modern Development Platforms LAB	1	0	4	3						
	Elective - 2	4	0	0	4	Total Credits	72+16 = 88				
	Elective - 3	4	0	0	4						
	Elective - 4	4	0	0	4						
		Total	Credits		24						

Programme: MCA Course Code: CSC-101 Number of Credits: 3 (3L-0T-0P) Effective from AY: 2021-22

Title of Course: Data Structures & Algorithms **Contact Hours:** 36 hours (36L-0T-0P)

Prerequisites for the course	Program Prerequisites	
<u>Objectives</u>	The aim of the course is to emphasize the importance of data structures in implementing efficient algorithms. It provides an exposure to various algorithm design techniques and an introduction to algorithm analysis.	
<u>Content</u>	Revision of Programming & Data Structures Problem solving, Data Types: Primitive and User DefinedSelection Constructs, Repetition Constructs, Recursion Pointers Algorithm Representation: - Pseudocode and flowcharts Three level Approach Abstract Data Types (ADTs) Basic Linear Data Structures (LinkedList, Stack, Queue)	6 hours
	Algorithm Analysis Analysis of Algorithms Algorithm Complexity: Space and Time Cases of Complexity: Best, Worst and Average Growth of Functions: Asymptotic Notation	3 hours
	Advanced Linear Data Structures Variants of Linked List and its applications (e.g. Polynomial addition, Sparse matrices) Applications of stacks (e.g. Infix-to-Postfix conversion, Evaluating Postfix Expressions, Bracket Matching) Variants of Queue and Applications	5 hours
	Nonlinear Data Structures: Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations Graph Traversal Algorithms: Breadth First Search and Depth First Search	12 hours

Divide & Conquer Strategy	3 hours
Algorithms based on Divide and Conquer Strategy:	
Sorting Algorithms (QuickSort, MergeSort)	
Binary Search	

	 Greedy Algorithms 1. Huffman Coding Algorithm 2. Minimum Cost Spanning Tree (Prim's, Kruskal's) 3. Single Source Shortest Path (Dijkstra's) 	4 hours
	Dynamic Programming Coin Change Problem Longest Common Subsequence All-pair shortest Path (floyd-warshall)	3 hours
<u>Pedagogy</u>	 Lectures/Tutorials/Assignments/Quizzes Each data structure should be explained along with implementation of its ADT, its applications and complexity 	
<u>References/</u> <u>Readings</u>	 Horowitz, Ellis, Sartaj Sahni, and Susan Anderson- Freed. "Fundamentals of data structures in C" WH Freeman & Co., Latest Edition. Thomas H. Cormen, Charles E. Leiserson, et al "Introduction to Algorithms", Latest Edition Allen, Weiss Mark. Data structures and algorithm analysis in C. Pearson Education India, Latest Edition. Dasgupta, Papadimitriou, and Vazirani, Algorithms, by McGraw-Hill. Jeri R. Hanly and Eliot B. Koffman "Problem Solving and Program Design in C" Pearson Education, VII Edition, 2012 R.G.Dromey "How to Solve it by Computer ", PHI, Latest Edition 	
<u>Learning</u> <u>Outcomes</u>	 Upon successful completion of the course, a student will be able to Implement common data structures such as lists, stacks, queues, graphs, and binary trees for solving programming problems. Identify and use appropriate data structures in the context of solution to a given problem. Be able to analyze the complexity of a given algorithm 	

Programme: MCA Course code: CSC-102 Number of credits: 2 (2L-0T-0P) Effective from AY: 2021-22

Title of course: Object Oriented Concepts **Total contact hours:** 24 hours (24L-0T-0P)

Prerequisites for the course	Program Prerequisites	
<u>Objectives</u>	Aim of this course is to introduce the learner to the object oriented paradigm.	
<u>Content</u>	Classes and objects Programming paradigm; procedural to object oriented Class; attributes & methods; classes as modules & types; uniform type system, wrapper type classes Object; object references; objects instantiation & interaction; constructor & destructor; pass-by-reference & pass-by-value Object copying & cloning; composite objects Static & non-static members Enumeration & Annotations	7 hours
	Object oriented principles Encapsulation Inheritance; types of inheritance; diamond problem Abstraction; virtual methods Polymorphism; overloading and overriding	6 hours
	Object oriented features Interfaces Access modifiers Errors & Exceptions; user-defined exceptions Collections Anonymous & Inner classes Type parametric polymorphism (e.g. Generics in Java & Templates in C++)	6 hours
	Advanced features Persistence & Serialization; JSON User packages & custom libraries; reflection Predicates & streams Lambda functions	5 hours
Pedagogy	Hands-on assignments / tutorials / peer-teaching / flip classroom. Concepts can be explained using UML class diagrams.	
<u>References/</u> <u>Readings</u>	 Main Reading 1. Timothy Budd, "An Introduction to Object Oriented Programming", Pearson Education, 3rd Edition 2. Brett D. McLaughlin, Gary Pollice & David West, "Head First Object-Oriented Analysis Design", 	

	 O'Reilly Ken Arnold, James Gosling, David Holmes, "The Java Programming Language", Addison- Wesley Professional Stanley Lippman, "C++ Primer", Addison Wesley Cay S. Horstmann, "Core Java Volume I—Fundamentals", Pearson Herbert Schildt, "Java: The Complete Reference", Oracle Press Joshua Bloch, "Effective Java", Addison Wesley Kathy Sierra & Bert Bates, "Head First Java", O'Reilly Bjarne Stroustroup, "The C++ Programming Language", Addison Wesley https://www.tutorialspoint.com/java/index.htm 	
<u>Learning</u> <u>Outcomes</u>	 Learner will appreciate mapping real-world scenarios in the object-oriented world Learner will understand object-oriented principles Learner will be able to design object oriented softwares Learner will be able to analyse 	

Programme: MCA Course code: CSC-103 Number of credits: 4(4L-0T-0P) Effective from AY: 2021-22

Title of course: Operating Systems Total contact hours: 48 (48L-0T-0P)

<u>Prerequisites</u> for the course	Programme Prerequisites	
<u>Objectives</u>	This course focuses on the principles and understanding of the functionality of an operating system and evaluates their trade-off in various environments.	
<u>Content</u>	Introduction and Systems Structures Computing Environments, Operating-systems Services, System Calls, System Programs, Virtual Machines, monolithic and micro kernel architectures	4 hours
	Process Management Process-Concept and states, Process Creation and Control, Scheduling Criteria, Scheduling Algorithms, MultiLevel Queues., Multiple-processor scheduling, real time CPU scheduling	6 hours
	Threads Motivation and Challenges, Multithreading Models, Threading Issues, Thread libraries, Thread scheduling	4 hours
	Process Synchronization Cooperating processes and Race Conditions, The critical-section problem, Peterson's solution, mutex locks, Synchronization Hardware, Semaphores and theirImplementation, Classic problems of synchronization	6 hours
	Inter process Communication, Overview of IPC, Examples of IPC Systems, Communication in Client Server Systems.	3 hours
	Deadlocks System Model, Deadlock characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery From Deadlock	4 hours
	Memory Management Hardware Support, Address Binding, Swapping, Contiguous Memory Allocation, Fragmentation, memory Protection, Paging, Structure of the page table, Segmentation, Example: Intel architecture	6 hours
	Virtual-Memory Management Background, Demand Paging, Copy-on-write, Page Replacement algorithms, Allocation of Frames, Thrashing, Allocating Kernel Memory	6 hours

	File System File Concept, Access Methods, Directory Structure, File-system mounting, File sharing, Protection; Virtual file systems, Implementing File Systems, Directory implementation, Allocation Methods, Free-space Management, Efficiency and performance, Recovery, Log-structured file systems	6 hours
	Secondary-storage Structure Overview of Mass-storage Structure, Disk Structure, Disk Attachment, Disk Scheduling ,Disk Management, Swap-Space Management	3 hours
<u>Pedagogy</u>	lectures/ tutorials/assignments/class presentations and debates/peer reviews/self-study.	
<u>References/</u> <u>Readings</u>	 Main Reading Silberschatz ,Galvin and Gagne , Operating systems Principles – 8th edition or Later(Wiley Asia Student Edition) Deitel H.M., "An Introduction to Operating Systems", Addison Wesley Publishers Company, Latest Edition Milenkovic M., "Operating Systems : Concepts and Design", McGraw Hill International Edition Computer Science series ; Latest Edition Tanenbaum A. S., Modern Operating Systems", Prentice Hall of India Pvt. Ltd.,Latest Edition Operating Systems – a modern perspective - Gary Nutt , Addison Wesley, Latest Edition 	
<u>Learning</u> <u>Outcomes</u>	 To understand the services provided by and the design of an operating system. To understand the structure and organization of the file system. To understand what a process is and how processes are synchronized and scheduled. To understand different approaches to memory management. Students should be able to understand the implementation and use of system calls for managing processes, memory and the file system. Students should understand the data structures and algorithms used to implement an OS. Evaluate operating system implementations 	

Programme: M.C.A Course Code: CSC-104 Number of Credits: 3 (3L-0T-0P) Effective from AY: 2021-22

Prerequisite s for the course:	Programme requisites	
Objectives:	The objective to introduce the TCP/IP architecture and allied protocols of Internet by following a top-down approach.	the
<u>Content:</u>	Computer Networks and the Internet: Networking and Inter- networks, Internetworking devices, Internet: Network edge and Network core. TCP/IP protocol stack: Protocol stack, Connection oriented, connectionless services, Packet switching, circuit switching, Delay, Loss, and Throughput in Packet-Switched Networks.	6 hours
	Application layer: Principles of Application Layer Protocols, the Web and HTTP, MIME, mail access protocols, DNS, Peer to Peer Applications.	8 hours
	Transport layer: Transport-layer services, Multiplexing and demultiplexing, UDP protocol, Principles of reliable data transfer, Connection oriented transport - TCP protocol, Principles of congestion control, TCP congestion control.	6 hours
	 Network layer: Packet switching: virtual circuit & datagram networks, The Internet Protocol (IP): Forwarding and Addressing in the Internet, route aggregation, subnetting, CIDR, IP datagram, fragmentation, NAT, DHCP, ICMP. Routing protocols: shortest path, link state routing algorithm, distance vector routing. Internet routing: Autonomous Systems (AS), RIP, OSPF, BGP. Address Resolution Protocol (ARP) and RARP. 	10 hours
	Internet Security protocols Basic cryptography concepts, Secure Socket Layer (SSL), Internet Security Protocol (IPSec), Virtual Private Network (VPN).	6 hours
Pedagogy:	lectures/ tutorials/assignments/self-study	

References /	1. Forouzan, Behrouz A., and Firouz Mosharraf. "Computer networks: a top-down
Readings	approach". McGraw-Hill, 2012.
	2. Andrew S. Tanenbaum., "Computer Networks", (5th Edition) Prentice Hall of India.
	3. James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach"
	Pearson, Sixth Edition 2017.
Learning	After completion of this course, students will be able to
Outcomes	Have a good understanding of layered communication architecture (TCP/IP) and
	knowledge of some of the important networking protocols
	• Understand the concepts of reliable data transfer and how TCP implements
	these concepts.

Programme: MCA Course Code: CSC-105 Number of Credits: 3 (1L-0T-2P) Effective from AY: 2021-22

Title of Course: Data Structures & Algorithms Lab **Contact Hours:** 60 hours (12L-0T-48P)

<u>Prerequisite</u> <u>s for the</u> <u>course</u>	Programme Prerequisites	
<u>Objectives</u>	To develop skills to design and implement linear and nonlinear data structures and to identify the most appropriate data structure for solving a real world problem.	
<u>Content</u>	Lab Assignments may be based on the following Advanced Linear Data Structures Infix-to-Postfix conversion, Evaluating Postfix Expressions, Bracket Matching	2L + 8P
	Non-linear data structures Binary Trees Tree Traversal Algorithms Binary Search Trees Heap Priority Queue using Heap Heap Sort Graph implementation using Adjacency list and matrix Graph Traversal Algorithms	4L+16P
	Divide & Conquer Strategy MergeSort QuickSort Binary Search Algorithm	2L+8P
	Greedy Algorithms Huffman Coding Algorithm Prims' and Kruskal's Algorithm Dijkstra's Algorithm	2L+8P
	Dynamic Programming Coin Change Problem Longest Common Subsequence Floyd-Warshall Algorithm	2L+8P
	A Mini Project	
<u>Pedagogy</u>	Programming assignments/ discussions/ self-review/ peer-review/ testing of code/ debugging of code/ projects	
<u>References/</u> <u>Readings</u>	 Horowitz, Ellis, Sartaj Sahni, and Susan Anderson- Freed. "Fundamentals of data structures in C" WH Freeman & Co., Latest edition. 	

	 Thomas H. Cormen, Charles E. Leiserson, et al "Introduction to Algorithms", Latest Edition Allen, Weiss Mark. "Data structures and algorithm analysis in C." Pearson Education India, Latest Edition. Dasgupta, Papadimitriou, and Vazirani, "Algorithms" McGraw-Hill. 2017 	
<u>Learning</u> <u>Outcomes</u>	 Upon successful completion of the course, a student will be able to Implement common data structures such as lists, stacks, queues, graphs, and binary trees for solving programming problems. Identify and use appropriate data structures in the context of solution to a given problem. 	

Programme: MCA Course code: CSC-106 Number of credits: 3 (1L-0T-4P) Effective from AY: 2021-22

Title of course: Object Oriented Programming Lab **Total contact hours:** 60 hours (12L-0T-48P)

Prerequisites for the course	Program Prerequisites	
<u>Objectives</u>	To impart programming skills using object oriented paradigms.	
Content	 Lab assignments using Java/C++/C# Classes and objects Class, object, attributes & methods; classes as modules & types; uniform type system, wrapper type classes Object; object references; objects instantiation & interaction; constructor & destructor; pass-by-reference & pass-by-value Object copying & cloning; composite objects Static & non-static members Enumeration & Annotations Object oriented principles Encapsulation Inheritance; types of inheritance; diamond problem Abstraction; virtual methods Polymorphism; overloading and overriding 	3L+12P 3L+12P
	Object oriented features Interfaces Access modifiers Errors & Exceptions; user-defined exceptions Collections Anonymous & Inner classes Type parametric polymorphism Advanced features Persistence & Serialization; JSON	3L+12P
	User packages & custom libraries; reflection Predicates & streams Lambda functions Mini-Project	3L+12P
Pedagogy	Hands-on assignments / pair programming / group project/ git project management.	
<u>References/</u> <u>Readings</u>	 Main Reading 1. Timothy Budd, "An Introduction to Object Oriented Programming", Pearson Education, Latest Edition. 2. Brett D. McLaughlin, Gary Pollice & David West, 	

	 "Head First Object-Oriented Analysis Design", O'Reilly, Latest Edition. Ken Arnold, James Gosling, David Holmes, "The Java Programming Language", Addison- Wesley Professional, Latest Edition Stanley Lippman, "C++ Primer", Addison Wesley, 2012 Cay S. Horstmann, "Core Java Volume I—Fundamentals", Pearson, 2018 Herbert Schildt, "Java: The Complete Reference", Oracle Press, latest edition Joshua Bloch, "Effective Java", Addison Wesley Kathy Sierra & Bert Bates, "Head First Java", O'Reilly, 2012 Bjarne Stroustroup, "The C++ Programming Language", Addison Wesley, Latest Edition https://www.tutorialspoint.com/java/index.htm
Learning Outcomes	 Learner will be able to write good object oriented code Learner will understand object-oriented principles Learner will be able to design object oriented softwares

Programme: M.C.A

Course Code: CSC-106

Title of the Course: LINUX Lab

Number of Credits: 4 (2L-0T-2P)

Contact hours: 72 hours (24L-0T-48P)

Effective from AY: 2021-22

SL + 3P
L + 8P

Filters:	6L + 8P
File commands- sort, wc, uniq, comm, cmp, diff, pg, tail, head, less,	
and more, Cut and Paste command	
Shells' sequence of interpretation of a command; Connecting	
commands with pipes	
Regular expressions: grep & sed command	
AWK script:	
Selection criteria and action- The BEGIN and END sections, Splitting	
a line into fields and using printf. Getline function and reading input	
from files. Writing output to file and pipes. Awk system variables.	
Using regular expressions. Relational and Boolean operations.	
Command line parameters and environment variables. Programming	
constructs: if, for, while.	
Process Management	1L + 2P
Concept of UNIX process. Role of init in process creation. Process ID	
and exit status of a process. Displaying process attributes using ps	
command, Killing processes, foreground and background processes.	
Use of commands job, fg, bg	
Package management:	1L+1P
Installing & removing packages	
Shell Script	4L + 8P
Shell scripts and execution methods. The dot command, Interactive	
and Non Interactive execution. Use of export command, Aliases and	
command history. Shell variables, Special variables, Built-in shell	
parameters. Command line arguments. Escaping and quoting.	
Difference between single and double quotes. Command substitution,	
brace and tilde expansion, I/O using read and echo. Escape sequences,	
'test' command, arithmetic expressions, operators, Control flow: For,	
If, While, Case. Shell functions, error handling, debugging.	
System programming	5L + 18P
Introduction to system programming, System calls and library	
functions	
Tunetions.	
Files and Directory system calls	
Files and Directory system calls List of sample programs	
Files and Directory system calls List of sample programs 1. Write a program to implement the functionality of Linux	
 Files and Directory system calls List of sample programs Write a program to implement the functionality of Linux command <i>touch</i> 	
 Files and Directory system calls List of sample programs Write a program to implement the functionality of Linux command <i>touch</i> 	
 Files and Directory system calls List of sample programs Write a program to implement the functionality of Linux command <i>touch</i> Write a program to implement the functionality of Linux approach agt 	
 Files and Directory system calls List of sample programs Write a program to implement the functionality of Linux command <i>touch</i> Write a program to implement the functionality of Linux command <i>cat</i> 	

	2 Write a program to implement the functionality of Linux	
	5. Write a program to implement the functionality of Linux	
	command <i>ts</i>	
	4. Write a program to redirect the output of all the printf	
	statements to a user file using dup system call.	
	5. Write a program to read the standard input from a user file	
	using dup system call.	
	6. Write a program to implement the functionality of Linux	
	command <i>chmod</i>	
	7 Write two programs : one called parent a the other called	
	shild a The parent program roads two integers from the	
	keyboard and arithmetic operator $(1 - * A)$ The read	
	information is transmitted to a child process. After the child	
	process finishes the operation it transmits the result to the	
	process minimes the operation, it transmits the result to the	
	screen	
	sereen.	
	8. Write a c program namely "parent.c", which reads the	
	processes along with their burst time (bt) and saves it in a file.	
	Using fork, create a child process namely fcfs.c, which takes	
	the filename containing process information as a parameter	
	from the parent. The child process task is to calculate the	
	average waiting time using the FCFS scheduling algorithm.	
Pedagogy:	Practical/tutorials/assignments/self-study	
	Theready futorials assignments son study	
References/	1. Unix Concepts and Applications – Sumitaba Das, Tata MacGraw	
Readings	Hill.	
	2. Unix and Shell Programming - Graham Glass and King Ables	
	Pearson Education	
	3. C and Unix Programming – Kerningham and Pike, Prentice Hall	
	4. UNIX man pages	
Learning	Upon completion of this course, the student will be able to:	
Outcomes	1. Run various LINUX commands	
	2. Write shell script on LINUX OS.	
	3. Use various advanced LINUX tools such as grep. SED and AWK	

Programme: M.C.A

Course Code: CSC-108

Number of Credits: 2 (2L-0T-0P)

Title of the Course: Communication Skills

Contact Hours: 24 hours (24L-0T-0P)

Effective from AY: 2021-22

<u>Prerequisite</u>	Programme requisites		
<u>s for the</u>			
course:			
<u>Objectives:</u>	To introduce essentials of effective communication in different contexts		
Content:	Oral Communication	4 hours	
	Difference between formal and informal communication, importance of		
	non verbal communication, skills required for effective communication,		
	Public Speaking Skills.		
	Written Communication	4 hours	
	Writing cover letters, Resumés/CVs/Biodata, Letters of Invitation,		
	Report Writing		
	Content creation	4 hours	
	Creating content for the website, creating profiles, creating content for		
brochures of events.			
	Multimedia and E-Correspondence	6 hours	
	Conducting Research before presentation, Making PowerPoint		
Presentation effective (visual), Communication during PowerPoint Presentation, Email etiquette (components, formats, attachments,			
	Preparing for Interview	4 hours	
	Types (personal, telephonic, online), Techniques of answering		
	interviews, Participating in group discussions.		
	Allied Communication	2 hours	
	Effective Reading techniques, analyzing feedback and giving inputs.		
Pedagogy:	Lectures/ tutorials/laboratory work/ field work/outreach activities/ project	work/	
	vocational training/viva/ seminars/ term papers/assignments/presentations/	/	
	self-study/ Case Studies etc. or a combination of some of these. Sessions s	hall be	
	interactive in nature to enable peer group learning.		
References/	1. Kelly M. Quintanilla and Shawn T. Wahl, "Business and Pro	fessional	
Readings	Communication "Sage Publications, 2018,		

	2. Anjanee Sethi ,Bhavna Adhikari, "Effective Business Communication " Tata MacGraw Hill Education, India. 2009;
	3. Nido Qubein, "How to be a Great Communicator in Person, On Paper, and on Podium" Viva Books, India. 2008;
	4. Stanton, Nicky. "Mastering Communication", (5th Edition), Macmillan, 2009.
	5. Dalmar, Fisher. "Communication in Organisation", West Pub, 1993.
	6. Kilian, Crawford. "Writing for the Web. Self-Counsel Press", Fifth edition, 2015.
	7. Kallos, Judith. "Email Etiquette Made Easy", Lulu.com. 2007.
<u>Learning</u> Outcomes	The participant will be able to facilitate interpersonal Communication, participate in group discussions, and to write effectively.

Programme: MCA Course code: CSC-201 Number of credits: 3 (3L-0T-0P) Effective from AY: 2021-22

Prerequisites for the course Objectives	Knowledge of HTML and basic of CSS(Program Prerequisites); Internet Technologies(CSC-104); Object Oriented Programming(CSC-102;CSC-106) This course will introduce the learner to the different	
	website development technologies	
<u>Content</u>	 Introduction Evolution of internet & World Wide Web Client-Server Architecture Revisit HTML & CSS 	1 hours
	Enhancing HTML & CSS • HTML 5 • CSS3	2 hours
	 Front-end Design Good Design Rubrics Separation of concerns for HTML & CSS; structure vs visual representation HTML DOM CSS Box Model, pseudo -classes & -elements, CSS animation Adaptive & responsive design, viewport & media queries, mobile-first design Introduction to a design library and/or & framework (e.g. Bootstrap) 	4 hours
	 Client-side Scripting Dynamic web pages JavaScript, programming features, javascript events & functions Manipulating DOM Beyond ECMA 4 Introduction to a Javascript library and framework (e.g. JQuery, ReactJS) 	10 hours
	 HTTP & Middle-ware HTTP, Request & Response, methods & error code, headers, URL encoding & decoding XML, data & XPath JSON 	3 hours
	Server-side Programming Server instance 	9 hours

	 Request handling & response creation HTML forms & file uploads Session management & application data Database connectivity Introduction to a Server-side library and/or template engine and/or framework (e.g. PHP - Laravel; JSP - Spring) 	
	 Advanced Web Development Model-View-Controller (MVC) & Model-View-ViewModel and others Web service architecture and micro-services REST calls, Asynchronous JavaScript and XML (AJAX) Independent client-server web development Difference between Server-side vs client-side rendering Introduction to Web stacks, JAM stack & full stack development 	7 hours
<u>Pedagogy</u>	Hands-on assignments / tutorials / peer-teaching / flip classroom/ presentations	
<u>References/</u> <u>Readings</u>	 Robert W. Sebesta, -Programming the World Wide Webl, Pearson Education <u>https://www.w3schools.com/</u> Steven Holzner, -HTML 5 Black Bookl <u>https://www.tutorialspoint.com/</u> Frank W. Zammetti, -Modern Full-Stack Developmentl, Apress Nader Dabit, -Full Stack Serverlessl, O'Reilly 	
<u>Learning</u> Outcomes	 Learner will be able to make decision on what web technology to use and for what purpose Learner will have fair idea on the popular technologies used in website development Learner will appreciate the architecture of web applications and the design decisions 	

Programme: MCA Course Code: CSC-202 Number of Credits: 3 (3L-0T-0P) Effective from AY: 2020-21

Title of Course: Database Management Systems **Contact hours:** 36 hours (36L-0T-0P)

<u>Prerequisites</u> for the course	A High Level Programming Language(Program Prerequisites);Data Structures and Algorithms(CS101); Operating Systems(CS103)	
<u>Objectives</u>	This course will enable the learner to understand the different issues involved in the design and implementation of a database system and provide both theoretical knowledge and practical skills required in the creation and use of a Relational DataBase Management System.	
<u>Content</u>	Basic concepts Database & Database Users, Characteristics of the Database Approach, Database Systems, Concepts & Architecture Data Models(RDBMS, Legacy systems, Object Oriented, NOSQL), Schemes & Instances DBMS Architecture of Data Independence, Database languages & Interfaces	4L
	Data Modelling using the Entity – Relationship approach	4L
	Relational Model, Languages & Systems Relational Data Model & Relational Algebra Relational Model Concepts Relational Model Constraints, Relational Algebra/Relational Calculus	5L
	SQL-A Relational Database Language Data SQL - DDL,DML. Views & Queries in SQL. Specifying Constraints & Indexes in SQL. Nested Subqueries, correlated Subqueries	6L
	Advanced SQL Embedded SQL, Dynamic SQL, Triggers and Stored Procedures.	3L
	Relational Data Base Design Function Dependencies & Normalization for Relational Database Functional Dependencies Normal forms based on primary keys (1NF, 2NF, 3NF, BCNF) Covers of Functional Dependencies, Canonical covers. Loss less join and Dependency preserving decomposition algorithms.	5L
	Transactions and Recovery Techniques Concept of a transaction, Recovery concepts, Recovery Techniques.	4L
	Concurrency Control	5L

	Serializability, Locking Techniques, Time stamp ordering Granularity of Data items	
Pedagogy	Hands-on assignments / tutorials / peer-teaching / troubleshooting	
<u>References/</u> <u>Readings</u>	 Main Reading Korth, Silberchartz, — Database System Concepts McGrawhill Publication. Elmasri and Navathe, — Fundamentals of Database Systems, Addison Wesley, New Delhi. Database Management Systems –R. Ramakrishnan, J.Gehrke – T.McGraw Hill Desai B., — An Introduction to Database Concepts, Galgotia Publications, New Delhi. Rob,Coronel, —Database Systems (Design, Implementation and Management) Date C. J., — An Introduction to Database Systems, Publication House, New Delhi. 	
Learning Outcomes	 Understand and evaluate the role of a DBMS in information Technology applications in Organizations. Recognise and use logical design methods and tools required in the design of DB applications. Understand the relational database design principles. Implement a database Solution to an IT Platform. Understand the basics of SQL and construct queries using SQL. Develop sophisticated queries to extract information from databases. Use embedded SQL queries in a Host Level Language. Understand how the DBMS manages and recovers from concurrent and multiple transactions. 	

Programme: MCA Course code: CSC-203 Number of credits: 4 (4L-0T-0P) Effective from AY: 2021-22

Title of course: Mathematics for Computer Science **Total contact hours:** 48 hours (48L-0T-0P)

Prerequisites for the course	Program Prerequisites	
<u>Objectives</u>	Students will be able to: Apply the concepts of mathematics in the modeling and design of computational problems and deeper understanding of subjects like machine learning/deep learning and other computer science subjects.	
<u>Content</u>	Introduction – importance of mathematics and their applications for computer science/machine learning/data science/deep learning <i>Functions, variables, equations, graphs</i> revision Probability and Statistics:	2 hrs
	Probability Rules & Axioms, Bayes' Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods- confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test-Linear regression, regularization	7 hrs
	Overview of Differential and Integral Calculus, Partial Derivatives Product and chain rule-Taylor's series, infinite series summation/integration concepts- Fundamental and mean value-theorems of integral calculus, evaluation of definite and improper integrals-Beta and Gamma functions, Functions of multiple variables, limit, continuity, partial derivatives-Basics of ordinary and partial differential equations -Applications of Calculus	7L

	Linear Algebra: Systems of Linear Equations-Matrices-Solving Systems of Linear Equations-Vector Spaces-Linear Independence-Basis and Rank-Linear Mappings Affine Spaces Analytic Geometry Norms-Inner Products-Lengths and Distances Angles and Orthogonality-Orthonormal Basis Orthogonal Complement-Inner Product of Functions-Orthogonal Projections-Rotations Matrix Decompositions Determinant and Trace-Eigenvalues and Eigenvectors-Cholesky Decomposition	7L 7L 6L
	Eigendecomposition and Diagonalization Singular Value Decomposition-Matrix Approximation. Vector Calculus Differentiation of Univariate Functions-Partial Differentiation and Gradients-Gradients of Vector- Valued Functions-Gradients of Matrices Useful Identities for ComputingGradients- Backpropagation and Automatic Differentiation- Higher-Order Derivatives-Linearization and Multivariate Taylor Series	7L 5L
	Primal Solutions and Concept and Need for Duality; Optimization Using Gradient Descent- Constrained Optimization -Lagrange Multipliers- Convex Optimization,	
Pedagogy	Problem solving approach and carrying out small project work using matlab tools	
<u>References/ Readings</u>	 Statistics -Robert S. Witte and John S. Witte Barron's AP Statistics, 8th Edition -Martin Sternstein, PhD. Statistics for Business and Economics - James T. McClave, P. George Benson and Terry T Sincich Naked Statistics: Stripping the Dread from 	

	 the Data – Charles Wheelan 5. Introduction to Linear Algebra - Gilbert Strang 6. Linear Algebra and Its Applications - David C. Lay 7. Functions and Graphs - I M Gelfand 8. Cartoon guide to calculus – Larry Gonick 9. Optimization Methods in Business Analytics— edX, MIT 	
Learning Outcomes	 To build a strong foundation in maths required for learning computer science/data science subjects. To understand fundamental concepts and tools in calculus and linear algebra with emphasis on their applications to computer science in particular to data science/machine learning 	

Programme: MCA Course Code: CSC-204 Number of Credits: 4 (2L-0T-2P) Effective from AY: 2021-22

Title of Course: Software Design & Engineering LAB **Contact hours:** 72 hours (24L-0T-48P)

<u>Prerequisites</u> for the course	Hands-on experience in object oriented programming (Program Prerequisites); Object Oriented Concepts(CSC- 106)	
<u>Objectives</u>	This course will enable the learner to work in the software development ecosystem with tools and in team with a stress on how to adopt them in various activities and techniques	
<u>Content</u>	 Introduction to Software Development process Software development processes and methodologies:Waterfall, agile methodologies. 	3L
	 Version control, build and continuous integration Baseline, identification, accounting, control, audit, source and version control (Git and Github; subversion), change control procedure, pull requests, fork & branches. Tools used in SCM 	4L+4P
	 Project Management using Scrum/ Lean approach Project planning and monitoring. Team management. Retrospectives. User story, estimation using user story, sprint planning, burndown chart. 	6L+4P
	 TDD and Refactoring TDD, Refactoring exercises(Eclipse Refactoring, Junit), BDD (ex. JBehave/Cucumber). Debugging: principles, approaches, use of debuggers. 	2L+6P
	 Testing Integration testing, GUI testing etc Automatic testing(desktop/web-selenium) Alpha and beta testing Continuous Integration tool (Travis) Defect tracking, bugzilla Static code analysis tools (Gprof, Sonar) Build management & Dependency tools – (Maven/Ant build) 	3L+16P
	 Design patterns: Reusability at design level. Principles of good design. Creational, structural and behavioral patterns. Refactoring to patterns-(Decorators,Observer and Factory Pattern). 	6L+14P

	Documentation: • Java Doc	1P
	ProjectMini project implementation using Scrum tools	3P
Pedagogy	Hands-on assignments / tutorials / peer-teaching / troubleshooting	
References/ Readings	 Martin Fowler, -Refactoringl, Pearson Education. 2nd Edition, 2019 Erich Gamma, Richard Helm, Ralph Johnson,, John Vlissides,l Design Patterns: Elements of Reusable Object-oriented Softwarel, Pearson Education. Joshua Kareivesky, -Refactoring to Patternsl, Pearson Education Steve McConnell, -Code Completell, 2nd Edition. Redmond, Wa.: Microsoft Press, 2004 Chris Sims andHillary Louise Johnson -The Elements of Scruml, 2011 Rachel Davies, Liz Sedley -Agile Coachingl, Pragmatic Bookshelf, 2009 Venkat Subramaniam, Andrew Hunt —Practices of an Agile Developerl Pragmatic Bookshelf, 2006 	
<u>Learning</u> Outcomes	Students will be able to use tools for development, testing and project management.	

Programme: MCA Course code: CSC-205 Number of credits: 3 (1L-0T-2P) Effective from AY: 2021-22

<u>Prerequisites</u> <u>for the course</u>	Knowledge of HTML and basic of CSS(Program Prerequisites); Internet Technologies(CSC-104); Object Oriented Programming(CSC-102;CSC-106)	
<u>Objectives</u>	This course will focus on the practical use and aspects of the different website development technologies	
<u>Content</u>	 Web Design Assignments Suggested Sample (non-exhaustive) Assignments:- Create a website on a topic given by the instructor. Evaluating the website with rubrics for good web design. Build a website using HTML & CSS by looking at a screenshot/picture of a website component given by the instructor. Websites built with tables, forms, images, iframes, etc. A website for each of design strategies (fixed, adaptive, responsive, fluid, mobile-first, etc.). Assignments using css pseudo-classes & -elements; grid & flex design; understanding the CSS box model & working with the browser developer tools; CSS transformations, transitions & animations Assignment to create a website built with Bootstrap based on a topic given by the instructor. 	2L+12P
	 Client-side Scripting Assignments Suggested Sample (non-exhaustive) Assignments:- An assignment for understanding the programming aspects of JavaScript and working with the browser developer tools. The use of the newer features of JavaScript (after ECMA 4) is encouraged. An assignment working with regular expressions. A search and filter utility can be built. Assignments for form data processing and validation and use of HTML5 form elements. A web page with form and validated data could be put in a table. The code could be written using table DOM methods and/or HTML DOM methods and/or XML DOM methods. Assignments using various events (mouse, keyboard, etc. events for the form elements, dragand-drop, window, browser, etc.). A web component built using HTML, CSS & JavaScript based on a existing Bootstrap component 	2L + 20P

	 (e.g. Accordion) Assignment with the use of a JavaScript library (JQuery, AngularJS, ReactJS, etc.) 	
	Developing a Game with HTML, CSS & JavaScript. The game should have at least 500 lines of (HTML+Javascript) code and make use of various mouse/keyboard events.	2L
	 Server-side Programming Assignments Suggested Sample (non-exhaustive) Assignments:- Assignments to work with HTTP headers for passing data and meta-data, cookies, localStorage Assignments to handle data from web forms; handling the request and response payload Assignment to manage web sessions Assignment to develop a CRUD functionality by connecting to a database; AJAX calls 	2L + 12P
	Full stack Web Developments Develop a CRUD application with MEAN/MERN stack	2L + 4P
	Mini-project Ideally done in a group. It should include design and implementation of a web application. Project implementation should mandatorily be built using a templating engine or programming framework (client-side and/or server-side). Project should also use a design framework (e.g. Bootstrap). Conduct and progress of the project could follow industry practices (e.g. git, scrum etc.).	2L
Pedagogy	Hands-on assignments / tutorials / peer-teaching / projects	
References/ Readings	 Robert W. Sebesta, -Programming the World Wide Webl, Pearson Education <u>https://www.w3schools.com/</u> Steven Holzner, -HTML 5 Black Bookl <u>https://www.tutorialspoint.com/</u> Frank W. Zammetti, -Modern Full-Stack Developmentl, Apress Nader Dabit, -Full Stack Serverlessl, O'Reilly 	
<u>Learning</u> <u>Outcomes</u>	 Learner will be gain experience and be able to create complete websites Learner will be able to make decision on what web technology to use and for what purpose Learner will appreciate the architecture of web applications and the design decisions 	

Programme: MCA Course Code: CSC-202 Number of Credits: 3 (1L-0T-2P) Effective from AY: 2020-21

Title of Course: Database Management Systems LAB **Contact hours:** 60 hours (12L-0T-48P)

<u>Prerequisites</u> <u>for the course</u>	A High Level Programming Language(Program Prerequisites); Hands-on experience in object-oriented programming(CSC-106).	
<u>Objectives</u>	This course aims at enabling learners to develop a skill set to design and implement a realistic application, representative of a typical real-life software system.	
<u>Content</u>	Installation of DBMS Softwares	2P
	 Data Definition Language(DDL) Statements Creating a Database. Creating a table, with or without constraints. Understanding Data types. Altering the structure of the table like adding attributes at a later stage, modifying size of attributes or adding constraints to attributes. Removing the table created, i.e Drop table in SQL. Creating Sequence (Auto increment field) 	1L+4P
	 Query in Data Dictionary To view the structure of the table created by the user. To view user information. To view integrity constraints. Altering Session Parameters 	1L+4P
	 Data Manipulation Language(DML) Statements Inserting Data into the table. Updating Data into the table. Deleting Data from the table. 	1L+6P
	 Simple SQL statements Displaying all the attributes and tuples from the table. Displaying selected attributes/tuples from the table. Using Logical and comparison operators. String manipulation Date Comparisons 	2L+6P
	 Complex SQL Statements Using aggregate functions (using Group by and having clauses). Sorting Data. Creating SQL Aliases and Views. Joins and Nested queries. 	2L+12P

	 Correlated subquery Derived tables Given a complex table structure, display records from tables. 	
	 Transaction Control Language(TCL) statements Transactions could be made permanent in memory To rollback the transaction. 	1L+2P
	 Embedded SQL statements Loops/ if else statements Creating Triggers/Procedures/packages ArrayList and Cursor. PL/SQL Strings PL/SQL Object Oriented Exceptions 	3L+6P
	No SQL	1L+2P
	 Mini Project Will be done in a group of max 3 members(ideally). It should include design and implementation of a real world scenario. Project implementation should mandatorily be built using a two tiered architecture. 1. Obtaining Client Specifications and converting the same to a Conceptual Design. 2. The project will be implemented on a (at least) two tiered architecture on any RDBMS platform. 3. A Project Report will need to be submitted – ideally Documentation for A User and an Administrator seperately. The project report that they submit consists of (i) Feasibility study (ii) ER Diagrams (iii) Tables normalized in an appropriate normal form with integrity and domain constraints noted. (iv) User Interface Design -Form and Report design , including triggers that may need to be written (v) User Manual Peer reviews of ERDs are held in the class. 	4P (in class)
Pedagogy	Hands-on assignments / tutorials / peer-teaching / troubleshooting	
<u>References/</u> <u>Readings</u>	 Korth, Silberchartz, — Database System Concepts McGrawhill Publication. Elmasri and Navathe, — Fundamentals of Database Systems^{II}, Addison Wesley, New Delhi. Documentation of the DBMS Platform 	

<u>Learning</u> Outcomes	1. Design and implement a database schema for a given problem-domain	
	2: Create and maintain tables using SQL	
	3: Populate and query a database	
	4. Use Transaction Control Language	
	5. Creating and Using User Defined Data Types	
	6. Writing Triggers & Stored Procedures	
	7. Prepare reports	
	8. Application development using PL/SQL & front end tools	

Programme: M .C.A Course : CSC 301 Number of Credits: 3(3L+0P) Effective from AY: 2020-21

Title of the Course: Machine Learning Hours: 36L

Prerequisites for the	Mathematics for Computer Science(CSC-203)	
<u>Objectives:</u>	This course provides students with an in-depth introduction to three main areas of Machine Learning: supervised and unsupervised and reinforcement learning.this course will cover some of the main models and algorithms for regression, classification, clustering and Markov decision processes	
<u>Content:</u>	 Introduction :- well posed learning problem – designing a learning system-perspectives and issues in machine learning. 	2 hrs
	2. Concept learning – concept learning task –notation – inductive learning hypothesis-concept learning as search-version space and candidate elimination algorithm-decision tree –random forest.	3 hrs
	3. Revision of linear regression - logistic regression- Support vector machine kernel- Model selection and feature selection-Ensemble methods: Bagging, boosting. Evaluating and debugging learning algorithms.	5 hrs
	4. Continuous Latent Variables-Revision of Principal Component Analysis -Maximum variance formulation - Minimum-error formulation - Applications of PCA - PCA for high-dimensional data.	5 hrs
	5. Neural Networks -Feed-forward Network Functions – perceptron -Weight-space symmetries -Network Training - Parameter optimization -Local quadratic approximation - Use of gradient information - Gradient descent optimization - Error Backpropagation - Evaluation of error-function derivatives - A simple example - Efficiency of backpropagation - The Jacobian matrix - The Hessian Matrix - Diagonal approximation - Outer product	7 hrs

	approximation - Inverse Hessian- Finite differences - Exact	
	evaluation of the Hessian - Fast multiplication by the	
	Hessian.	
	6. Deep learning – Deep Feedforward Networks	
	Gradient-Based Learning - Hidden Units - Architecture	
	Design -CNN and RNN (simple RNN and LSTM). language	5 hrs
	models(Transformers BERT, GPT3)	•
	8. Unsupervised learning :Clustering.K-means.EM.Mixture	3 hrs
	of Gaussians	5 11 5
	9 Sequential Data - Markov Models - Hidden Markov	
	Models -Maximum likelihood for the HMM -The forward-	3 hours
	hackward algorithm - The sum-product algorithm for the	5 110015
	HMM Scaling factors. The Vitorbi algorithm	
	10 Poinforcement learning - introduction, learning task	2 hrs
	O loarning non deterministic rewards and actions	51115
	Q learning-non deterministic rewards and actions-	
	temporal difference learning.	
Pedagogy:	lectures / tutorials /assignments /self_study	
<u>reuagogy</u> .		
References/Readings	Main Reading :-	
	1. Introduction to Statistical Learning, Gareth James,	
	Daniela Witten, Trevor Hastie, Robert Tibshirani,	
	Springer, 2013.	
	2. EthemAlpaydin, Introduction to Machine Learning,	
	MIT Press.	
	3. Richard O. Duda, Peter E. Hart, David G. Stork Pattern	
	Classification,.	
	4. Peter Flach , Machine Learning , Cambridge	
	5.Christopher M. Bishop,Pattern recognition and machine	
	Learning, springer.	
	6.Deep Learning, Ian Good fellow, MIT press	

	7.Tom Michele, Machine Learning, McGraw-Hill.	
Learning Outcomes	 Develop an appreciation for what is involved in learning from data. Understand a wide variety of learning algorithms. Understand how to apply a variety of learning algorithms to data. Understand how to perform evaluation of learning algorithms and model selection. Equips them with a general understanding of deep learning. 	

Programme: MCA

Course code: CSC-302

Title of course: Modern Development Platforms

Number of credits: 3 (3L-0T-0P)

Total contact hours: 36 hours (36L-0T-0P)

Effective from AY: 2021-22

<u>Prerequisites</u> <u>for the course</u>	Programming(Program Prerequisites), Knowledge of OS (CSC-103), Networks(CSC-104) and Web Development(CSC-201,CSC-204)	
<u>Objectives</u>	This course will focus on the modern development technologies, tools and platforms prevalent in the software development industry	
<u>Content</u>	 Overview Ever-changing development terrain, Importance of development at scale. Emergence of Cloud Services, Devops 	1 hour
	 Development at scale Introduction to API Query Introduction to ELK stack 	4 hours
	 Cloud Computing Overview Cloud Models - IaaS, PaaS, SaaS, Public/Private/Hybrid Cloud Components - Virtualisation & VMs, File Storage, Server Instances, Content Delivery Network, etc. Setting up cloud Cloud Services Case study of any one cloud (e.g. Amazon AWS/ Google Cloud/ MS Azure) 	16 hours
	 DevOps Overview of DevOps: Introduction to DevOps DevOps Lifecycle DevOps Delivery Pipeline Continuous Integration/ Continuous Delivery (CI/CD) Introduction to CI/CD 	15 hours

	 Continuous Delivery v/s Continuous Deployment Case study of any one CI/CD tool(CircleCI/Jenkins, etc). Case study should include architecture, pipeline and plugin management Configuration Management Introduction to Configuration Management Case study of any one Configuration Management(e.g. Ansible, Chef, etc). Case study should include Infrastructure as Code, Inventory Management, playbooks/cookbooks Containerization Introduction to Containerization Container Lifecycle Case study of any one containerization tool (e.g. Docker, etc) which should include namespaces, commands,CLI, image creation, image registry Continuous Monitoring Introduction to continuous monitoring Types: Infrastructure Monitoring, Application Monitoring and Network Monitoring Case study on one continuous monitoring tool(e.g. Nagios, Prometheus, etc)
Pedagogy	Hands-on assignments / tutorials / peer-teaching / flip classroom.
<u>References/</u> <u>Readings</u>	 Frank W. Zammetti, "Modern Full-Stack Development", Apress Nader Dabit, "Full Stack Serverless", O'Reilly Joakim Verona, "Practical DevOps" <u>https://www.elastic.co/guide/index.html</u> <u>https://docs.aws.amazon.com/</u> <u>https://cloud.google.com/docs</u> <u>https://docs.microsoft.com/en-us/azure/?product=featured</u> <u>https://docs.docker.com</u>
Learning	1. Learner will learn about the latest tools and platforms used in the software industry

<u>Outcomes</u>	 Learner will have fair idea on the popular cloud services used Learner will appreciate the different devops tools and why devops is important 	

Programme: M.C.A Course Code: CS 302 Number of Credits: 3	Title of the Course: Machine Lea(1L+ 2P)Total contact Hours: 1L +2P(1	rning lab 2L+48P)
Effective from AY: 21	-22	
Prerequisites for the	Programming language (Program Prerequisites)	
<u>course:</u>	Mathematics for Computer Science(CSC -203)	
<u>Objectives:</u>	The objective is to learn to build the different machine learning models by doing a set of assignments and mini projects.	
<u>Content:</u>	Introduction to python libraries for machine learning - scikit learn, tensor flow, keras, pytorch,pandas, matplotlib, seaborn, numpy and other relevant libraries.	1L + 5P
	Four branches of machine learning-supervised, unsupervised,self-supervised, reinforcement, Evaluating machine learning models ,Data preprocessing,featue engineering and feature learning,overfitting and underfitting-NumericalProgrammingfundamentals-finding nearest neighbours via euclidean distance-splitting data sets into training and testing	1L + 8P
	Regression,cross validation and regularization- polynomial regression -model selection on a fixed validation set -Polynomial Regression - Model Selection with Cross-Validation-Polynomial Regression with L2 Regularization - Model Selection with Cross-Validation- Comparison of methods on the test set Evaluating Binary Classifiers and Implementing Logistic Regression-Binary Classifier for movies reviews- classifying newswires-predicting house prices -Computing the Loss for Logistic Regression without Numerical Issues	2L + 10P
	Neural Networks and Stochastic Gradient Descent-MLPs with L-BFGS: What model size is effective?-MLPs with SGD: What batch size and step size?-Producing your own figure comparing batch size and learning rate.	2L + 10P
	Trees and Random Forests for Bag of Words-Code Implementation of Decision Tree Regression-Decision Trees for Review Classification -Random Forests for Review Classification -Comparing Trees to Linear Models	2L + 5P

	for Review Classification.	
	Implementation of CNN, RNN, LSTM,Implementation of Boltzmann machine and Transformers (BERT, GPT3) Generative deep learning (GAN)	2L + 10 P
	Project discussions -Classifying Images with Feature Transformations-Classifying Sentiment from Text Reviews-Recommendation Systems via Matrix Factorization-Text summarization - language Translation - Sentimental analysis- speech to text translatioXiv, Explore the keras ecosystem.	2L + 5P
Dadagagay	Decomposing in lab and practical evencions	
<u>Pedagogy</u> :	Programming in fab and practical exercises	
<u>References/Readings</u>	 hands on machine learning with scikit learn by Aurielien deep learning with python by Francois Text Analytics with Python: A Practitioner's Guide to Natural Language Processing by dipanjan sarkar. keras: the python deep learning API https://www.cs.tufts.edu/comp/135/2020f/assignm ents.html Python library reference 	
Learning Outcomes	 To be able to collect data and preprocess them To choose the suitable machine learning model To study its performance To be able to carry out mini project 	

Programme: MCA

Course code: CSC-304

Title of course: Modern Development Platforms Lab

Number of credits: 3 (0L-0T-3P)

Total contact hours: 72 hours (0L-0T-72P)

Effective from AY: 2021-22

<u>Prerequisites</u> <u>for the</u> <u>course</u>	Hands-on experience in programming(Program Prerequisites), web development(CSC-201;CSC-205); A source and version control tool (CSC-204); Knowledge of OS(CSC-103); Networks(CSC-104)	
<u>Objectives</u>	This course will focus on the practical use and aspects of modern development technologies, tools and platforms prevalent in the software development industry	
<u>Content</u>	 Development at scale Introduction to ELK stack Assignments should be based on use of ELK stack. Introduction to API Query Assignments should be based on querying API using tools like Graph QL 	8 hours
	 Cloud Services Assignments should be based on (using one of: Amazon AWS/ Google Cloud/ MS Azure) Storage service (e.g. AWS S3) Database service (e.g. AWS RDS) Virtual Server service (e.g. AWS EC2) Server-less service (e.g. AWS Lambda) CDN service (e.g. AWS CloudFront) Authentication (e.g AWS Cognito) Load Balancing services (e.g. AWS Elastic Load Balancing) 	30 hours
	 DevOps CI/CD Assignments should be based on constructing a CI/CD Pipeline using Git, Maven, Jenkins/CircleCI Configuration Management Assignments should be based on configuration Management using tools like Ansible, Chef etc. Containerization (e.g. Docker) 	28 hours

	 Assignments should be based on creating containers from pre-existing images using tools like Docker, creating own container images and pushing container images to Docker Hub. Continuous monitoring for Infrastructure, Application & Network Assignments should be based on continuous monitoring for Infrastructure, Application & Network Assignments should be based on continuous monitoring for Infrastructure, Application & Network using tools like (e.g. Nagios, Prometheus) 	
	Mini-Project	6 hours
	Ideally done in a group. Concepts and tools (or similar) learnt in the course will need to be implemented/incorporated.	
Pedagogy	Hands-on assignments / tutorials / peer-teaching Assignments may combine topics from Cloud Services and DevOps	
<u>References/</u> <u>Readings</u>	 Joakim Verona, "Practical DevOps" Gene Kim , Patrick Debois , et al., "The DevOPS Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations" <u>https://www.elastic.co/guide/index.html</u> <u>https://docs.aws.amazon.com/</u> <u>https://cloud.google.com/docs</u> <u>https://docs.microsoft.com/en-us/azure/?product=featured</u> <u>https://docs.docker.com</u> 	
<u>Learning</u> <u>Outcomes</u>	 Learner will get hands-on experience working with the ELK stack and API Query Learner will be able to configure and use different cloud services Learner will get hands-on experience working with the Devops tools and platforms 	

Programme: MCA Course Code: CSO -1 Number of Credits: 4 (4L-0T-0P) Effective from AY: 2021-22

Title of Course: Introduction to Cryptography **Total contact hours:** 48 hours (48L-0T-0P)

Prerequisites for the course	Knowledge of computer networks and protocols(CSC-104)	
<u>Objectives</u>	To understand basics of Cryptography and Network Security.To learn about how to maintain the Confidentiality, Integrity and Authenticity of a data. To understand different protocols for network security to protect against the threats in the networks.	
<u>Content</u>	 Foundations of Cryptography and Security Ciphers and Secret Messages, Security Attacks and Services. Classical encryption techniques 	4 hours
	 Mathematical Tools for Cryptography Substitutions and Permutations Modular Arithmetic Euclid"s Algorithm Finite Fields Polynomial Arithmetic 	4 hours
	 Design Principal of Block Ciphers Theory of Block ciphers Feistel Cipher network Structures DES, triple DES and AES Modes of Operation (ECB, CBC, OFB, CFB) Strength of DES, AES 	8 hours
	 Pseudo Random Numbers and Stream Ciphers Pseudo random sequences Liner Congruential generators Cryptographic generators Design of stream Ciphers RC4 	2 hours
	 Public Key Cryptography Prime Numbers and testing for primality Factoring large numbers Discrete Logarithms 	2 hours
	Asymmetric Algorithms • RSA • Diffie-Hellman • ElGamal • Introduction of Ecliptics curve cryptosystems • Key Management	8 hours

	Key exchange algorithmsPublic Key Cryptography Standards	
	 Hashes and Message Digests Hashing functions and their properties Message Authentication code MD5 SHA-3 HMAC 	6 hours
	 Digital Signatures, Certificate and Standards Digital signature standards (DSS and DSA) Public Key Infrastructures Digital certificates Basics of PKCS standards 	4 hours
	 Authentication Kerberos X509 Authentication Service 	4 hours
	 Web Security protocols IP Security Transport Layer Security (TLS) Wireless Security 	6 hours
<u>Pedagogy</u>	Hands-on assignments / tutorials / peer-teaching / troubleshooting	
<u>References/</u> <u>Readings</u>	 Stallings William, "Cryptography and Network Security: Principles and Practises", 5th edition, Prentice Hall Kahate Atul, "Cryptography and Network Security" Tata McGraw-Hill Menezes A. J., P.C. Van Oorschot and S.A. Vanstone, "Handbook of Applied Cryptography" 	
<u>Learning</u> Outcomes	 After successful completion of the course, the learners would be able to Provide security of the data over the network. Implement various networking protocols. Protect any network from the threats in the world. 	

Programme: MCA Course Code: CSO-2 Number of Credits: 4 (4L-0T-0P) Effective from AY: 2021-22

<u>Prerequisites</u> for the course	Hands-on experience in object oriented programming(CSC- 106) and web development basics(CSC-201,CSC-205) and Knowledge of OS(CSC-103)	
<u>Objectives</u>	On completion of this course, the learner should be able to successfully build, debug and deploy android apps.	
<u>Content</u>	 Android OS, Ecosystem & Basics Mobile Platforms & OSs; Approaches to mobile development; Android OS; Android System Architecture; Android App Lifecycle; Play Store Intro; Create Your First Android App; Layouts, Views and Resources; Text and Scrolling Views; Resources to Help You Learn Activities and Intents; The Activity Lifecycle and Managing State; Starting Activities with Implicit Intents Debugging your apps; Testing your app; Support libraries, and Backwards Compatibility 	15 hours
	 User Interface Screen Sizes; User Interaction - User Input Controls, Menus; Screen Navigation; RecyclerView Delightful User Experience; Drawables, Themes and Styles; Material Design; Providing Resources for adaptive layouts Testing the User Interface 	15 hours
	 Background Tasks Background Tasks; AsyncTask and AsyncTaskLoader; Connecting to the Internet; Broadcast Receivers; Services Triggering, Scheduling, and Optimizing Background Tasks; Notifications; Alarm Manager; Transferring Data Efficiently 	9 hours
	 Data Saving, Retrieving, Loading Overview to storing data Shared Preferences; App Settings SQLite; Firebase Sharing Data: Content Resolvers and Content Providers Using Loaders to Load and Display Data Connecting with API service endpoints 	9 hours
Pedagogy	Hands-on assignments / tutorials / peer-teaching /	

	troubleshooting	
<u>References/</u> <u>Readings</u>	 Bill Philips & Brian Hardy, "Android Programming: The Big Nerd Ranch Guide" Dawn Griffiths & David Griffiths, "Head First Android Development" Ian F. Darwin, "Android Cookbook" https://developer.android.com https://kotlinlang.org 	
<u>Learning</u> <u>Outcomes</u>	 Learner will understand the android ecosystem, android versions & compatibility across them. Learner will be able to design user interfaces specifically to be run native android devices. Learner will be able to evaluate which type of views & widgets are preferable for various use cases. Learner will be able to build and design navigation flows in an app. Learner will be able to connect the app to Android services or apps already available on the device. Learner will be able to build apps that can store data locally or remotely. 	

Programme: MCA Course Code: CSO-3 Number of Credits: 4 (4L-0T-0P) Effective from AY: 2021-22

Title of Course: Programming Paradigms Total contact hours: 48 hours (48L-0T-0P)

<u>Prerequisites</u> for the course	Hands-on experience in programming(Program Prerequisites; CSC-101)	
Objectives	To Learn and understand various programming paradigms.	
<u>Content</u>	 Introduction Programming paradigm concept, motivation, types and classification of paradigms. Factors with respect to programming languages: Binding times and flexibility; Scoping; First class values; Abstraction; Typing; Storage Allocation & Dynamic Memory 	4 hours
	 Imperative Programming Variables and data types; Operators and expressions; Input/Output operations, Decision constructs; Looping constructs Procedural (<i>in Python/C</i>) blocks & scope; procedures (functions) Object Oriented (<i>in Java/C++</i>) classes & objects, object-oriented principles (encapsulation, abstraction, inheritance, polymorphism) 	4 hours
	 Functional Programming (in Haskell/Clojure) Revision of mathematical Functions" concepts Side effects; Pure functions Type induction Defining functions Currying; Function composition Recursion Lazy evaluation; infinite lists List comprehensions Higher order functions; Folds 	16 hours
	 Logic Programming (in Prolog/ECLiPSe Constraint language) Revision of mathematical Logic concepts Programming "without algorithms" Logic programming with facts, rules and goals Recursion; Lists Constraint logic programming; constraints as relationship between variables; solving puzzles (like sudoku) 	8 hours
	Event-driven Programming (in Python/.NET)Events	8 hours

	 Main loop & callback Scheduler & Event handlers; Triggers Exception handling Reliable eventing Asynchronous triggers Multi-Paradigms and more Language support for multi paradigms; Benefits & issues Parallel programming Data Parallelism (<i>in OpenMP</i>) and Message Passing (<i>in MPI</i>) Reactive programming (<i>in Elm/ReactiveX for Java</i>, <i>JS</i>) Meta programming (<i>in Lisp</i>) Natural Language Programming (<i>in SciLab/MATLAB</i>) 	8 hours
Pedagogy	Hands-on assignments / tutorials / peer-teaching / pair programming/ reading research papers/ presentations	
References/ Readings	 Terrance W. Pratt, Marvin V. Zelkowitz, "Programming Languages - Design & Implementation" Robert L. Sebesta, "Concepts of Programming Languages" Ravi Sethi, "Programming Languages Concepts & Constructs" Bruce J. Mac Lennan, "Principles of Programming Languages: Design, Evaluation, and Implementation" Kenneth C. Louden, "Programming Languages: Principles and Practice" Allen Tucker, Robert Noonan, "Programming Languages: Principles and Paradigms" Graham Hutton, "Programming in Haskell" W. Clocksin, "Programming in Prolog" Slim Abdennadher, Thom Frühwirth, "Essentials of Constraint Programming" Roland Kuhn, Brian Hanafee, Jamie Allen, "Reactive Design Patterns" 	
<u>Learning</u> <u>Outcomes</u>	 Learner will be able to distinguish between different programming paradigms Learner will be able to choose an adequate programming paradigm in solving specific software engineering problems Learner will be able to recognize the similar concepts implemented in a different way across different programming languages and paradigms 	

Prerequisites for the course	Program Prerequisites	
<u>Objectives</u>	 To give an overview of the theoretical foundations of computer science from the perspective of formal languages To illustrate finite state machines to solve problems in computing. 	
<u>Content</u>	General Concepts of Automata Theory: Alphabets Strings, Languages, Grammars, Applications of Automata Theory.	2 hours
	Finite Automata (FA): Introduction, Deterministic Finite Automata (DFA) - definition and notations, language of a DFA. Nondeterministic Finite Automata (NFA)- Definition, language of an NFA, Equivalence of DFA and NFA, Applications of FA. Finite Automata with Epsilon Transitions, Eliminating Epsilon transitions, Minimization of DFA. Finite automata with output (Moore and Mealy machines) and inter-conversion.	10 hours
	Regular Expressions (RE): Introduction, Identities of RE. Finite Automata and Regular Expressions - conversions, Algebraic Laws for Regular Expressions, applications of RE. Regular grammars: Definition, regular grammars, and FA, Proving languages to be non-regular (Pumping lemma), Properties of Regular Language, applications.	8 hours
	Context-Free Grammar (CFG): Definition, Derivations Using a Grammar- Leftmost and rightmost derivation, Parse tree, Applications, Ambiguity in CFG. Minimization of CFG, CNF, GNF, Pumping Lemma for CFL"s.	8 hours
	Pushdown Automata (PDA): Definition, Language of PDA- Acceptance by Final State and Acceptance by Empty stack, Equivalence of CFG and PDA, Deterministic PDA, Chmosky normal form of CFG Turing Machines (TM): Formal definition and behavior, Languages of a TM, TM as accepters, and TM as a computer	12 hours

	of integer functions, Types of TMs.	
	Recursive And Recursively Enumerable Languages (REL): Properties of recursive and recursively enumerable languages, Universal Turing machine, The Halting problem, Undecidable problems about TMs. Context-sensitive language and linear bounded automata (LBA), Chomsky hierarchy, Decidability.	8 hours
Pedagogy	lectures/ tutorials/assignments/self-study	
<u>References/</u> <u>Readings</u>	 John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to Automata Theory Languages and Computation, Pearson Education, India (latest edition) H.R.Lewis and C.H.Papadimitriou, Elements of the Theory of Computation, PHI, (latest edition) J.Martin, Introduction to Languages and the Theory of Computation, TMH (latest edition) 	
<u>Learning</u> <u>Outcomes</u>	 At the end of the course students will be able to: To use basic concepts of formal languages of finite automata techniques To design Finite Automata for different Regular Expressions and Languages To Construct context-free grammar for various languages 	

Programme: MCA Course code: CSO-5 Number of credits: 4 (4L-0T-0P) Effective from AY: 2021-22

Title of course: Data Analytics Total contact hours: 48 hours (48L)

<u>Prerequisites</u> <u>for the course</u>	Program Prerequisites; DBMS(CSC-202); Probability and statistics(CSC-203)	
<u>Objectives</u>	In this course, the learner will learn to ask the right questions to understand and analyze data by doing EDA and building statistical models. The learner will also learn to convert data into insights so as to be able to tell the story about data.	
Content		Hours
	1.Introduction:- what is data analytics and data science -areas of data sciences- data analytics intro	3L
	2. Revision of statistics:- Measures of central tendency-Measures of location of dispersions-Statistical hypothesis generation and testing- Chi-Square test-t-Test-Analysis of variance-Correlation analysis-Maximum likelihood test-Practice and analysis with R/python.	3L
	3. Data preparation-Business Intelligence tools- Datawarehouse-DataBase-setting up Microsoft SQL server for practice-ETL-BI tools-SQL programming for data science	7L
	4. Getting started with basics of python & R- library for data science	2L
	5. Visualization and Exploratory data analysis (EDA)- various plots using python, R and Tableau and sweetvize - histogram-kernel density plots- combining plot styles-box and violin plots-regression plots-heat maps and clustered matrices.	9L
	6. Data analysis techniques-Regression analysis- Classification techniques-Clustering-Association rules analysis-Practice and analysis with R/python.	9L

	 7. Assessing the model:- Accuracy paradox- cumulative accuracy profile(CAP)- Drawing insights from the model- power insights from your CAP-coefficients of logistic regression-odd ration-odd ration vs coefficient-deriving insights from coefficients- Model maintenance . 8. Case studies and projects:- Understanding business scenarios-Feature engineering and visualization- Sensitivity Analysis- data analytics project in python or R in different domains like financial , agriculture, health, language etc. 	8L 7L
Pedagogy	 Problem solving approach with real life problems. hands-on assignments Learning theory and putting them into practice by doing projects in either python or R programming 	
<u>References/</u> <u>Readings</u>	 Introduction to statistical learning by Trevor and Robert. The Elements of Statistical Learning by Trevor Hastie. Beginning R-the statistical programming language by Mark Gardener. probability and statistics for Engineers and scientists by Ronald and Raymond. Storytelling with data by Cole Nussbaumer Knaflic Python for data analysis by Wes McKinney 	
<u>Learning</u> Outcomes	Having done this course equips any aspiring data analyst /data scientist to know the data –learn to read between lines and to see the hidden insights otherwise not visible to ordinary vision of the common man. The hidden insights collected would help make right decision for any business problem	

Title of Course: Network Programming **Contact Hours:** 48 hours (48L-0T-0P)

<u>Prerequisites</u> for the course	Operating Systems(CSC-103), Internet technology(CSC- 104),Linux (CSC-107)	
<u>Objectives</u>	To introduce the basic concept of network programming in UNIX and Windows OS environments.	
<u>Content</u>	Basic UNIX programming: Overview of process, signal handling, and related system calls. Named and unnamed pipes and related system calls.	6 hours
	Elementary Socket Programming: Berkley Sockets Overview, Introduction to sockets, Socket addresses, Basic Socket system calls, Error handling. Concept of Reserved ports, Elementary TCP and UDP socket programming. Socket options. Name and Address Conversion functions. Interface Operations using "ioctl".	12 hours
	I/O Operations: Synchronous vs. Asynchronous I/O. I/O Multiplexing using "select" and "pselect"., Sockets and signals, Signal driven I/O. Nonblocking I/O: Nonblocked "accept" and "connect". Broadcasting and Multicasting. Sending and Receiving Out of Band data using "select" and signals. Advance I/O functions.	12 hours
	Daemon processes and Inetd Super Server	2 hours
	Network Programming in the .NET Framework: System.Net classes overview, working with URI, IP addresses, DNS class, Requests and responses, authentication, and permission.	4 hours
	Socket programming in .NET Working with sockets in .NET, Asynchronous programming, socket permission, support for IPv6, support for TCP, .NET Remoting, support for UDP, multicast sockets. Network tracing, network information, cache management, security.	6 hours
	Programming applications: Time and date routine, Ping, Trivial file transfer protocol, design of chat application using multicast socket programming.	6 hours

Pedagogy	lectures/ Hands-on assignment/tutorials	
<u>References/</u> <u>Readings</u>	Main Reading:1. Steven W.R., Unix Network Programming, Prentice Hall of India.2. Microsoft Software Developers Network Documentation.	
<u>Learning</u> <u>Outcomes</u>	 After completing the course, students will be able to: Analyze and write socket API based programs Design and implement client-server applications using TCP and UDP sockets 	

Programme: MCACourse Code: CSO-7Number of Credits: 4 (4L-0T-0P)C ontact Hours: 48 hours (48L-0T-0P)Effective from AY: 2021-22

<u>Prerequisites</u> <u>for the course</u>	Program Prerequisites, Operating Systems(CSC-103),Internet Technology(CSC-104).	
<u>Objectives</u>	To understand the fundamentals of Internet of Things and the protocols and standards designed for IoT	
<u>Content</u>	Introduction to IoT: Introduction, IoT ecosystem, Applications, Challenges.	2 hours
	Fundamentals: IoT Devices - Sensors, Actuators, and gateways, Basics of the wireless sensor network.	4 hours
	IoT Architecture & Design: oneM2M, IoTWF, Additional Reference Models, Core functional stack, Data Management and compute stack.	6 hours
	Communicating smart objects: Communication criteria, communication models, IoT access technologies – 3GPP MTC, IEEE 802.11, IEEE 802.15, WirelessHART, ZWave, Bluetooth Low Energy, Zigbee Smart Energy, DASH7	10 hours
	IoT Network Layer: IP as IoT network layer, IPv6, 6LoWPAN, 6TiSCH, RPL, CORPL, CARP	8 hours
	IoT Transport and Application protocols: Transport Layer: TCP, UDP, DCCP, SCTP, TLS, DTLS IoT application transport methods, HTTP, CoAP, XMPP, MQTT, AMQP, DDS	12 hours
	Security in IoT: MAC802.15.4, 6LoWPAN, RPL, Application Layer security.	3 hours
	IoT Application case study: Discuss any 3 applications of IoT	3 hours
Pedagogy	lectures/ tutorials/Hands-on assignments/self-study	
<u>References/</u> <u>Readings</u>	1. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", CISCO Press, 2017	

	 Hersent, Olivier, David Boswarthick, and Omar Elloumi, The internet of things: Key applications and protocols. John Wiley & Sons, 2011. Buyya, Rajkumar, and Amir Vahid Dastjerdi, eds. Internet of Things: Principles and Paradigms. Elsevier, 2016. 	
<u>Learning</u> Outcomes	 After completing the course, students will be able to: Understand the concepts of the IoT Architecture Reference model Identify the IoT networking components and protocols. 	

Programme: MCACourse Code: CSO-8TitNumber of Credits: 4 (4L-0T-0P)Effective from AY: 2021-22

Title of Course: Quality Assurance and Usability Total contact hours: 48 hours (48L-0T-0P)

<u>Prerequisites</u> <u>for the course</u>	Object oriented programming(CSC-106), software engineering tools & processes(CSC-204),web development(CSC-205)	
<u>Objectives</u>	The course is aimed at providing learners with the necessary exposure to the job responsibilities of Software Quality Assurance (QA) engineers & User Experience (UX) designers in the IT industry.	
<u>Content</u>	 Testing Web Applications Manual Testing Write test cases Automated test scripting (e.g. Selenium, QTP) 	8 hours
	 Developer-centric Testing API testing (e.g. Postman, Karate, SOAP-UI) Revisit to Unit Testing (e.g. NUnit, JUnit) Tests for Model, View & Controller (MVC) 	8 hours
	 Building test suites Design Patterns in Test Automation Page-Object Model (Page-Object pattern) Business-Layer Page-Object pattern Using software development design patterns (creational, structural and behavioral) in test scripting Automated Testing Frameworks (e.g. Cucumber, Jasmine, Mocha, TestNG) Testing for Behavior Driven Development (e.g. Gherkin) 	12 hours
	 Non functional testing Performance Testing (e.g. Apache JMeter) Querying logs 	6 hours
	Testing for Mobiles Apps	4 hours
	 User Experience Gulf of evaluation and execution; 7 fundamental & universal design principles; Human error vs Bad design; Double-Diamond Model of Design Visual Design Elements (line, color, shape, form vs space, value, texture) and extended elements (dot, typography, movement) 	10 hours

	 Visual Design Principles (scale, dominance/emphasis, balance, harmony) Wireframing, Mockup & Prototype (Paper & Digital); Use of tools (e.g. Pencil, Adobe XD, Sketch and/or Figma); Interaction & Animation Raster (e.g. GIMP, Adobe Photoshop) & Vector (e.g. Inkscape, Adobe Illustrator, CorelDraw) Graphic Editing Maintaining your UX designs" portfolio (e.g. Behance, Dribble) 	
Pedagogy	Hands-on assignments / tutorials / peer-teaching / mini- project / case studies/ presentations	
<u>References/</u> <u>Readings</u>	 Dorothy Graham, Rex Black, Erik van Veenendaal, "Foundations of Software Testing ISTQB Certification" Don Norman, "The Design of Everyday Things" Joseph A. Gatto, Albert W. Porter, Jack Selleck, "Exploring Visual Design: The Elements and Principles" <u>https://tutsplus.com</u> <u>https://www.youtube.com/watch?v=Ib8UBwu3yGA</u> <u>https://www.youtube.com/watch?v=IyR_uYsRdPs</u> <u>https://www.youtube.com/watch?v=68w2VwalD5w</u> 	
<u>Learning</u> <u>Outcomes</u>	 Learners will understand software testing and quality assurance as a fundamental component of software life cycle Learners will efficiently perform quality assurance activities using modern software tools Learners will prepare test plans and schedules for a quality assurance project Learners will understand design workflows while building software products Learner will efficiently create user experience (UX) designs and other deliverables using modern software tools 	