

गोय विद्यापीठ ताळगांव पठार गोंय - ४०३ २०६ फोन: +९१-८६६९६०९०४८

Goa University

Taleigao Plateau, Goa - 403 206 Tel : +91-8669609048 Email : registrar@unigoa.ac.in Website: www.unigoa.ac.in

(Accredited by NAAC)

GU/Acad -PG/BoS -NEP/2023/184/1

Date:04.07.2023

Ref: GU/Acad –PG/BoS -NEP/2022/339/37 dated 20.08.2022

CIRCULAR

In supersession to the above referred Circular, the updated approved Syllabus with revised Course Codes of the **Master of Computer Applications** Programme is enclosed

The Dean/ Vice-Deans of the Goa Business School are requested to take note of the above and bring the contents of the Circular to the notice of all concerned.

ande

(Sanket Gaude) Offg. Assistant Registrar – Academic-PG

Τo,

- 1. The Dean, Goa Business School, Goa University.
- 2. The Vice-Deans, Goa Business School, Goa University.

Copy to:

- 1. The Chairperson, Board of Studies in Computer Science and Technology (PG).
- 2. The Programme Director, Computer Science & Technology Discipline, Goa University.
- 3. The Controller of Examinations, Goa University.
- 4. The Assistant Registrar, PG Examinations, Goa University.
- 5. Directorate of Internal Quality Assurance, Goa University for uploading the Syllabus on the University website.

Goa University

MCA PR	OGRAMME STRUCTURE effective from Academic Y	/ear 2022-23		
	SEMESTER I – Total 20 credits			
	Discipline Specific Core(DSC) Courses			
Course Code	Course Title	Credits		
<u>CSA-500</u>	Data Structures & Algorithms	2		
<u>CSA-501</u>	Object Oriented Concepts	2		
<u>CSA-502</u>	Operating Systems	3		
<u>CSA-503</u>	Internet Technologies	3		
<u>CSA-504</u>	Data Structures & Algorithms Lab	2		
<u>CSA-505</u>	Object Oriented Programming Lab	2		
<u>CSA-506</u>	LINUX Lab	2		
	Total Credits for DSC	16		
Discipline Specific Elective(DSE) Courses – any one to be opted				
Course Code	Course Title	Credits		
<u>CSA-521</u>	Mathematics for Computer Science	4		
<u>CSA-522</u>	Discrete Mathematical Structures	4		
	Total Credits for DSE	4		

	SEMESTER II – Total 20 credits	
	Discipline Specific Core(DSC) Courses	
Course Code	Course Title	Credits
<u>CSA-507</u>	Web Development	3
<u>CSA-508</u>	Database Management Systems	3
<u>CSA-509</u>	Machine Learning	4
<u>CSA-510</u>	Web Development Lab	2
<u>CSA-511</u>	Database Management Systems Lab	2
<u>CSA-512</u>	Machine Learning Lab	2
	Total Credits for DSC	16
Discipline Specif	ic Elective(DSE) Courses – one to be opted from the	DSE list given below
Course Code	Course Title	Credits
<u>CSA-523</u>	Cryptography and Network Security	4
<u>CSA-524</u>	Natural Language Processing	4
<u>CSA-525</u>	Network Programming	4
<u>CSA-526</u>	Human Computer Interaction	4
<u>CSA-527</u>	Agile Methodology	4
<u>CSA-528</u>	Modern Development Platforms	4
<u>CSA-529</u>	Ethical Hacking	4
<u>CSA-530</u>	Advanced Unix Programming	4
<u>CSA-531</u>	Theory of Computation	4
	Total Credits for DSE	4

	SEMESTER III – Total 20 credits	
Research Sp	pecific Electives(RSE) – two to be opted from RSE list give	n below
	Total Credits for RSE	8
Ge	eneric Elective(GE) Courses - total 12 credits to be opted	
Course Code	Course Title	Credits
<u>CSA-621</u>	Corporate Skills	4
	Courses from Other Disciplines for total 8 credits	8
	Total Credits for GE Courses	12

	SEMESTER IV – Total 20 credits	
One Resea	rch Specific Elective(RSE) to be opted from the RSE list g	iven below in
con	sultation with the Mentor. It can be completed in Seme	ster 3.
	Total Credits for RSE	4
	Dissertation Type	
CSA-651	Research Project in Academic or Research	
	Institutes	
	OR	
CSA-652	Industry Internship / Software Project	16
	Development	
	Total Credits for Dissertation	16

Research Specific Electives(RSE) list			
Course Code	Course Title	Credits	
<u>CSA-600</u>	Speech Processing	4	
<u>CSA-601</u>	Machine Translation	4	
<u>CSA-602</u>	Educational Technology	4	
<u>CSA-603</u>	Computer Graphics	4	
<u>CSA-604</u>	Data Science	4	
<u>CSA-605</u>	IoT Architecture and Protocols	4	
<u>CSA-606</u>	Mobile App Development	4	
<u>CSA-607</u>	Research Methodology	4	
<u>CSA-608</u>	Deep Learning	4	
<u>CSA-609</u>	Programming Paradigms	4	
<u>CSA-610</u>	Software Testing	4	
CSA-611	Artificial Intelligence	4	
<u>CSA-612</u>	MLOps	4	
<u>CSA-613</u>	IoT Application Development		

SEMESTER I

Name of the Programme: MCA

Course Code: CSA-500

Title of Course: Data Structures & Algorithms

Number of Credits: 2 (2L-0T-0P)

Effective from	AY: 2022-23	

Effective from AY	: 2022-25	I
<u>Prerequisites</u> for the course	Programming using any Programming Language	
	The sime of the course is to complexize the importance of data stand, where	
<u>Objectives</u>	The aim of the course is to emphasize the importance of data structures	
	in implementing efficient algorithms. It provides an exposure to various	
6	algorithm design techniques and an introduction to algorithm analysis.	F b c c
<u>Content</u>	Revision of Programming & Data Structures	5 hours
	Problem solving, Data Types: Primitive and User Defined	
	Selection Constructs, Repetition Constructs, Recursion	
	Pointers	
	Algorithm Representation: - Pseudocode and flowcharts	
	Three level Approach	
	Abstract Data Types (ADTs)	
	Basic Linear Data Structures (LinkedList, Stack, Queue)	
	Algorithm Analysis	3 hours
	Analysis of Algorithms	
	Algorithm Complexity: Space and Time	
	Cases of Complexity: Best, Worst and Average	
	Growth of Functions: Asymptotic Notation	
	Advanced Linear Data Structures	4 hours
	Variants of Linked List and its applications (e.g. Polynomial addition,	
	Sparse matrices)	
	Applications of stacks (e.g. Infix-to-Postfix conversion, Evaluating Postfix	
	Expressions, Bracket Matching)	
	Variants of Queue and Applications	
	Nonlinear Data Structures:	10
	Trees: Binary Search Trees, AVL Trees, B-trees & variants.	hours
	Tree Traversal Algorithms	
	Heaps and its applications (e.g. implementation of Priority Queue)	
	Graph: Adjacency Matrix and Adjacency List Representations	
	Graph Traversal Algorithms: Breadth First Search and Depth First Search	
	Divide & Conquer Strategy	3 hours
	Algorithms based on Divide and Conquer Strategy:	Shours
	Sorting Algorithms (QuickSort, MergeSort)	
	Binary Search	2 h a ura
	Greedy Algorithms	2 hours
	Huffman Coding Algorithm	
	Minimum Cost Spanning Tree (Prim's, Kruskal's)	
	Single Source Shortest Path (Dijkstra's)	
	Dynamic Programming	3 hours
	Coin Change Problem	
	Longest Common Subsequence	
	All-pair shortest Path (floyd-warshall)	
	 Lectures/Tutorials/Assignments/Quizzes 	
Pedagogy	Lectures/ rutonals/Assignments/Quizzes	
<u>Pedagogy</u>	 Each data structure should be explained along with implementation of 	
Pedagogy		
Pedagogy References/	• Each data structure should be explained along with implementation of	s of data
	• Each data structure should be explained along with implementation of its ADT, its applications and complexity	s of data

[
	Latest Edition
	3. Allen, Weiss Mark. Data structures and algorithm analysis in C. Pearson
	Education India, Latest Edition.
	4. Dasgupta, Papadimitriou, and Vazirani, Algorithms, by McGraw-Hill.
	5. Jeri R. Hanly and Eliot B. Koffman "Problem Solving and Program Design in C"
	Pearson Education, VII Edition, 2012
	6. R.G.Dromey "How to Solve it by Computer ", PHI , Latest Edition
<u>Course</u>	Upon successful completion of the course, a student will be able to
<u>Outcomes</u>	• Implement common data structures such as lists, stacks, queues, graphs, and
	binary trees for solving programming problems.
	• Identify and use appropriate data structures in the context of a solution to a
	given problem.
	 Be able to analyze the complexity of a given algorithm

Course code: CSA-501

Title of course: Object Oriented Concepts

Number of credits: 2 (2L-0T-0P) Effective from AY: 2022-23

ffective from A		
Prerequisites for the course	Knowledge of Programming using any Programming Language	
<u>Objectives</u>	Aim of this course is to introduce the learner to the object oriented	
	paradigm.	
<u>Content</u>	Classes and objects	8 hours
	Programming paradigm; procedural to object oriented	
	Class; attributes & methods; classes as modules & types; uniform	
	type system, wrapper type classes	
	Object; object references; objects instantiation & interaction;	
	constructor & destructor; pass-by-reference & pass-by-value	
	Object copying & cloning; composite objects	
	Static & non-static members	
	Enumeration & Annotations	
	Object oriented principles	8 hours
	Encapsulation	
	Inheritance; types of inheritance; diamond problem	
	Abstraction; virtual methods	
	Polymorphism; overloading and overriding	
	Object oriented features	8 hours
	Interfaces	
	Access modifiers	
	Errors & Exceptions; user-defined exceptions	
	Collections	
	Anonymous & Inner classes	
	Type parametric polymorphism (e.g. Generics in Java & Templates in	
	C++)	
	Advanced features	6 hours
	Persistence & Serialization; JSON	
	User packages & custom libraries; reflection	
	Predicates & streams	
	Lambda functions	
Pedagogy	Hands-on assignments / tutorials / peer-teaching / flip classroom.	
	Concepts can be explained using UML class diagrams.	
References/	Main Reading	
Readings	1. Timothy Budd, "An Introduction to Object Oriented	
	Programming", Pearson Education, 3rd Edition	
	2. Brett D. McLaughlin, Gary Pollice & David West, "Head First	
	Object-Oriented Analysis Design", O'Reilly	
	3. Ken Arnold, James Gosling, David Holmes, "The Java	
	Programming Language", Addison-Wesley Professional	
	4. Stanley Lippman, "C++ Primer", Addison Wesley	
	5. Cay S. Horstmann, "Core Java Volume I—Fundamentals", Pearson	
	6. Herbert Schildt, "Java: The Complete Reference", Oracle Press	
	7. Joshua Bloch, "Effective Java", Addison Wesley	
	8. Kathy Sierra & Bert Bates, "Head First Java", O'Reilly	
	9. Bjarne Stroustroup, "The C++ Programming Language", Addison	
	Wesley	
	10. https://www.tutorialspoint.com/java/index.htm	

Outcomes	object-oriented world
	2. Learner will understand object-oriented principles
	3. Learner will be able to design object oriented softwares
	4. Learner will be able to analyse a given problem and breakdown
	into logical units and solve via a bottom-up approach

Course Code: CSA-502

Title of the Course: Operating System

Number of Credits: 3 (3L-0T-0P) Effective from AY: 2022-23

Effective from AY		
<u>Prerequisites</u>	Computer Architecture Basics	
for the course		
<u>Objectives</u>	This course focuses on the principles and understanding of the	
	functionality of an operating system and evaluates their trade-off in	
	various environments.	
<u>Content</u>	Introduction and Systems Structures	3 hours
	Computing Environments, Operating-systems Services, System Calls,	
	System Programs, Virtual Machines, monolithic and micro kernel	
	architectures	
	Process Management	5 hours
	Process - Concept and states, Process Creation and Control,	
	Scheduling Criteria, Scheduling Algorithms, MultiLevel Queues,	
	Multiple-processor scheduling, Real time CPU scheduling	
	Threads	5 hours
	Motivation and Challenges, Multithreading Models, Threading	
	Issues, Thread libraries, Thread scheduling	
	Process Synchronization	5 hours
	Cooperating processes and Race Conditions, The critical-section	
	problem, Peterson's solution, mutex locks, Synchronization	
	Hardware, Semaphores and their Implementation, Classic problems	
	of synchronization	
	Inter process Communication,	3 hours
	Overview of IPC, Examples of IPC Systems, Communication in Client	
	Server Systems.	
	Deadlocks	5 hours
	System Model, Deadlock characterization, Methods for Handling	
	Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock	
	Detection, Recovery From Deadlock	
	Memory Management	5 hours
	Hardware Support, Address Binding, Swapping, Contiguous Memory	
	Allocation, Fragmentation, Memory Protection, Paging, Structure of	
	the page table, Segmentation, Example: Intel architecture	
	Virtual-Memory Management	5 hours
	Background, Demand Paging, Copy-on-write, Page Replacement	
	algorithms, Allocation of Frames, Thrashing, Allocating Kernel	
	Memory The Content of	E b a b a
	File System	5 hours
	File Concept, Access Methods, Directory Structure, File-system	
	mounting, File sharing, Protection. Virtual file systems,	
	Implementing File Systems, Directory implementation, Allocation	
	Methods, Free-space Management, Efficiency and performance,	
	Recovery, Log-structured file systems	1 hours
	Secondary-storage Structure	4 hours
	Overview of Mass-storage Structure, Disk Structure, Disk	
	Attachment, Disk Scheduling, Disk Management, Swap-Space	
Dadazzz	Management	
<u>Pedagogy</u>	lectures/ tutorials/assignments/class presentations and	
Defenser	debates/peer reviews/self-study.	
<u>References/</u>	Main Reading	

- "	1.		٦
<u>Readings</u>	1.	Silberschatz , Galvin and Gagne , Operating systems Principles –	
		8th edition or Later(Wiley Asia Student Edition)	
	2.	Deitel H.M., "An Introduction to Operating Systems", Addison	
		Wesley Publishers Company, Latest Edition	
	3.	Milenkovic M., "Operating Systems : Concepts and Design",	
		McGraw Hill International Edition Computer Science series ;	
		Latest Edition	
	4.	Tanenbaum A. S., Modern Operating Systems", Prentice Hall of	
		India Pvt. Ltd.,Latest Edition	
	5.	Operating Systems – a modern perspective - Gary Nutt , Addison	
		Wesley, Latest Edition	
<u>Course</u>	1.	To understand the services provided by and the design of an	
<u>Outcomes</u>		operating system.	
	2.	To understand the structure and organization of the file system.	
	3.	To understand what a process is and how processes are	
		synchronized and scheduled.	
	4.	To understand different approaches to memory management.	
	5.	Students should be able to understand the implementation and	
		use of system calls for managing processes, memory and the file	
		system.	
	6.	Students should understand the data structures and algorithms	
		used to implement an OS.	
	7.	Evaluate operating system implementations	

Course Code: CSA-503

Title of the Course: Internet Technologies

Number of Credits: 3 (3L-0T-0P) Effective from AY: 2022-23

<u>Prerequisites</u>	Programme requisites	
for the course		
Objectives:	The objective of the course is to introduce the TCP/IP architecture	re and allied
	protocols of the Internet by following a top-down approach.	
<u>Content:</u>	Computer Networks and the Internet: Networking and Inter- networks, Internetworking devices, Internet: Network edge, and the Network core. TCP/IP protocol stack: Protocol stack, Connection-oriented, connectionless services, Packet switching, circuit switching, Delay, Loss, and Throughput in Packet-Switched Networks.	6 hours
	Application layer: Principles of Application Layer Protocols, the Web and HTTP, MIME, mail access protocols, DNS, Peer to Peer Applications, Video Streaming, and Content Distribution Networks.	8 hours
	Transport layer: Transport-layer services, Multiplexing and demultiplexing, UDP protocol, Principles of reliable data transfer, Connection-oriented transport - TCP protocol, Principles of congestion control, TCP congestion control.	8 hours
	Network layer: Packet switching: virtual circuit & datagram networks, Forwarding and Routing (Network Data and control planes). The Internet Protocol (IP): IPv4 Datagram format, fragmentation, IPv4 Addressing in the Internet, route aggregation, subnetting, CIDR, Network Address Translation, DHCP, ICMP. Control Plane: Routing protocols- shortest path, link state routing algorithm, distance vector routing. Autonomous Systems (AS), Intra- AS Routing in the Internet: OSPF, Internet routing: RIP, OSPF, BGP, Address Resolution Protocol (ARP), and RARP.	12 hours
	Wireless and Mobile Networks: WiFi (802.11 Wireless LAN), Bluetooth, and Cellular Internet Access.	5 Hours
	Security in Computer Networks: Basic cryptography concepts, Secure Socket Layer (SSL), Internet Security Protocol (IPSec), Virtual Private Network (VPN).	6 hours
Pedagogy:	lectures/ tutorials/assignments/self-study/ flipped classroom	
<u>References/</u> <u>Readings</u>	 Forouzan, Behrouz A., and Firouz Mosharraf. "Computer networks approach". McGraw-Hill, 2012. Andrew S. Tanenbaum., "Computer Networks", (5th Edition) Pre India. James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Dov Pearson, Sixth Edition 2017. 	entice Hall of
<u>Course</u>	After completion of this course, students will be able to	
Outcomes	 Have a good understanding of layered communication architecture knowledge of some of the important networking protocols Understand the concepts of reliable data transfer and how TCP imp these concepts. 	
	 Basic knowledge of routing algorithms. 	
	 Basic knowledge of security in computer networks 	

Course Code: CSA-504

Title of Course: Data Structures & Algorithms Lab

Number of Credits: 2 (0L-0T-2P) Effective from AY: 2022-23

Effective from AY		I
<u>Prerequisites</u>	Programing Knowledge	
for the course		
Objectives	To develop skills to design and implement linear and nonlinear data	
	structures and to identify the most appropriate data structure for	
	solving a real world problem.	
<u>Content</u>	Lab Assignments may be based on the following	
	Advanced Linear Data Structures	8hours
	Infix-to-Postfix conversion,	
	Evaluating Postfix Expressions,	
	Bracket Matching	
	Non-linear data structures	20hours
	Binary Trees	
	Tree Traversal Algorithms	
	Binary Search Trees	
	Неар	
	Priority Queue using Heap	
	Heap Sort	
	Graph implementation using Adjacency list and matrix	
	Graph Traversal Algorithms	
	Divide & Conquer Strategy	12hours
	MergeSort	
	QuickSort	
	Binary Search Algorithm	
	Greedy Algorithms	12hours
	Huffman Coding Algorithm	
	Prims' and Kruskal's Algorithm	
	Dijkstra's Algorithm	
	Dynamic Programming	8hours
	Coin Change Problem	
	Longest Common Subsequence	
	Floyd-Warshall Algorithm	
	A Mini Project	
Pedagogy	Programming assignments/ discussions/ self-review/ peer-review/	
<u>r cuugosy</u>	testing of code/ debugging of code/ projects	
References/	1. Horowitz, Ellis, Sartaj Sahni, and Susan Anderson-Freed.	
Readings	"Fundamentals of data structures in C" WH Freeman & Co., Latest	
<u>itedunigs</u>	edition.	
	2. Thomas H. Cormen, Charles E. Leiserson, et al "Introduction to	
	Algorithms", Latest Edition	
	3. Allen, Weiss Mark. "Data structures and algorithm analysis in C."	
	Pearson Education India, Latest Edition.	
	4. Dasgupta, Papadimitriou, and Vazirani, "Algorithms" McGraw-Hill.	
	2017	
Course		
<u>Course</u> Outcomos	Upon successful completion of the course, a student will be able to	
<u>Outcomes</u>	 Implement common data structures such as lists, stacks, queues, graphs, and bipary tracs for solving programming problems 	
	graphs, and binary trees for solving programming problems.	
	 Identify and use appropriate data structures in the context of a colution to a given problem 	
	solution to a given problem.	

Course code: CSA-505

Title of course: Object Oriented Programming Lab

Number of credits: 2 (0L-0T-2P) Effective from AY: 2022-23

Prerequisites	Basic Programming Skills	
for the course		
Objectives	To impart programming skills using object oriented paradigms.	
Content	Understanding Object Oriented Programming	12 hours
	Suggested sample (non-exhaustive) assignments using an OO visual	
	programming platform like Greenfoot/Alice:-	
	 Given a game scenario and conditions, create a game and 	
	check/modify the OO code generated (e.g. Racing game,	
	Archery, etc.)	
	Suggested sample (non-exhaustive) assignments using an OO	
	language like Java/C++/C# (No CLI input. All values hardcoded in the	
	main method.):-	
	 Write a procedural program in the OO language (to 	
	familiarize with the syntax) and convert the same to an OO	
	code	
	Applying Object Oriented Principles	24 hours
	Suggested sample (non-exhaustive) assignments using an OO	
	language like Java/C++/C# (No CLI input, all values hardcoded in the	
	main method.):-	
	 Write source code for OO design of a board game (e.g. Chess, 	
	Solitaire, etc.)	
	 Write source code for OO design of an outdoor game (e.g. 	
	Football, Tennis)	
	 Write source code for OO design of your house and allow 	
	navigating in the house.	
	Leveraging the OO features provided by languages	12 hours
	Various lab assignments can be given demonstrating the use of the	
	feature and advanced features in the attached 'Object Oriented	
	Concepts' course.	
	Mini-Project	12 hours
Pedagogy	Hands-on assignments / pair programming / group project/ git	
	project management.	
<u>References/</u>	Main Reading	
<u>Readings</u>	1. Timothy Budd, "An Introduction to Object Oriented	
	Programming", Pearson Education, Latest Edition.	
	2. Brett D. McLaughlin, Gary Pollice & David West, "Head First	
	Object-Oriented Analysis Design", O'Reilly, Latest Edition.	
	Object Oriented Analysis Design , O henry, Eatest Edition.	
	3. Ken Arnold, James Gosling, David Holmes, "The Java	
	3. Ken Arnold, James Gosling, David Holmes, "The Java	
	 Ken Arnold, James Gosling, David Holmes, "The Java Programming Language", Addison-Wesley Professional, Latest 	
	 Ken Arnold, James Gosling, David Holmes, "The Java Programming Language", Addison-Wesley Professional, Latest Edition 	
	 Ken Arnold, James Gosling, David Holmes, "The Java Programming Language", Addison-Wesley Professional, Latest Edition Stanley Lippman, "C++ Primer", Addison Wesley, 2012 	
	 Ken Arnold, James Gosling, David Holmes, "The Java Programming Language", Addison-Wesley Professional, Latest Edition Stanley Lippman, "C++ Primer", Addison Wesley, 2012 Cay S. Horstmann, "Core Java Volume I—Fundamentals", 	
	 Ken Arnold, James Gosling, David Holmes, "The Java Programming Language", Addison-Wesley Professional, Latest Edition Stanley Lippman, "C++ Primer", Addison Wesley, 2012 Cay S. Horstmann, "Core Java Volume I—Fundamentals", Pearson, 2018 	
	 Ken Arnold, James Gosling, David Holmes, "The Java Programming Language", Addison-Wesley Professional, Latest Edition Stanley Lippman, "C++ Primer", Addison Wesley, 2012 Cay S. Horstmann, "Core Java Volume I—Fundamentals", Pearson, 2018 Herbert Schildt, "Java: The Complete Reference", Oracle Press, 	
	 Ken Arnold, James Gosling, David Holmes, "The Java Programming Language", Addison-Wesley Professional, Latest Edition Stanley Lippman, "C++ Primer", Addison Wesley, 2012 Cay S. Horstmann, "Core Java Volume I—Fundamentals", Pearson, 2018 Herbert Schildt, "Java: The Complete Reference", Oracle Press, latest edition 	
	 Ken Arnold, James Gosling, David Holmes, "The Java Programming Language", Addison-Wesley Professional, Latest Edition Stanley Lippman, "C++ Primer", Addison Wesley, 2012 Cay S. Horstmann, "Core Java Volume I—Fundamentals", Pearson, 2018 Herbert Schildt, "Java: The Complete Reference", Oracle Press, latest edition Joshua Bloch, "Effective Java", Addison Wesley 	

	10. https://www.tutorialspoint.com/java/index.htm
Course	1. Learner will be able to write good object oriented code
<u>Outcomes</u>	2. Learner will understand object-oriented principles
	3. Learner will be able to design object oriented softwares

Course Code: CSA-506

Title of the Course: LINUX Lab

Number of Credits: 2 (0L-0T-2P) Effective from AY: 2022-23

Effective from AY		
Prerequisites	Program Prerequisites	
for the course		
Objectives:	The objective is to introduce students to the Linux operating system environment and provide knowledge of basic Linux commands and shell scripting and system call API.	
<u>Content:</u>	LINUX Environment Linux Installation and disk partitioning. Shell, Linux commands, Internal and External Commands, using the documentation/manual, users in Linux: user id, effective user id, use of commands su, sudo, id Basic commands: echo, who, whoami, date, cal, ls, passwd, history, shutdown. Input and output redirection operators (<,<<, >, >>)	12 hours
	The Linux File System, File and Directory management Structure of LINUX file system. Parent-child relationship. Concept of Home directory, current working directory and referring to home directory. Special Files: . and Absolute and relative pathnames. Use of PATH variable, Use of command: mkdir, rmdir, pwd, Is and cd. Use of file management commands: nano, touch, cat, cp, mv and rm. FIND command: Searching for a file using find, Finding List of files and directories. Concept of hard disk partitions, file system, Superblock and Inodes, General structure of Linux inode. use of stat command. Analysing the output of Is -I command. File type and permission. Use of chmod command. File ownership: Changing ownership using chown and chgrp commands. Modification and access times. Default file and directory permissions. Use of umask command. Concept of symbolic links. Hard and soft links. Use of In command to create hard and soft links. Use of commands du, df, tar, zip, gzip, type, which	12 hours
	Filters: File commands- sort, wc, uniq, comm, cmp, diff, pg, tail, head, less, and more , Cut and Paste command Shells' sequence of interpretation of a command; Connecting commands with pipes Regular expressions: grep & sed command AWK script: Selection criteria and action- The BEGIN and END sections, Splitting a line into fields and using printf. Getline function and reading input from files. Writing output to file and pipes. Awk system variables. Using regular expressions. Relational and Boolean operations. Command line parameters and environment variables. Programming constructs: if, for, while.	16 hours

	Process Management	4 hours
	Concept of UNIX process. Role of init in process creation. Process ID	
	and exit status of a process. Displaying process attributes using ps	
	command, Killing processes, foreground and background processes.	
	Use of commands job, fg, bg	
	Package management:	
	Installing & removing packages	
	Shell Script	16 hours
	Shell scripts and execution methods. The dot command, Interactive	
	and Non Interactive execution. Use of export command, Aliases and	
	command history. Shell variables, Special variables, Built-in shell	
	parameters. Command line arguments. Escaping and quoting.	
	Difference between single and double quotes. Command	
	substitution, brace and tilde expansion, I/O using read and echo.	
	Escape sequences, 'test' command, arithmetic expressions,	
	operators, Control flow: For, If, While, Case. Shell functions, error	
	handling, debugging.	
Pedagogy:	Practical/ tutorials/assignments/self-study	
<u>References/</u>	1. Unix Concepts and Applications – Sumitaba Das, Tata MacGraw	
Readings	Hill.	
	2. Unix and Shell Programming – Graham Glass and King Ables	
	Pearson Education	
	3. UNIX man pages	
<u>Course</u>	Upon completion of this course, the student will be able to:	
<u>Outcomes</u>	1. Run various LINUX commands	
	2. Write shell script on LINUX OS.	
	3. Use various advanced LINUX tools such as grep, SED and AWK	

Course code: CSA-521

Title of course: Mathematics for Computer Science Number of credits: 4 (41-0T-0P)

Numbe Effe

Number of credi	lumber of credits: 4 (4L-0T-0P)	
Effective from A	ffective from AY: 2022-23	
Prerequisites	Program prerequisites	
for the course		
Objectives	• To build a strong foundation in maths required for learning	
	computer science/data science subjects.	
	• To understand fundamental concepts and tools in linear algebra	
	etc with emphasis on their applications to computer science in	
	particular data science/machine learning	
<u>Content</u>	Mathematical logic: Statement (Proposition), Logical Connectives,	
	Conditional, Bi-conditional, Converse, Inverse, Contrapositive,	
	Exclusive OR, NAND, NOR, Tautology, Contradiction, Satisfiable,	
	Duality Law, Algebra of propositions.	
	Functions and Relations: Basics of Set theory, Application of set	
	theory, Relations and their properties, n-ary relations and their	
	applications, representing relations, closures of relations,	
	equivalence relations, partial orderings. Functions, properties of	
	functions, Composition of Functions, Recursive functions.	
	Graphs: Basic Concepts of Graphs, Computer Representations of	
	Graphs, Isomorphic Graphs, Paths, Cycles and Circuits, Eulerian and	

	computer science/data science subjects.	
	• To understand fundamental concepts and tools in linear algebra	
	etc with emphasis on their applications to computer science in	
	particular data science/machine learning	
<u>Content</u>	Mathematical logic: Statement (Proposition), Logical Connectives, Conditional, Bi-conditional, Converse, Inverse, Contrapositive, Exclusive OR, NAND, NOR, Tautology, Contradiction, Satisfiable, Duality Law, Algebra of propositions.	8 hours
	Functions and Relations: Basics of Set theory, Application of set theory, Relations and their properties, n-ary relations and their applications, representing relations, closures of relations, equivalence relations, partial orderings. Functions, properties of functions, Composition of Functions, Recursive functions.	10 hours
	Graphs: Basic Concepts of Graphs, Computer Representations of Graphs, Isomorphic Graphs, Paths, Cycles and Circuits, Eulerian and Hamiltonian Graphs, Planar Graphs, Graph Coloring, Applications of Graphs. Trees: Trees, Spanning trees, Minimal Spanning Trees, Rooted Trees, Binary Trees, Binary Search Trees.	12 hours
	Linear Algebra Scalars, Vectors, Matrices and Tensors -Multiplying Matrices and Vectors - Identity and Inverse Matrices -Linear Dependence and Span -Norms -Special Kinds of Matrices and Vectors - Eigen decomposition -Singular Value Decomposition -The Moore-Penrose Pseudoinverse - The Trace Operator - The Determinant - Example: Principal Components Analysis. Numerical Computation Overflow and Underflow -Poor Conditioning - Gradient-Based Optimization - Constrained Optimization -Example: Linear Least Squares. Calculus Functions of a single variable, limit, continuity, differentiability-Mean value theorems, indeterminate forms, L'Hospital's rule-Maxima and minima-Product and chain rule-Taylor's series, infinite series summation/integration concepts-Fundamental and mean value- theorems of integral calculus, evaluation of definite and improper integrals-Beta and gamma functions-Functions of multiple variables, limit, continuity, partial derivatives-Basics of ordinary and partial differential equations.	15 hours
	Americal equations.Probability, Statistics, and Information TheoryWhy Probability? -Random Variables -Probability Distributions - Marginal Probability - Conditional Probability -The Chain Rule of Conditional Probabilities -Independence and Conditional Independence -Expectation, Variance and Covariance -Common Probability Distributions - Useful Properties of Common Functions - Bayes' Rule - Technical Details of Continuous Variables - Information Theory -Structured Probabilistic Models .Statistics	15 hours

	Data summaries and descriptive statistics, central tendency, variance,
	covariance, correlation-Basic probability: basic idea, expectation,
	probability calculus, Bayes' theorem, conditional probability-
	Probability distribution functions: uniform, normal, binomial, chi-
	square, Student's t-distribution, central limit theorem-Sampling,
	measurement, error, random number generation-Hypothesis testing,
	A/B testing, confidence intervals, p-values, ANOVA, t-test-Linear
	regression, regularization
Pedagogy	Problem-solving approach and carrying out small project work using
	MatLab tools
References/	1. Kenneth H. Rosen, Discrete Mathematics and Its Applications, Tata
Readings	McGraw-Hill Pub. Co. Ltd. (latest edition)
	2. Sheldon M. Ross, "A First Course in Probability", Pearson Prentice
	Hall, latest edition.
	3. Andy Field, Jeremy Miles, Zoë Field, "Discovering Statistics Using
	R", SAGE, latest edition
	4. Omi M Inouye, "Introductory Calculus For Infants", latest edition
	5. Robert S. Witte, John S. Witte, "Statistics", Wiley, latest edition.
	6. Gilbert Strang, "Introduction to Linear Algebra", Wellesley-
	Cambridge Press, Fifth Edition (2016).
Course	Students will be able to:
Outcomes	1. Apply mathematics concepts in the modelling and design of
	computational problems
	2. Gain a deeper understanding of subjects like machine
	learning/deep learning and other computer science subjects.

Course Code: CSA-522

Title of the Course: Discrete Mathematical Structures

Number of Credits: 4 (4L-0T-0P) Effective from AY: 2022-23

Effective from A	Y: 2022-23	
Prerequisites	Programme requisites	
for the course		
Objectives:	The objective of the course is to introduce concepts of mathematic	cal induction,
	relations, graph theory and boolean functions.	
Content:	Logic, Propositional equivalences, predicates and quantifiers, nested	6 hours
	quantifiers, methods of proof, functions.	
	Mathematical induction, recursive definitions and structural	6 hours
	induction, recursive algorithms, programme correctness, Pigeonhole	
	principle, permutations and combinations.	
	Recurrence relations, solving recurrence relations, divide and	12 hours
	conquer algorithms and recurrence relations, generating functions,	
	inclusion and exclusion, applications of inclusion and exclusion.	
	Relations and their properties, n-ary relations and their applications,	12 hours
	representing relations, closures of relations, equivalence relations,	
	partial orderings.	
	Introduction to graphs, graph terminology, representing graphs and	12 hours
	graph isomorphism, connectivity, Euler and Hamiltonian paths,	
	shortest path problems, planar graphs.	
	Introduction to trees, applications of trees, tree traversal, spanning	6 hours
	trees, minimum spanning trees.	
	Boolean functions, representing Boolean functions, logic gates,	6 hours
	minimization of circuits.	
Pedagogy:	lectures/ tutorials/assignments/self-study/ flipped classroom	
<u>References/R</u>	1. Kenneth H. Rosen, Discrete Mathematics and Its Applications, Tata N	AcGraw-Hill
<u>eadings</u>	Pub. Co. Ltd.	
	2. Edgar G. Goodaire and Michael M. Parmenter, Discrete Mathematic	s with Graph
	Theory, PHI Learning Pvt. Ltd.	
<u>Course</u>	After completion of this course, students will be able to	
<u>Outcomes</u>	 Have a good understanding of mathematical induction. 	
	 Understand the concepts of Recurrence relation. 	
	 Inherits fundamental knowledge graph theory. 	
	Acquire Basic knowledge of boolean functions.	

SEMESTER II

Name of the Programme: MCA

Course code: CSA-507

Title of course: Web Development

Number of credits: 2 (2L-0T-0P) Effective from AY: 2022-23

ffective from A	Y: 2022-23	
Prerequisites	Knowledge of HTML and basic of CSS; Internet Technologies &	
for the course	required protocols; object oriented programming	
Objectives	This course will introduce the learner to the different website	
	development technologies	
Content	Introduction	1 hour
	 Evolution of internet & World Wide Web 	
	Client-Server Architecture	
	Revisit HTML & CSS	
	Enhancing HTML & CSS	2 hours
	• HTML 5	2 110015
	• CSS3	
	Front-end Design	4 hours
	Good Design Rubrics	
	 Separation of concerns for HTML & CSS; structure vs visual 	
	representation	
	HTML DOM	
	 CSS Box Model, pseudo -classes & -elements, CSS animation 	
	 Adaptive & responsive design, viewport & media queries, 	
	mobile-first design	
	 Introduction to a design library and/or & framework (e.g. 	
	Bootstrap)	
	Client-side Scripting	8 hours
	Dynamic web pages	0 110013
	 JavaScript, programming features, javascript events & 	
	functions	
	Manipulating DOM	
	Beyond ECMA 4	
	 Introduction to a Javascript library and framework (e.g. 	
	JQuery, ReactJS)	
	HTTP & Middle-ware	3 hours
	 HTTP, Request & Response, methods & error code, headers, 	
	URL encoding & decoding	
	• XML, data & XPath	
	 JSON 	
	Server-side Programming	6 hours
	Server instance	
	 Request handling & response creation 	
	 HTML forms & file uploads 	
	 Session management & application data 	
	 Database connectivity 	
	 Introduction to a Server-side library and/or template engine 	
	and/or framework (e.g. PHP - Laravel; JSP - Spring)	
	Advanced Web Development	6 hours
	 Model-View-Controller (MVC) & Model-View-ViewModel and 	
	others	
	 Web service architecture and micro-services 	
	 REST calls, Asynchronous JavaScript and XML (AJAX) 	

	Difference between Server-side vs client-side rendering
	 Introduction to Web stacks, JAM stack & full stack development
Dodagogy	Hands-on assignments / tutorials / peer-teaching / flip classroom/
Pedagogy	
	presentations
<u>References/</u>	1. Robert W. Sebesta, "Programming the World Wide Web", Pearson
Readings	Education
	2. https://www.w3schools.com/
	3. Steven Holzner, "HTML 5 Black Book"
	4. <u>https://www.tutorialspoint.com/</u>
	5. Frank W. Zammetti, "Modern Full-Stack Development", Apress
	6. Nader Dabit, "Full Stack Serverless", O'Reilly
<u>Course</u>	1. Learner will be able to make decision on what web technology to
<u>Outcomes</u>	use and for what purpose
	2. Learner will have fair idea on the popular technologies used in
	website development
	3. Learner will appreciate the architecture of web applications and
	the design decisions

Course Code: CSA-508

Title of Course: Database Management Systems

Number of Credits: 2 (2L-0T-0P) Effective from AY: 2022-23

Effective from A		
<u>Prerequisites</u>	A High-Level Programming Language,	
for the course	Data Structures and Algorithms(CS101),	
	Operating Systems(CS103).	
Objectives	This course will enable the learner to understand the different issues	
	involved in the design and implementation of a database system and	
	provide both theoretical knowledge and practical skills required in	
	the creation and use of a Relational DataBase Management System.	
Content	Basic concepts: Database & Database Users, Characteristics of the	3 hours
content	Database Approach, Database Systems, Concepts & Architecture	5 110015
	Data Models(RDBMS, Legacy systems, Object Oriented, NoSQL),	
	Schemes & Instances DBMS Architecture of Data Independence,	
	Database languages & Interfaces	
	Data Modelling using the Entity – Relationship approach	4 hours
	Relational Model, Languages & Systems	5 hours
	Relational Data Model & Relational Algebra Relational Model	
	Concepts Relational Model Constraints, Relational Algebra/Relational	
	Calculus	
	SQL-A Relational Database Language Data	2 hours
	SQL - DDL, DML. Views & Queries in SQL. Specifying Constraints &	
	Indexes in SQL.	
	Nested Subqueries, correlated Subqueries	
	Advanced SQL	2 hours
	Embedded SQL, Dynamic SQL, Triggers and Stored Procedures.	
	Relational Database Design	5 hours
	Function Dependencies & Normalization for Relational Database	
	Functional Dependencies Normal forms based on primary keys (1NF,	
	2NF, 3NF, BCNF) Covers of Functional Dependencies, Canonical	
	covers. Lossless join and Dependency preserving decomposition	
	algorithms.	
	Transactions and Recovery Techniques	4 hours
	Concept of a transaction, Recovery concepts, Recovery Techniques.	4 nours
	Concurrency Control	5 hours
	Serializability, Locking Techniques, Time stamp ordering Granularity	
	of Data items	
Pedagogy	Hands-on assignments / tutorials / peer-teaching / troubleshooting	
References/	Main Reading	
Readings	1. Korth, Silberchartz, "Database System Concepts" McGrawhill	
	Publication.	
	2. Elmasri and Navathe, "Fundamentals of Database Systems",	
	Addison Wesley, New Delhi.	
	3. Database Management Systems – R. Ramakrishnan, J.Gehrke –	
	T.McGraw Hill	
	4. Desai B., " An Introduction to Database Concepts", Galgotia	
	Publications, New Delhi.	
	5. 2. Rob,Coronel, "Database Systems (Design, Implementation and	
	Management)"	
	6. Date C. J. , " An Introduction to Database Systems", Publication	
	House, New Delhi.	
Course	1. Understand and evaluate the role of a DBMS in information	
<u>Course</u>	11. Onderstand and evaluate the role of a DBIVIS III Information	

<u>Outcomes</u>	Technology applicatio	ns in Organizations.
	Recognise and use log	gical design methods and tools required in
	the design of DB appl	ications.
	Understand the relation	onal database design principles.
	Implement a database	e Solution to an IT Platform.
	Understand the basics	s of SQL and construct queries using SQL.
	Develop sophisticate	ed queries to extract information from
	databases.	
	Use embedded SQL q	ueries in a Host Level Language. Understand
	how the DBMS man	nages and recovers from concurrent and
	multiple transactions.	

Course Code: CSA-509

Title of the Course: Machine Learning

Number of Credits: 4 (4L+0T-0P) Effective from AY: 2022-23

	Y: 2022-23	
Prerequisites	Basic concepts of Linear Algebra, Probability theory	
for the course		
Objectives:	This course provides students with an in-depth introduction to three main areas of Machine Learning: supervised and unsupervised and reinforcement learning. This course will cover some of the main models and algorithms for regression, classification, clustering and Markov decision processes. Topics will include linear and logistic	
	regression, regularisation, SVMs and kernel methods, ANNs, clustering, and dimensionality reduction ,sequential learning Like	
	HMM and reinforcement learning.	
<u>Content:</u>	 Introduction:- well posed learning problem – designing a learning system-perspectives and issues in machine learning. 	4 hours
	2. Concept learning – concept learning task –notation –inductive learning hypothesis-concept learning as search- version space and candidate elimination algorithm-decision tree –random forest.	6 hours
	3. Linear regression - logistic regression-Support vector machine kernel- Model selection and feature selection-Ensemble methods: Bagging, boosting. Evaluating and debugging learning algorithms.	7 hours
	4. Continuous Latent Variables-Revision of Principal Component Analysis -Maximum variance formulation - Minimum-error formulation - Applications of PCA - PCA for high-dimensional data.	7 hours
	5. Neural Networks -Feed-forward Network Functions –perceptron - Weight-space symmetries -Network Training - Parameter optimization -Local quadratic approximation - Use of gradient information - Gradient descent optimization - Error Backpropagation - Evaluation of error-function derivatives - A simple example - Efficiency of backpropagation .	10 hours
	6. Probabilistic model – The normal distribution and its geometric interpretation-probabilistic models for categorical data -using naïve Bayes model for classification, training a naïve Bayes model - discriminative learning by optimizing conditional likelihood - probability models with hidden variables: Expectation-Maximization, Gaussian mixture model	9 hours
	7. Distance-based models – neighbour and exemplers -nearest- neighbour classification -distance based clustering -K means algorithm, clustering around medoids , silhouetees-hierarchical clustering -from kernels to distances	5 hours
	8. Sequential Data - Markov Models - Hidden Markov Models - Maximum likelihood for the HMM -The forward-backward algorithm - The sum-product algorithm for the HMM -Scaling factors - The Viterbi algorithm.	7 hours
	9. Reinforcement learning – Introduction- learning task-Q learing-non deterministic rewards and actions-temporal difference learning.	5 hours
Pedagogy:	Lectures/ tutorials/assignments/self-study	
<u>References/R</u> eadings	 Main Reading :- 1.Introduction to Statistical Learning, Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Springer, 2013. 2. EthemAlpaydin, Introduction to Machine Learning, MIT Press. 3. Richard O. Duda, Peter E. Hart, David G. Stork Pattern 	
	Classification,.	

	4. Peter Flach , Machine Learning , Cambridge
	5.Christopher M. Bishop,Pattern recognition and machine Learning,
	springer.
	6.Deep Learning, Ian Good fellow, MIT press
	7.Tom Michele, Machine Learning, McGraw-Hill.
<u>Course</u>	By the end of the course , students should:
<u>Outcomes</u>	• Develop an appreciation for what is involved in learning from data.
	Understand a wide variety of learning algorithms.
	• Understand how to apply a variety of learning algorithms to data.
	Understand how to perform evaluation of learning algorithms and
	model selection.
	• Equips them with a general understanding of deep learning.

Course code: CSA-510

Title of course: Web Development Lab

	veb Development Lab	
Number of credi		
Effective from A		
Prerequisites	Hands-on experience working with HTML and basic of CSS; Internet	
for the course	Technologies; object oriented programming	
<u>Objectives</u>	This course will focus on the practical use and aspects of the different	
	website development technologies	
<u>Content</u>	Web Design Assignments	15P
	 Suggested Sample (non-exhaustive) Assignments:- Create a website on a topic given by the instructor. Evaluating 	
	the website with rubrics for good web design.	
	 Build a website using HTML & CSS by looking at a 	
	screenshot/picture of a website component given by the	
	instructor.	
	 Websites built with tables, forms, images, iframes, etc. 	
	 A website for each of design strategies (fixed, adaptive, 	
	responsive, fluid, mobile-first, etc.).	
	 Assignments using css pseudo-classes & -elements; grid & flex 	
	design; understanding the CSS box model & working with the	
	browser developer tools; CSS transformations, transitions &	
	animations	
	 Assignment to create a website built with Bootstrap based on 	
	a topic given by the instructor.	
	Client-side Scripting Assignments	15P
	Suggested Sample (non-exhaustive) Assignments:-	
	• An assignment for understanding the programming aspects of	
	JavaScript and working with the browser developer tools. The	
	use of the newer features of JavaScript (after ECMA 4) is	
	encouraged.	
	 An assignment working with regular expressions. A search and 	
	filter utility can be built.	
	 Assignments for form data processing and validation and use 	
	of HTML5 form elements. A web page with form and validated	
	data could be put in a table. The code could be written using	
	table DOM methods and/or HTML DOM methods and/or XML	
	DOM methods.	
	 Assignments using various events (mouse, keyboard, etc. 	
	events for the form elements, drag-and-drop, window,	
	browser, etc.).	
	• A web component built using HTML, CSS & JavaScript based	
	on a existing Bootstrap component (e.g. Accordion)	
	 Assignment with the use of a JavaScript library (JQuery, Associated Descript and Descript Library (JQuery, 	
	AngularJS, ReactJS, etc.)	40
	Developing a Game with HTML, CSS & JavaScript. The game should	4P
	have at least 500 lines of (HTML+Javascript) code and make use of	
	various mouse/keyboard events.	120
	Server-side Programming Assignments	12P
	Suggested Sample (non-exhaustive) Assignments:-	
	 Assignments to work with HTTP headers for passing data and mata data applies legalStarage 	
	meta-data, cookies, localStorage	
	 Assignments to handle data from web forms; handling the request and response payload 	
	request and response payload	
	 Assignment to manage web sessions 	

 Assignment to douglas a CDUD functionality by connecting to 	
-	2P
Develop a CRUD application with MEAN/MERN stack	
Mini-project	12P
Ideally done in a group. It should include design and implementation	
of a web application. Project implementation should mandatorily be	
built using a templating engine or programming framework (client-	
1. Learner will be gain experience and be able to create complete	
websites	
2. Learner will be able to make decision on what web technology to	
use and for what purpose	
3. Learner will appreciate the architecture of web applications and	
the design decisions	
	 Ideally done in a group. It should include design and implementation of a web application. Project implementation should mandatorily be built using a templating engine or programming framework (client-side and/or server-side). Project should also use a design framework (e.g. Bootstrap). Conduct and progress of the project could follow industry practices (e.g. git, scrum etc.). Hands-on assignments / tutorials / peer-teaching / projects Robert W. Sebesta, "Programming the World Wide Web", Pearson Education <u>https://www.w3schools.com/</u> Steven Holzner, "HTML 5 Black Book" <u>https://www.tutorialspoint.com/</u> Frank W. Zammetti, "Modern Full-Stack Development", Apress Nader Dabit, "Full Stack Serverless", O'Reilly Learner will be gain experience and be able to create complete websites Learner will be able to make decision on what web technology to use and for what purpose Learner will appreciate the architecture of web applications and

Course Code: CSA-511

Title of Course: Database Management Systems LAB

Number of Credits: 2 (0L-0T-2P) Effective from AY: 2022-23

Effective from A		
<u>Prerequisites</u> for the course	Hands-on experience in object-oriented programming.	
<u>Objectives</u>	This course aims at enabling learners to develop a skill set to design	
<u>Objectives</u>	and implement a realistic application, representative of a typical real-	
	life software system.	
	Installation of DBMS Softwares	2 hours
<u>Content</u>		
	 Data Definition Language(DDL) Statements Creating a Database. 	4 hours
	 Creating a table, with or without constraints. 	
	 Understanding Data types. 	
	 Altering the structure of the table like adding attributes at a 	
	later stage, modifying size of attributes or adding constraints	
	to attributes.	
	 Removing the table created, i.e Drop table in SQL. 	
	 Creating Sequence (Auto increment field) 	
	Query in Data Dictionary	2 hours
	 To view the structure of the table created by the user. 	
	 To view user information. 	
	 To view integrity constraints. 	
	Altering Session Parameters	
	Data Manipulation Language(DML) Statements	4 hours
	 Inserting Data into the table. 	
	 Updating Data into the table. 	
	 Deleting Data from the table. 	
	Simple SQL statements	6 hours
	 Displaying all the attributes and tuples from the table. 	
	 Displaying selected attributes/tuples from the table. 	
	 Using Logical and comparison operators. 	
	 String manipulation 	
	Date Comparisons	
	Complex SQL Statements	14 hours
	 Using aggregate functions (using Group by and having 	
	clauses).	
	 Sorting Data. 	
	 Creating SQL Aliases and Views. 	
	 Joins and Nested queries. 	
	Correlated subquery	
	Derived tables	
	 Given a complex table structure, display records from tables. 	
	Transaction Control Language(TCL) statements	2 hours
	 Transactions could be made permanent in memory 	
	To rollback the transaction.	
	Embedded SQL statements	16 hours
	 Loops/ if else statements 	
	 Creating Triggers/Procedures/packages 	
	 ArrayList and Cursor. 	
	PL/SQL Strings	
	PL/SQL Object Oriented	
	Exceptions	

	No SQL	4 hours
	Project	6 hours
	 The analysis of project 	(in class)
	 Design (ER diagram and normalized tables) and 	
	implementation of a real life project of students choice.	
	 The project report that they submit consists of (i) Feasibility 	
	study (ii) ER Diagrams (iii) Tables normalized in an appropriate	
	normal form with integrity and domain constraints noted. (iv)	
	User Interface Design -Form and Report design , including	
	triggers that may need to be written (v) User Manual Peer	
	reviews of ERDs are held in the class.	
<u>Pedagogy</u>	Hands-on assignments / tutorials / peer-teaching / troubleshooting	
<u>References/</u>	1. Korth, Silberchartz, "Database System Concepts" McGrawhill	
<u>Readings</u>	Publication.	
	2. Elmasri and Navathe, "Fundamentals of Database Systems",	
	Addison Wesley, New Delhi.	
<u>Course</u>	1. Design and implement a database schema for a given problem-	
<u>Outcomes</u>	domain	
	2: Create and maintain tables using SQL	
	3: Populate and query a database	
	4. Use Transaction Control Language	
	5. Creating and Using User Defined Data Types	
	6. Writing Triggers & Stored Procedures	
	7. Prepare reports	
	8. Application development using PL/SQL & front end tools	

Course Code: CSA-512

Title of the Course: Machine Learning Lab

Number of Credits: 2 (0L+0T+ 2P) Effective from AY: 2022-23

Effective from A		
<u>Prerequisites</u>	Course: Mathematics for Computer Science and Programming	
for the course	language background.	
<u>Objectives:</u>	The objective is to learn to build the different machine learning	
• • •	models by doing a set of assignments and mini projects.	
<u>Content:</u>	Introduction to python libraries for machine learning - scikit learn, tensor flow, keras, pytorch, pandas, matplotlib, seaborn, numpy and other relevant libraries.	5 hours
	Four branches of machine learning-supervised, unsupervised, self- supervised, reinforcement, Evaluating machine learning models, Data pre-processing, feature engineering and feature learning, overfitting and underfitting - Numerical Programming fundamentals-finding nearest neighbours via Euclidean distance-splitting data sets into training and testing.	10 hours
	Regression, cross validation and regularization-polynomial regression -model selection on a fixed validation set -Polynomial Regression - Model Selection with Cross-Validation-Polynomial Regression with L2 Regularization - Model Selection with Cross-Validation-Comparison of methods on the test set. Evaluating Binary Classifiers and Implementing Logistic Regression- Binary Classifier for movies reviews-classifying newswires-predicting house prices -Computing the Loss for Logistic Regression without Numerical Issues	10 hours
	Neural Networks and Stochastic Gradient Descent-MLPs with L-BFGS: What model size is effective?-MLPs with SGD: What batch size and step size?-Producing your own figure comparing batch size and learning rate.	10 hours
	Trees and Random Forests for Bag of Words-Code Implementation of Decision Tree Regression-Decision Trees for Review Classification - Random Forests for Review Classification -Comparing Trees to Linear Models for Review Classification.	10 hours
	Implementation of CNN, RNN, LSTM, Implementation of Boltzmann machine and Transformers (BERT, GPT3) .Generative deep learning (GAN).	10 hours
	Project discussions -Classifying Images with Feature Transformations- Classifying Sentiment from Text Reviews-Recommendation Systems via Matrix Factorization-Text summarization - language Translation - Sentimental analysis- speech to text translatioXiv, Explore the keras ecosystem.	5 hours
Pedagogy:	Programming in lab and practical exercises	
References/R eadings	 Hands on machine learning with scikit learn by Aurielien Deep learning with python by Francois Text Analytics with Python: A Practitioner's Guide to Natural 	
	Language Processing by dipanjan sarkar. 4. keras: the python deep learning API	
		I

	5. https://www.cs.tufts.edu/comp/135/2020f/assignments.html 6.Python library reference
<u>Course</u>	Students will be able –
Outcomes	1. to collect data and preprocess them
	2. choose the suitable machine learning model and
	3. study its performance and able to carry out mini project

Course Code: CSA-523

Title of Course: Cryptography and Network Security

Number of Credits: 4 (4L-0T-0P) Effective from AY: 2022-23

Effective from A Prerequisites	Internet Technologies	
for the course		
Objectives	1. To understand the basics of Cryptography and Network Security.	
	2. To be able to secure a message over an insecure channel by	
	various means.	
	3. To learn about how to maintain the Confidentiality, Integrity and	
	Availability of data.	
	4. To understand various protocols for network security to protect	
	against the threats in the networks.	
Content	Foundations of Cryptography and Security	6 hours
	Ciphers and Secret Messages, Security Attacks and Services. Classical	
	encryption techniques.	
	Mathematical Tools for Cryptography	3 hours
	Substitutions and Permutations, Modular Arithmetic, Euclid's	
	Algorithm, Finite Fields, Polynomial Arithmetic.	
	Design Principal of Block Ciphers	9 hours
	Theory of Block ciphers, Feistel Cipher network Structures, DES	
	and triple DES, Modes of Operation (ECB, CBC, OFB, CFB),	
	Strength of DES, AES	
	Pseudo Random Numbers and Stream Ciphers	3 hours
	Pseudo random sequences, Linear Congruential generators,	
	Cryptographic generators, Design of stream Ciphers, RC4.	
	Public Key Cryptography	3 hours
	Prime Numbers and testing for primality. Factoring large numbers,	
	Discrete Logarithms.	
	Asymmetric Algorithms	9 hours
	RSA, Diffie-Hellman, ElGamal, Introduction of Ecliptics curve	
	cryptosystems, Key Management, Key exchange algorithms,	
	Public Key Cryptography Standards.	
	Hashes and Message Digests	6 hours
	Message Authentication, MD5, SHA-3, HMAC	
	Digital Signatures, Certificate and Standards	6 hours
	Digital signature standards (DSS and DSA), Public Key	
	Infrastructures, Digital certificates and Basics of PKCS standards.	
	Authentication	3 hours
	Kerberos, X509 Authentication Service	
	Web Security protocols	6 hours
	IP Security, Transport Layer Security(TLS), Wireless Security,	
	System Security	6 hours
	Intrusion detection, Password management, Firewalls management	
<u>Pedagogy</u>	Lectures/ Hands-on assignment/tutorials/Presentations	
References/	Main Reading:	
<u>Readings</u>	1. Stallings William, "Cryptography and Network Security:	
	Principles and Practises", 5 th edition, Prentice Hall	
	2. Kahate Atul, "Cryptography and Network Security" Tata	
	McGraw-Hill.	
<u>Course</u>	1. Provide security of the data over the network.	
<u>Outcomes</u>	2. Implement various networking security protocols.	
	3. Protect any network from the threats in the world.	

Course Code: CSA 524

Title of Course: Natural Language Processing

Number of Credits: 4 (2L-2T-0P)
Effective from AY: 2022-23

Prerequisites	Even down owtole of Autificial Intelligences, Mathematical Equipaletic sectors	
for the course	Fundamentals of Artificial Intelligence; Mathematical Foundations for Artificial Intelligence. Machine Learning and Programming background. Introduction to NLP (Theory), Mathematical foundations for AI.	
<u>Objectives</u>	This course will focus on understanding the essentials of Natural Language Processing (NLP), areas in NLP, algorithms, and NLP tasks. Students who complete this course will gain a foundational understanding in natural language processing methods and strategies. They will also learn how to evaluate the strengths and weaknesses of various NLP technologies and frameworks as they gain practical experience in the NLP toolkits available.	
<u>Content</u>	 Part I: Foundations of Natural Language Processing Introduction Natural Language Processing - Problems and perspectives Introduction/Recall to/of probability calculus N-grams and Language Models Markov Models Introduction to Machine Learning and Deep Learning Recurrent Neural Network Language Models The evaluation of NLP applications Corpora Corpora and their construction: representativeness Concordances, collocations and measures of words association Methods for Text Retrieval Regular expressions 	8 hours
	 Part II: Natural Language Processing Computational Phonetics and Speech Processing Speech samples: properties and acoustic measures Analysis in the frequency domain, Spectrograms Applications in the acoustic-phonetic field. Speech recognition with HMM and Deep Neural Networks Tokenisation and Sentence splitting Computational Morphology Morphological operations Static lexica, Two-level morphology Computational Syntax Part-of-speech tagging Grammars for natural language Natural language Parsing Supplementary worksheet: formal grammars for NL Formal language complexity Phrase structure grammars, Dependency Grammars Treebanks Modern formalisms for parsing natural languages 	16 hours

Γ		
	 Lexical semantics: WordNet and FrameNet 	
	 Word Sense Disambiguation Distributional Semantics & Word Space models 	
	 Distributional Semantics & Word-Space models Logical approaches to sentence semantics 	
		6 hours
	Part III: Applications and Case studies:	6 hours
	Solving Downstream Tasks: Document classification, Sontiment Analysis, Named Entity Recognition, Sontiment Analysis, Named Entity, Recognition,	
	Sentiment Analysis, Named Entity Recognition, Semantic	
	Textual Similarity	
	Prompting Pre-Trained Language Models	
	Network Embedding Semple list of Assignments to be corried out during the Tutorial	
	Sample list of Assignments to be carried out during the Tutorial Slots -	30 hours
		SUTIOUTS
	Assignment -1 -Import nltk and download the 'stopwords' and 'punkt' packages.	
	Assignment-2 -Import spacy and load the language model.	
	Assignment -3 -How to tokenize a given text? Assignment-4 -How to get the sentences of a text document?	
	Assignment- 5-How to tokenize a text using the `transformers` package?	
	Assignment -6 - How to tokenize text with stopwords as delimiters?	
	Assignment- 7- How to remove stop words in a text? Assignment -8- How to add custom stop words in spaCy?	
	Assignment -9 - How to remove punctuations?	
	Assignment-10 - How to perform stemming?	
	Assignment -11 -How to lemmatize a given text? Assignment-12 -How to extract usernames from emails?	
	Assignment -12 -How to extract usernames non-emails? Assignment -13-How to find the most common words in the text	
	excluding stopwords	
	Assignment -14- How to do spell correction in a given text?	
	Assignment -15- How to tokenize tweets?	
	Assignment -16- How to extract all the nouns in a text?	
	Assignment -17- How to extract all the pronouns in a text?	
	Assignment - 18 - How to find similarity between two words?	
	Assignment -19- How to find similarity between two documents?	
	Assignment -20 -How to find the cosine similarity of two	
	documents?	
Pedagogy	Hands-on assignments/tutorials / peer-teaching / pair	
<u>I Cuagosy</u>	programming/presentations / mini-project.	
	Lectures / Practical / tutorials / assignments / self-study / mini-	
	project	
References/	1. Allen, James, Natural Language Understanding, Second Edition,	
Readings	Benjamin/Cumming, 1995.	
<u>Neaungs</u>	 Charniack, Eugene, Statistical Language Learning, MIT Press, 1993. 	
	 Jurafsky, Dan and Martin, James, Speech and Language Processing, 	
	Second Edition, Prentice Hall, 2008.	
	4. Manning, Christopher and Heinrich, Schutze, Foundations of	
	Statistical	
	5. Natural Language Processing, MIT Press, 1999.	
	 6. Tamburini, F Neural Models for the Automatic Processing of 	
	Italian, Bologna: Pàtron. 2022	
	7. T. McEnery and A. Wilson. Corpus Linguistics, EUP. 2001	
	8. https://corpora.ficlit.unibo.it/NLP/	
	 9. <u>https://www.machinelearningplus.com/nlp/nlp-exercises/</u> 10. Deep Learning by Goodfellow, Bengio, and Courville free online 	
	11. Machine Learning — A Probabilistic Perspective by Kevin Murphy	

	online
	12. Natural Language Processing by Jacob Eisenstein free online
	Speech and Language Processing by Dan Jurafsky and James H.
	Martin (3rd ed. draft)
<u>Course</u>	1. Learners will learn about the concepts in natural language
<u>Outcomes</u>	processing.
	2. Learners will have a fair idea of different areas in NLP
	3. Learners will appreciate the complexities involved in natural
	language processing.
	4. Through lectures and practical assignments, students will learn the
	necessary tricks for making their models work on practical
	problems.
	5. They will learn how to contribute towards the development of NLP
	Resources and Tools.

Course Code: CSA-525

Title of Course: Network Programming

Number of Credits: 4 (4L-0T-0P) Effective from AY: 2022-23

Effective from A		
<u>Prerequisites</u>	Linux lab, Internet technology, Operating Systems	
for the course		
<u>Objectives</u>	To introduce the basic concept of network programming in UNIX and	
	Windows OS environments.	
<u>Content</u>	Basic UNIX programming: Overview of process, signal handling and related system calls. Systems calls related to process, user and signal Management. File descriptors and inheritance. Named and unnamed pipes and related system calls.	6 hours
	Elementary Socket Programming: Berkley Sockets Overview, Introduction to sockets, Socket addresses, Basic Socket system calls, Error handling. Concept of Reserved ports, Elementary TCP and UDP socket programming. Socket options. Name and Address Conversion functions. Interface Operations using 'ioctl'.	15 hours
	I/O Operations: Synchronous vs. Asynchronous I/O. I/O Multiplexing using 'select' and 'pselect'., Sockets and signals, Signal driven I/O. Nonblocking I/O: Non blocked 'accept' and 'connect'. Broadcasting and Multicasting. Sending and Receiving Out of Band data using 'select' and signals. Advance I/O functions.	15 hours
	Daemon processes and Inetd Super Server	4 hours
	Network Programming in the .NET Framework: System.Net classes overview, working with URI, IP addresses, DNS class, Requests and responses, authentication, and permission.	6 hours
	Socket programming in .NET Working with sockets in .NET, Asynchronous programming, socket permission, support for IPv6, support for TCP, .NET Remoting, support for UDP, multicast sockets. Network tracing, network information, cache management, security.	8 hours
	Programming applications: Time and date routine, Ping, Trivial file transfer protocol, design of chat application using multicast socket programming.	6 hours
Pedagogy	lectures/ Hands-on assignment/tutorials	
References/	Main Reading:	
<u>Readings</u>	 Steven W.R., Unix Network Programming, Prentice Hall of India. Microsoft Software Developers Network Documentation. 	
<u>Course</u>	After completing the course, students will be able to:	
Outcomes	 Analyze and write socket API based programs 	
	 Design and implement client-server applications using TCP and UDP sockets 	

Course Code: CSA-526

Title of Course: Human Computer Interaction

Number of Credits: 4 (4L-0T-0P) Effective from AY: 2022-23

Effective from A	Y: 2022-23	
Prerequisites	Program Prerequisites	
for the course		
Objectives	To build human-centered design skills, so that you have the principles	
	and methods to create excellent interfaces with any technology.	
<u>Content</u>	Introduction: Human-Computer Interaction, The Power of Prototyping, Evaluating Designs, The Birth of HCI	8 hours
	Needfinding: Participant Observation, Interviewing, Additional Needfinding	8 hours
	Rapid Prototyping: Paper Prototyping and Mockups, Video Prototyping, Creating and Comparing Alternatives	10 hours
	Heuristic Evaluation: Heuristic Evaluation — Why and How? Design Heuristics	8 hours
	Direct Manipulation and Representations: Direct Manipulation, Mental Models, Representations Matters, Distributing Cognition	10 hours
	Visual Design and Information Design: Visual Design, Typography, Grids and Alignment, Reading and Navigating	8 hours
	Designing experiments: Designing Studies That You Can Learn From, Assigning Participants To Conditions, InPerson Experiments, Running Web Experiments, Comparing Rates.	8 hours
<u>Pedagogy</u>	Hands-on assignments / tutorials / peer-teaching / pair programming / presentations / mini-project	
References/	1. Alan Dix, Janet Finlay, Gregory D. Abowd, and Russell Beale,	
Readings	Human-Computer Interaction (3rd Edition), Pearson, 2004.	
	2. Ben Shneiderman and Catherine Plaisant, Designing the User	
	Interface: Strategies for Effective HumanComputer Interaction	
	(5th Edition), 5th ed., Pearson Addison-Wesley, 2009	
	 Donald A. Norman, The Design of Everyday Things, Basic Books, 2002 	
<u>Course</u>	1. Learners will be introduced to the concepts in Human centered	
<u>Outcomes</u>	design skill.	

Course Code: CSA-527

Title of Course: Agile Methodology

Number of Credits: 4 (4L-0T-0P) Effective from AY: 2022-23

Effective from A	Y: 2022-23	
Prerequisites	Programming Knowledge	
for the course		
Objectives	The objective of the course is to provide students with a theoretical	
	as well as practical understanding of agile software development	
	practices and how small teams can apply them to create high-quality	
	software.	
<u>Content</u>	Introduction to Agile Software Development:	5 hours
	Understanding how traditional software development works and it's	
	problems; Role of Agile practices in the world of software	
	development & Tools used	
	Agile Project Planning And Management:	30 hours
	Requirement Analysis, Estimation techniques, Iteration planning,	
	Introduction to development practices: Test Driven	
	Development(TDD) & Pair Programming,	
	Introduction to QA Practices: Fail Fast & Automated functional	
	testing, Introduction to Continuous Integration	
	Coding and testing practices:	15 hours
	Practicing TDD and pair programming as alternative to traditional	
	documentation;	
	Configuring Continuous Integration tools;	
	Automated function testing in detail, Source Control	
	Agile Software development and deployment:	10 hours
	Iterative and incremental software development, Automated and	
	scripted deployment strategies, Handling change requests	
Pedagogy	Lectures/ Hands-on assignment/tutorials	
<u>References/</u>	1. Agile Software Development with Scrum, Ken Schwaber, Mike	
<u>Readings</u>	Beedle, Prentice Hall	
	2. Agile Estimating and Planning by Mike Cohn, Prentice Hall PTR	
	3. Continuous Integration: Improving Software Quality and Reducing	
	Risk, Paul M. Duvall, Steve Matys, Andrew Glover, Addison	
	Wesley	
	4. Leading Lean Software Development: Results Are not the Point	
	Mary Poppendieck , Tom Poppendieck	
<u>Course</u>	Student will be able to understand, appreciate and apply Agile	
<u>Outcomes</u>	practices for Software development as well as in real life	

Course Code: CSA-528

Title of Course: Modern Development Platforms

Number of Credits: 4 (4L-0T-0P) Effective from AY: 2022-23

Effective from A		
Prerequisites	Programming(Program Prerequisites), Knowledge of OS (CSC-103),	
for the course	Internet Technologies (CSC-104) and Web Development (CSC-	
	201,CSC-205)	
Objectives	This course will focus on the modern development technologies,	
	tools and platforms prevalent in the software development industry	
Content	Overview	2 hours
	• Ever-changing development terrain, Importance of development	
	at scale. Emergence of Cloud Services, Devops	
	Development at scale	4 hours
	 Introduction to API Query 	1110010
	 Introduction to ELK stack 	
	Cloud Computing	24 hours
	 Overview 	24 110013
	 Cloud Models - IaaS, PaaS, SaaS, Public/Private/Hybrid Cloud 	
	 Components - Virtualisation & VMs, File Storage, Server Instances, 	
	Content Delivery Network, etc.	
	 Setting up cloud 	
	 Cloud Services 	
	 Case study of any one cloud (e.g. Amazon AWS/ Google Cloud/ MS 	
	Azure)	10 h a ura
	DevOps	18 hours
	Overview of DevOps:	
	Introduction to DevOps DevOns	
	O DevOps Lifecycle	
	• DevOps Delivery Pipeline	
	Continuous Integration/ Continuous Delivery (CI/CD)	
	• Introduction to CI/CD	
	• Continuous Delivery v/s Continuous Deployment	
	• Case study of any one CI/CD tool(CircleCI/Jenkins, etc). Case study	
	should include architecture, pipeline and plugin management	
	Configuration Management	
	 Introduction to Configuration Management 	
	• Case study of any one Configuration Management(e.g. Ansible,	
	Chef, etc). Case study should include Infrastructure as Code,	
	Inventory Management, playbooks/cookbooks	
	Containerization	
	 Introduction to Containerization 	
	• Container Lifecycle	
	• Case study of any one containerization tool (e.g. Docker, etc)	
	which should include namespaces, commands,CLI, image creation,	
	image registry	
	Continuous Monitoring	
	 Introduction to continuous monitoring Traces infractional Manitoring 	
	 Types: Infrastructure Monitoring, Application Monitoring and 	
	Network Monitoring	
	• Case study on one continuous monitoring tool(e.g. Nagios,	
	Prometheus, etc)	42.1
	Mini Project	12 hours
	Ideally done in a group. Concepts and tools (or similar) learnt	
	in the course will need to be implemented/incorporated.	

Pedagogy	Hands-on assignments / tutorials / peer-teaching / pair programming
	/ presentations / mini-project
References/	1. Frank W. Zammetti, "Modern Full-Stack Development", Apress
Readings	2. Nader Dabit, "Full Stack Serverless", O'Reilly
	3. Joakim Verona, "Practical DevOps"
	4. <u>https://www.elastic.co/guide/index.html</u>
	5. <u>https://docs.aws.amazon.com/</u>
	6. <u>https://cloud.google.com/docs</u>
	7. https://docs.microsoft.com/enus/azure/?product=featured
	8. <u>https://docs.docker.com</u>
<u>Course</u>	1. Learner will learn about the latest tools and platforms used in the
<u>Outcomes</u>	software industry
	2. Learner will have fair idea on the popular cloud services used
	3. Learner will appreciate the different devops tools and why devops
	is important

Course Code: CSA-529

Title of Course: Ethical Hacking

Number of Credits: 4 (4L-0T-0P) Effective from AY: 2022-23

Effective from A		1
<u>Prerequisites</u>	Internet Technologies, Operating System, Database Management,	
for the course	Programming Skills	
<u>Objectives</u>	To introduce the students to ethical hacking tools and practices	
	used to protect systems from the wide-ranging impact of data	
	breaches and cybersecurity incidents.	
<u>Content</u>	Introduction: The importance of security, The various phases	2 hours
	involved in hacking, An overview of attacks and exploit categories,	
	The legal implications.	
	Footprinting: Introduced to footprinting, Information gathering	3 hours
	methodology, Tools used for the reconnaissance phase,	
	countermeasures.	
	Scanning: Detecting 'live' systems on target network, Discovering	3 hours
	services running/ listening on target systems, port scanning	
	techniques, active and passive fingerprinting, Automated discovery	
	tools.	
	Enumeration: Identifying valid user accounts or poorly protected	3 hours
	resource shares, active connections to systems and directed queries,	
	Null Session, NetBIOS Enumeration, SNMP enumeration, Applications	
	and Banners.	
	System Hacking: Remote password guessing, Eavesdropping, Denial	5 hours
	of Service, Buffer overflows, Privilege escalation, Password cracking,	
	keystroke loggers, sniffers, Remote control and backdoors, Port	
	redirection, Covering tracks, Hiding files	
	Trojans and Backdoors: Defining Trojans and Backdoors,	2 hours
	Understanding the various backdoor genres, Trojan tools, Prevention	
	methods and countermeasures, Anti-Trojan software.	
	Sniffers: Active and Passive Sniffing, ARP Spoofing and Redirection,	4 hours
	DNS and IP Sniffing and Spoofing.	
	Denial of Service: DOS and Distributed DOS Attacks, Types of denial	
	of service attacks, Tools for running DOS attacks, Tools for running	3 hours
	DDOS attacks, Denial of Service Countermeasures	
	Social Engineering: Common Types of Attacks, Online Social	
	Engineering, Reverse Social Engineering, Policies and Procedures,	3 hours
	Employee awareness.	
	Session Hijacking: Spoofing Vs Hijacking, Types of session hijacking,	4 hours
	TCP/IP concepts, Performing Sequence prediction, ACK Storms,	
	Session Hijacking Tools.	
	Web Server Hacking: Web Servers and Common Vulnerabilities,	3 hours
	Apache Web Server Security, IIS Server	
	Security, Attacks against Web Servers, Countermeasures	
	Web Application Vulnerabilities: Common Web Application Security	5 hours
	Vulnerabilities, Penetration Methodologies, Input Manipulation,	
	Authentication And Session Management, Tools and	
	Countermeasure.	
	Password cracking: HTTP Authentication Basic & Digest, NTLM	3 hours
	Authentication, Certificate Based Authentication, Forms Based	
	Authentication, Password Guessing, Password cracking Tools.	
	SQL injection: Exploiting the weakness of Server Side Scripting, Using	3 hours
	SQL Injection techniques to gain access to a system, SQL Injection	
	Scripts, Prevention and Countermeasures	

Buffer Overflow:What is a Buffer Overflow, Exploitation, CPU / OS4 hoursDependency,Understanding Stacks, Stack Based Buffer Overflow,Defense against Buffer OverflowsHacking wireless networks:Introduction to 802.1, WEP, Cracking4 hours
Defense against Buffer Overflows Hacking wireless networks: Introduction to 802.1, WEP, Cracking 4 hours
Hacking wireless networks: Introduction to 802.1, WEP, Cracking 4 hours
MED Kove M/DA M/LAN Scoppore M/LAN
WEP Keys, WPA, WLAN Scanners, WLAN
Sniffers, Securing Wireless Networks.
Viruses: Types of viruses, virus signatures, Anti-virus software, few 2 hours examples.
Evading Firewalls, IDS and Honeypots: Intrusion Detection System,
Integrity Verifiers, Intrusions Detection, Anomaly Detection, 4 hours
Signature Recognition, Protocol Stack Verification, Application
Protocol Verification, Hacking Through Firewalls, Honey Pots.
Pedagogy
References/ Main Reading
Readings 1. "Hacking Exposed", Osborne/ Mc Graw Hill.
2. "Hacking Exposed: Network Security Secrets and solutions",
Osborne/ Mc Graw Hill.
3. "Hacking Exposed: Linux Security Secrets and Solutions", Mc Graw
Hill.
4. "Hacking Exposed: Windows Security Secrets and Solutions", Mc
Graw Hill.
5. "Hacking Exposed: Web Application Security Secrets and
Solutions", Mc Graw Hill/Osborne.
<u>Course</u> 1. Discover the elements of a four-phase penetration test and how
Outcomes the four phases help successfully identify system vulnerability.
2. Learn about the different tools and techniques that hackers—
including ethical hackers—employ.

Course Code: CSA-530

Title of Course: Advanced Unix Programming

Number of Credits: 4 (4L-0T-0P)

Effective from A		
<u>Prerequisites</u>	Basic knowledge of Programming in C and Operating systems	
for the course		
Objectives	 Introduces system administration tasks, including software installation, system configuration, and managing user accounts. Introduce the concept of UNIX system programming including process, signals and interprocess communication. 	
<u>Content</u>	Introduction: Organization of UNIX interface, Programmer interfaces. System call API, Error handling. UNIX standardization. UNIX implementations. Relationship of standards and implementation. File I/O and Directories : File descriptor and basic file I/O calls. Duplicating file descriptors. File Types, File access permissions, Set- user-id and set-group-id bits. Setting file permissions. Changing file ownership. Soft and hard links. Reading directories. Synchronising file contents. Standard I/O library.	15 hours
	Process : Environment of UNIX process. Command Line arguments. Environment variables. Memory allocation. Process relationship, Process groups, sessions, Controlling Terminal, Process related system calls. Foreground, Background Processes and Job control. Orphaned process groups.	15 hours
	Signals: Signal concept, Reliable and unreliable signals, Signal sets, Signal related system calls. Non local jumps. Job control using signals.	10 hours
	Terminal I/O: Special Input Characters. Canonical and Non canonical modes. Terminal Option flags. Getting and setting terminal attributes. Pseudo terminals. Opening and using pseudo Terminals. Advanced I/O: Nonbloking I/O, Record locking. Stream, I/O multiplexing, Memory mapped I/O, Asynchronous I/O.	10 hours
	Inter-process communication: Pipes, Message queues, Semaphores and shared memory.	10 hours
<u>Pedagogy</u>	lectures/ tutorials/Hands-on assignments/self-study	
<u>References/</u> <u>Readings</u>	 Steven W R, Advanced Programming in UNIX Environment, Addison Wesley. Unix man pages and Standard C library (libc) Documentation 	
<u>Course</u> <u>Outcomes</u>	 After completing the course, students will be able to: Manage UNIX users, file systems, and devices using root powers. Access UNIX file management and process management functions via system calls. Develop complex system-level software in the C programming language 	

Course Code: CSA-531

Title of Course: Theory of Computation

Number of Credits: 4 (4L-0T-0P) Effective from AY: 2022-23

•

•

Languages

ffective from A		Γ
<u>Prerequisites</u>	Programme Prerequisites	
for the course		
<u>Objectives</u>	1. To give an overview of the theoretical foundations of computer	
	science from the perspective of formal languages	
_	2. To illustrate finite state machines to solve problems in computing.	
<u>Content</u>	General Concepts of Automata Theory: Alphabets Strings, Languages,	3 hours
	Grammars, Applications of Automata Theory.	
	Finite Automata (FA): Introduction, Deterministic Finite Automata	12 hours
	(DFA) - definition and notations, language of a DFA. Nondeterministic	
	Finite Automata (NFA)- Definition, language of an NFA, Equivalence of	
	DFA and NFA, Applications of FA.	
	Finite Automata with Epsilon Transitions, Eliminating Epsilon	
	transitions, Minimization of DFA.	
	Finite automata with output (Moore and Mealy machines) and inter-	
	conversion.	
	Regular Expressions (RE): Introduction, Identities of RE.	10 hours
	Finite Automata and Regular Expressions - conversions, Algebraic	
	Laws for Regular Expressions, applications of RE.	
	Regular grammars: Definition, regular grammars, and FA, Proving	
	languages to be non-regular (Pumping lemma), Properties of Regular	
	Language, applications.	
	Context-Free Grammar (CFG): Definition, Derivations Using a Grammar-	10 hours
	Leftmost and rightmost derivation, Parse tree, Applications, Ambiguity	
	in CFG. Minimization of CFG, CNF, GNF, Pumping Lemma for CFL's.	
	Pushdown Automata (PDA): Definition, Language of PDA- Acceptance	15 hours
	by Final State and Acceptance by Empty stack, Equivalence of CFG and	
	PDA, Deterministic PDA, Chmosky normal form of CFG	
	Turing Machines (TM): Formal definition and behavior, Languages of a	
	TM, TM as accepters, and TM as a computer of integer functions, Types	
	of TMs.	
	Recursive And Recursively Enumerable Languages (REL): Properties of	10 hours
	recursive and recursively enumerable languages, Universal Turing	
	machine, The Halting problem, Undecidable problems about TMs.	
	Context-sensitive language and linear bounded automata (LBA),	
	Chomsky hierarchy, Decidability.	
Pedagogy	lectures/ tutorials/assignments/self-study	
<u>References/</u>	1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to	
<u>Readings</u>	Automata Theory Languages and Computation, Pearson Education,	
	India (latest edition)	
	2. H.R.Lewis and C.H.Papadimitriou, Elements of the Theory of	
	Computation, PHI, (latest edition)	
	3. J.Martin, Introduction to Languages and the Theory of Computation,	
Co	TMH (latest edition)	
<u>Course</u> Duteomos	At the end of the course students will be able to:	
<u>Outcomes</u>	 use basic concepts of formal languages of finite automata tasknigues 	
	techniques	

design Finite Automata for different Regular Expressions and

Construct context-free grammar for various languages

SEMESTER III & IV

Name of the Programme: MCA

Course Code: CSA-600

Title of the Course: Speech Processing

Number of Credits: 4 (2L-2T-0P)

Prerequisites for the course	CSA521-Mathematics for Computer Science and CSA-509 Machine Lea	rning
Objectives:	The objective of the course is to study fundamental concepts of autorecognition.	omatic speech
<u>Content:</u>	Anatomy & Physiology of Speech Organs, The process of Speech Production, The Acoustic Theory of Speech Production, Digital models for speech signals.	6 hours
	Formants of vowels, spectrogram of vowels, Acoustic analysis of vowels.	6 hours
	Basic pattern recognition approaches, Parametric representation of speech, Evaluating the similarity of speech patterns, Isolated digit Recognition System, Continuous digit Recognition System.	6 hours
	Hidden Markov Model (HMM) for speech recognition, Viterbi algorithm, Training and testing using HMMs, Adapting to variability in speech (DTW), Language models.	6 hours
	Issues in speaker recognition and speech synthesis of different speakers. Text to speech conversion, Speech to text system. End-to- end systems.	6 hours
	Assignments during Tutorial slots -	
	 Basic tools Installation of speech processing tools eg. Praat audacity etc. Spectrogram visualization 	5 hours
	 Phonetics and speech signals Introduction to International phonetic alphabets Audio signal processing and cleaning Annotation of speech signal 	8 hours
	 Formant analysis Formant analysis of vowels Nasalisation of vowels 	7 hours
	Advance concepts Installation of kaldi for building ASR Creation of phonetic dictionary Creation of language model Building ASR system 	10 hours
Pedagogy:	Lab assignments/ research paper reading/ discussion/ tools demonstra project.	tion/ mini
References/ Readings	 Digital processing of speech signals - L.R Rabiner and S.W. Sch Education. Speech Communications: Human & Machine - Douglas O'Shaughn IEEE Press. Fundamentals of Speech Recognition. L.R Rabinar and B.H. Juang. 	
<u>Course</u> Outcomes	 After completion of this course, students will be able to Have a good understanding of human speech production system 	
	 Understand the basics of pattern recognition approaches. Have knowledge of the concepts in speech recognition. 	

Name of the Programme: MCA Course Code: CSA-601 Title of Course: Machine Translation Number of Credits: 4 (2L-2T-0P) Effective from AY: 2022-23

Effective from A		1
<u>Prerequisites</u>	Knowledge of Mathematics for Computer Science and Machine	
for the course	Learning will prove beneficial, A previous course on Artificial	
	Intelligence and Natural Language Processing will help; Exposure to	
	Linguistics is useful, though not mandatory	
Objectives:	The objective of the course is to understand and get an insight into	
	the different approaches used for Machine Translation (MT).	
Content:	Introduction: Data-driven MT, MT Approaches, Language divergence,	8 hours
	three major paradigms of MT, MT Evaluation,	
	Bilingual Word Mappings: Combinatorial Argument, One-to-One	4 hours
	Alignment, Heuristic and Iterative bases computation, Mathematics	
	of Alignment, Expectation Maximization, IBM models of Alignment	
	Phrase-Based Machine Translation (PBMT): Need, Examples, Phrase	10 hours
	Table, Mathematics of Phrase-Based SMT, Decoding.	
	Rule-Based Machine Translation (RBMT): Kinds, UNL, Interlingua and	5 hours
	Word Knowledge, UNL conversion, Transfer-based MT.	
	Example-Based Machine Translation (EBMT): Essential steps of EBMT,	3 hours
	Text similarity computation, Translation memory, Statistical Machine	
	Translation	
	Assignments during Tutorial Slots -	
	Assignment 1:	8 hours
	Data-driven MT, MT Approaches, Language divergence, three major	
	paradigms of MT, MT Evaluation,	
	Assignment 2:	4 hours
	Bilingual Word Mappings: Combinatorial Argument, One-to-One	
	Alignment, Heuristic and Iterative bases computation, Mathematics	
	of Alignment, Expectation Maximization, IBM models of Alignment	
	Assignment 3:	10 hours
	Phrase-Based Machine Translation (PBMT): Need, Examples, Phrase	
	Table, Mathematics of Phrase-Based SMT, Decoding.	
	Assignment 4:	5 hours
	Rule-Based Machine Translation (RBMT): Kinds, UNL, Interlingua and	
	Word Knowledge, UNL conversion, Transfer-based MT.	
	Assignment 5:	3 hours
	Example-Based Machine Translation (EBMT): Essential steps of EBMT,	
	Text similarity computation, Translation memory, Statistical Machine	
	Translation	
Pedagogy:	lectures/ tutorials/assignments/self-learning/ flipped classroom	
<u>References/</u>	1. Machine Translation by Pushpak Bhattacharyya, Chapman a	nd Hall/CRC,
<u>Readings</u>	February 2015	.
	2. Machine Translation on Coursera by Prof. Alexander Waibel and	Jan Niehues
	https://www.coursera.org/learn/machinetranslation	,
	3. An Open Source Neural Machine Translation System <u>https://opennr</u>	
	4. Bhashini Project – <u>https://bhashini.gov.in/bhashadaan/en/likho-ind</u>	<u>ia</u>
<u>Course</u>	After completion of this course, students will -	
<u>Outcomes</u>	Understand the Machine Translation Approaches	
	 Understand the differences between Phrase-Based, Rule-Based, a 	and Example-
	Based Machine Translation	
	 explain, apply, and assess evaluation methods for machine translation 	on;

 describe and critically discuss the architecture of machine translation systems;
• build their own translation model using existing tools for machine translation and
evaluate and analyse the translation results;
• compare different types of machine translation strategies, such as rule-based,
statistical, and neural machine translation;
• implement components of machine translation systems or components used in
evaluation or pre-processing

Course code: CSA-602

Title of course: Educational Technology

Number of Credits: 4 (2L-2T-0P)

Prerequisites	Web Technology		
for the course	web reenhology		
<u>Objectives</u>	Course aims at Software Developers who wish to develop technology solutions for using Educational Technology in classroom and online mode. Course will offer students an overview of the theories and practices involved in Educational Technology Students will present examples showing the use of technology for classroom management, administration, teaching and learning. Students will select and evaluate appropriate software and hardware for application in the classroom Students will demonstrate legal and ethical use of technology in the classroom. Students will apply technology to develop higher-order skills and creativity		
<u>Content</u>	Learning theories. Learning objectives and Bloom's taxonomy; constructivist and situated theories of learning; factors affecting and facilitating learning; learning styles	8 hours	
	Technologies for creating new resources. Examples include video, multimedia, animations and simulations, Web 2.0/3.0.	4 hours	
	Instructional Design (ID). Basic ID models (eg ADDIE model), ID models for e-learning and blended learning (eg Dick and Carey model), online course development using ID. Digital Storytelling	8 hours	
	Technologies for content delivery. Examples include Learning Management Systems (e.g. Moodle) classroom management systems (e.g. Jhoomla), Open Education Resources, intelligent tutoring systems.	5 hours	
	Case Studies: MOOC such as EdX/Coursera, Swayam-NPTEL	5 hours	
	Assignments during Tutorial Slots		
	Introduction to various types of Education Technology tools.	2 hours	
	Content Authoring Tools: eg Raptivity, Articulate	3 hours	

Content Authoring Tools: eg Raptivity, Articulate	3 hours
Assessment Tools: Hot Potato,	2 hours
Concept Mapping Tools: e.g. CMAP, MindMap, Compendium	2 hours
Visualization Tools: e.g. R, Highcharts	3 hours
Analytics Tools: e.g. SPSS, R-language, CAQDAS	3 hours
Learning Management System: e.g. Moodle, Sakai	4 hours
Educational Data Mining: e.g. Weka, Rapidminer, KNIME	2 hours
MOOC: e.g. EdX	4 hours
Collaboration Tools: e.g. Wiki	1 hour
Tutoring system development. e.g. CTAT, ASPIRE	1 hour
Animation tools. E.g. Flash, Gimp, Others: Camstudio for the screencast, image editing, audio editing (audacity), video management, etc	3 hours

-	
<u>Pedagogy</u>	Hands-on assignments / tutorials / peer-teaching /active learning
References /	Foundations of Educational Technology: Integrative Approaches
Readings	and Interdisciplinary Perspectives (Interdisciplinary Approaches to
	Educational Technology) by J. Michael Spector, Routledge; 2nd
	edition
	Websites/tutorials for the tools
Learning	Create a portfolio-like presentation with samples reflecting ways
<u>Outcomes</u>	technology can support classroom management, administration,
	and teaching.
	Create and evaluate products that critique various software and
	hardware tools for instructional purposes
	• List and describe legal and ethical issues for using technology in
	the classroom

Course code: CSA-603

Title of course: Computer Graphics

Number of credits: 4 (2L-2T-0P) Effective from AY: 2022-23

Effective from A		
<u>Prerequisites</u>	Knowledge of linear algebra, geometry and programming	
for the course		
Objectives	This course will introduce the learner to various concepts in 3D	
	modeling and computer graphics	
<u>Content</u>	Fundamentals	6 hours
	history of computer graphics, applications, graphics pipeline, physical	
	and synthetic images, synthetic camera, modelling, animation,	
	rendering, relation to computer vision and image processing, review	
	of basic mathematical objects (Points, Vectors, Matrix methods).	
	Exploring OpenGL/WebGL	6 hours
	architecture, primitives and attributes, simple modelling and	
	rendering of two- and three-dimensional geometric objects, indexed	
	and RGB color models, frame buffer, double buffering, GLUT,	
	interaction, events and call-backs, picking	
	Geometric Transformations	6 hours
	homogeneous coordinates, affine transformations (translation,	
	rotation, scaling, shear), concatenation, matrix stacks and use of	
	model-view matrix in OpenGL/WebGL for these operations	
	Viewing	4 hours
	classical three dimensional viewing, computer viewing, specifying	
	views, parallel and perspective projective transformations	
	Shading	4 hours
	light sources, illumination model, Gouraud and Phong shading for	
	polygons. Rasterization- Line segment and polygon clipping, 3D	
	clipping, scan conversion, polygonal fill	
	Discrete Techniques	4 hours
	texture mapping, compositing, textures in OpenGL; Ray Tracing-	
	Recursive ray tracer, ray-sphere intersection	
	Sample List of Assignments to be carried out during Tutorial Slots-	20 hours
	1) Explore a 3D programming IDE (e.g. Alice 3D). Understand basic	
	graphic concepts like objects, camera, direction, projection, etc.	
	2) Using OpenGL/WebGL/Canvas, write a program to create basic	
	2D/3D geometric shapes. Use RGB colors.	
	3) Using OpenGL/WebGL/Canvas, write a program to work around	
	with basic shape transformations (translate, rotate, scale, skew,	
	etc.). 4) Using OpenGL/WebGL/Canvas, write a program to animate	
	objects/shapes (e.g. bouncing ball). Try to incorporate basic	
	physics laws.	
	5) Using OpenGL/WebGL/Canvas, write a program to import object	
	models.	
	6) Using OpenGL/WebGL/Canvas, write a program to show object	
	collision.	
	7) Using OpenGL/WebGL/Canvas, write a program to add texture to	
	objects.	
	8) Using OpenGL/WebGL/Canvas, write a program to add a light	
	objects like pillars, cars, etc.	
	source and implement shadows. 9) Using a 3D modeling tool (e.g. Blender), explore creating complex	

	Mini-Project	10 hours
	Ideally done in a group. The project should include design and	
	development of a graphic simulation. There should be some	
	interactivity involved. Objects in simulations should be in 3D. Objects	
	could be designed in 3D modelling tools like blender. The texture to	
	those objects could be added programmatically in the simulation	
	before rendering.	
	(e.g. simulation of solar system)	
<u>Pedagogy</u>	Hands-on assignments / tutorials / peer-learning / flip classroom /	
	analysis of research (or white) papers	
<u>References/</u>	Edward Angel, Interactive Computer Graphics. A Top-Down	
<u>Readings</u>	Approach Using OpenGL (fifth edition), Pearson Education, 2008	
	Donald Hearn and Pauline Baker, Computer Graphics with OpenGL	
	(third edition), Prentice Hall, 2003	
	• F. S. Hill Jr. and S. M. Kelley, Computer Graphics using OpenGL	
	(third edition), Prentice Hall, 2006	
	 Peter Shirley and Steve Marschner, Computer Graphics (first edition), A. K. Peters, 2010. 	
	 James D Foley, Andries Van Dam, Steven K Feiner, John F Huges, 	
	Computer graphics with OpenGL: pearson education	
	 Xiang, Plastock, Computer Graphics, 2nd edition, Tata McGraw 	
	 Kelvin Sung, Peter Shirley, Steven Baer, Interactive Computer 	
	Graphics, Concepts and Applications, Cengage Learning	
	 M M Raiker, Computer Graphics using OpenGL, Elsevier 	
Course	Learner will -	
Outcomes	1. understand and apply fundamental concepts within computer	
	graphics	
	2. compare and evaluate the ideas in some fundamental algorithms	
	for computer graphics	
	3. apply fundamental principles within interaction programming	
	4. understand fundamental concepts of information and scientific	
	visualization	

Course Code: CSA-604

Title of the Course: Data science

Number of Credits: 4 (2L-2T-0P) Effective from AY: 2022-23

Effective from A	Y: 2022-23	r
<u>Prerequisites</u>	Statistics and probability theory and python programming.	
for the course	Python programming and Data science theory fundamentals.	
<u>Objectives</u>	To get started with basics of Data Science and learn all aspects of	
	data science in its entirety. Main objectives are as under -	
	 to understand basic process of data science 	
	 Python and Jupyter notebooks 	
	 An applied understanding of how to manipulate and analyze 	
	uncurated datasets	
	Basic statistical analysis and basic machine learning methods like	
	linear regression .	
	 How to effectively visualize results using python APIs or tools. 	
<u>Content</u>	Unit -1: Basics of Data Science: Introduction; Typology of problems-	4 hours
	Data Science in a big data world: Benefits and uses of data science	
	and big data-Facets of data-The data science process-The big data	
	ecosystem and data science- The data science process: Overview of	
	the data science process- Defining research goals and creating a	
	project charter- Retrieving data-Cleansing, integrating, and	
	transforming data-Exploratory data analysis-Build the models-	
	Presenting findings and building applications on top of them.	
	Unit -2	2 hours
	Mathematics for Data science	
	• Importance of linear algebra, statistics and optimization from	
	a data science perspective; Structured thinking for solving	
	data science problems.	
	• Linear Algebra: Matrices and their properties (determinants,	
	traces, rank, nullity, etc.); Eigenvalues and eigenvectors;	
	Matrix factorizations; Inner products; Distance measures;	
	Projections; Notion of hyperplanes; half-planes.	
	 Probability, Statistics and Random Processes: Probability 	
	theory and axioms; Random variables; Probability	
	distributions and density functions (univariate and	
	multivariate); Expectations and moments; Covariance and	
	correlation; Statistics and sampling distributions; Hypothesis	
	testing of means, proportions, variances and correlations;	
	Confidence (statistical) intervals; Correlation functions;	
	White-noise process.	
	Unit -3 Introduction to Data Science Methods: Linear regression as an	2 hours
	exemplar function approximation problem; Linear classification	
	problems.	
	Unit -4 Handling large data on a single computer	2 hours
	 The problems you face when handling large data-General 	
	techniques for handling large volumes of data-General	
	programming tips for dealing with large data sets-Case study	
	1: Predicting malicious URLs-First steps in big data-	
	Distributing data storage and processing with frameworks	
	Unit 5: Join the NoSQL movement-Introduction to NoSQL	4 hours
	Unit 6: The rise of graph databases	4 hours
	 Introducing connected data and graph databases 	
	 Introducing Neo4j: a graph database 	4 hours
	Unit 7: Data visualization to the end user	
	1	l

	Data visualization options	4 hours
	Crossfilter, the JavaScript MapReduce library	
	 Creating an interactive dashboard with dc.js 	4 hours
	Dashboard development tools	
	Data science Story telling.	
	Assignments to be discussed during the Tutorial slots -	30 hours
	1. Python libraries – Numpy, Matplotlib, seaborn, pandas.	
	2. Write program to do Exploratory data analysis using the libraries	
	above Data collection(Kaggle, github and Machine learning	
	repository),data cleaning (removing missing values,	
	reformatting data etc.	
	3. Write program to do univariate analysis using tools like Box plot,	
	histogram etc.	
	4. Write program to do bivariate analysis using tools like scatter plots, box plots.	
	5. Demo on business intelligence tools -Business intelligence tools	
	help an organization analyze huge chunks of data; they provide	
	insights with actionable recommendations - Tableau,	
	Qlik,splunk,Trillium,Logi analytics, powerBI	
	6. Write program to implement PCA.	
	7. Write program to implement SVD	
	8. Use tools like tableau/Power BI to do Visualizatiation for large	
	data set and create dashboard	
	9. Mini Project: With the tools of Jupyter notebooks, numpy,	
	pandas, and Visualization, you're ready to do sophisticated	
	analysis on your own. You'll pick a dataset we've worked with	
	already and perform an analysis for this first project	
	10. Machine Learning: To take your data analysis skills one step	
	further, write program to do basics of machine learning and how	
	to use sci-kit learn - a powerful library for machine learning.	
	11. Working with Text and Databases: You'll find yourself often	
	working with text data or data from databases. This week will	
	give you the skills to access that data. For text data, we'll also	
	give you a preview of how to analyze text data using ideas from	
	the field of Natural Language Processing and how to apply those	
	ideas using the Natural Language Processing Toolkit (NLTK)	
	library.	
	12. Final Project: These weeks let you showcase all your new skills in	
	an end-to-end data analysis project. You'll pick the dataset, do	
	the data munging, ask the research questions, visualize the data,	
	draw conclusions, and present your results.	
Pedagogy	Lectures/ Tutorials/Hands-on assignments/Self-study.	
	Lab assignments/ research paper reading/ discussion/ tools	
	demonstration/ mini project.	
References/	1. Practical statistics for data science by peter bruce and andrew	
<u>Readings</u>	bruce	
	2. Naked statistics by charles wheelon	
	3. Business data science by matt taddy	
	4. Elements of statistical learning by Trevor Hastie, Robert and	
	jerome	
	5. Python for data analysis	
	6. Data science and big data analytics -EMC2	
	7. Hands-On Data Structures and Algorithms with Python — By Dr.	
	Basant Agarwal.	
	8. 3. The Art of Data Science — by Roger D. Peng and Elizabeth	

	Matsui.	
	9. Automate the Boring Stuff With Python: Practical Programming—	
	by Al Sweigart.	
Course	At the end of the course, the students will –	
<u>Outcomes</u>	1. Enrich one's knowledge with overall basics of data science	
	2. appreciate Data Science to be able to get started in the direction.	
	3. Students should be able to carry out mini Data Science projects	
	using python libraries.	

Course Code:CSA-605

Title of Course: IoT architecture and protocols

Number of Credits: 4 (3L-1T-0P) Effective from AY: 2022-23

Effective from A	Y: 2022-23	
Prerequisites	Internet Technologies, Computer Organization and architecture, Opera	ting Systems.
for the course		
<u>Objectives</u>	To understand the fundamentals of Internet of Things and the protocols and standards designed for IoT	
Content		
	Introduction to IoT: Introduction, IoT ecosystem, Applications, Challenges.	4 hours
	Fundamentals: IoT Devices - Sensors, Actuators, and gateways, Basics of the wireless sensor network.	6 hours
	IoT Architecture & Design: oneM2M, IoTWF, Additional Reference Models, Core functional stack, Data Management and compute stack.	6 hours
	Communicating smart objects: Communication criteria, communication models, IoT access technologies – 3GPP MTC, IEEE 802.11, IEEE 802.15, WirelessHART, ZWave, Bluetooth Low Energy, Zigbee Smart Energy, DASH7	8 hours
	IoT Network Layer: IP as IoT network layer, IPv6, 6LoWPAN, 6TiSCH, RPL, CORPL, CARP	7 hours
	IoT Transport and Application protocols: Transport Layer: TCP, UDP, DCCP, SCTP, TLS, DTLS IoT application transport methods, HTTP, CoAP, XMPP, MQTT, AMQP, DDS	10 hours
	Security in IoT: MAC802.15.4, 6LoWPAN, RPL, Application Layer security.	4 hours
	Tutorial Slots -	
	IoT Application Case Studies: Discuss minimum 3 Applications in detail of IoT	15 hours
Pedagogy	lectures/ tutorials/Hands-on assignments/self-study	
References/ Readings	 David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", CISCO Press, 2017 Hersent, Olivier, David Boswarthick, and Omar Elloumi, The internet of things: Key applications and protocols. John Wiley & Sons, 2011. Buyya, Rajkumar, and Amir Vahid Dastjerdi, eds. Internet of Things: Principles and Paradigms. Elsevier, 2016. 	
<u>Course</u> <u>Outcomes</u>	 After completing the course, students will be able to: Understand the concepts of the IoT Architecture Reference model Identify the IoT networking components and Identify protocols. 	

Course code: CSA-606

Title of course: Mobile App Development

Number of Credits: 4 (2L-2T-0P) Effective from AY: 2022-23

ffective from A		
<u>Prerequisites</u> for the course	Knowledge of OS and networking; and web development basics	
Objectives	On completion of this course, the learner should be able to	
	successfully build, debug and deploy android apps.	
Content	Android OS, Ecosystem & Basics	6 hours
	• Mobile Platforms & OSs; Approaches to mobile development;	
	Android OS; Android System Architecture; Android App	
	Lifecycle; Play Store	
	 Intro; Create Your First Android App; Layouts, Views and 	
	Resources; Text and Scrolling Views; Resources to Help You	
	Learn	
	 Debugging your apps; Testing your app; Support libraries, and 	
	Backwards Compatibility.	
	User Interface & Lifecycle	14 hours
	 Screen Sizes; User Interaction - User Input Controls, Menus; 	
	Screen Navigation; RecyclerView	
	 Delightful User Experience; Drawables, Themes and Styles; 	
	Material Design; Providing Resources for adaptive layouts	
	 Testing the User Interface 	
	 Activities and Intents; The Activity Lifecycle and Managing 	
	State; Starting Activities with Implicit Intents	
	Background Tasks & Notifications	4 hours
	 Background Tasks; AsyncTask and AsyncTaskLoader; Connecting 	
	to the Internet; Broadcast Receivers; Services	
	 Triggering, Scheduling, and Optimizing Background Tasks; 	
	Notifications; Alarm Manager; Transferring Data Efficiently.	
	Data Saving, Retrieving, Loading	6 hours
	 Overview to storing data 	
	 Shared Preferences; App Settings 	
	• SQLite; Firebase	
	 Sharing Data: Content Resolvers and Content Providers 	
	 Using Loaders to Load and Display Data 	
	 Connecting with API service endpoints. 	
	Suggested Sample List of Assignments:-	20 hours
	1) Build an OO system (like elevators in a building, EVM, etc.).	
	Employ use of design patterns (like Adapter, Singleton, Observer,	
	etc.)	
	2) Creating a Java/Kotlin project using build tool (e.g. Gradle, Maven)	
	3) Create a hello world android app using IDE (preferably Android	
	Studio). Try deploying on emulator/mobile. Debug using logcat.	
	4) Create a calculator app (similar to the app installed in the device	
	used during development)	
	5) Using intents create a game (like a maze). Explore having raster	
	images & vector graphics in the app.	
	6) Create a CRUD app. Explore the use of various form	
	elements/widgets and fragments.	
	7) Create a To-Do app. Explore adding the views/view-groups	
	programmatically (e.g. using inflate, recycler view). Use material	
	design in the UI.	

		[]
	Explore BroadcastReceiver, services, etc.	
	9) Create an app that will run in background and communicate	
	information through status bar/ push-notifications.	
	10) Create a CRUD app using data stored locally. Explore ROOM,	
	SQLite	
	11) Create an app to consume an API and populate the layout with	
	appropriate views.	
	12) Create an app to contain a webapp.	
	Mini-project	10 hours
	Ideally done in a group. It should include design and implementation	
	of an android application. Project implementation should	
	mandatorily use at least 2 mobile-specific functionality (to justify as a	
	mobile app and not web app). The GUI of the app should follow	
	design guidelines (e.g. Material/ Flat Design). Conduct and progress	
	of the project could follow industry practices (e.g. UX mocks, git,	
	scrum, etc.).	
Pedagogy	Assignments / tutorials / peer-learning / troubleshooting/ case	
	studies	
References/	Bill Philips & Brian Hardy, "Android Programming: The Big Nerd	
Readings	Ranch Guide"	
	Dawn Griffiths & David Griffiths, "Head First Android	
	Development"	
	Ian F. Darwin, "Android Cookbook"	
	https://developer.android.com	
	 https://kotlinlang.org 	
	https://material.io	
Course	1. Learner will understand the android ecosystem, android versions	
Outcomes	& compatibility across them.	
	2. Learner will be able to design user interfaces specifically to be run	
	native android devices.	
	3. Learner will be able to evaluate which type of views & widgets are	
	preferable for various use cases.	
	4. Learner will be able to build and design navigation flows in an app.	
	5. Learner will be able to connect the app to Android services or apps	
	already available on the device.	
	6. Learner will be able to build apps that can store data locally or	
	remotely.	
L		

Name of the Programme: MCA Course Code: CSA-607 Title of the Course: Research Methodology Number of Credits: 4 (4L-0T-0P) Effective from AY: 2022-23

Prerequisites for the course	Nil	
		1
Objectives:	The objective of the course is to introduce the theoretical as well as practical aspects of Research	
	Foundations of Research: Meaning, Objectives, Motivation, Utility. Concept of theory, empiricism, deductive and inductive theory. Characteristics of scientific method – Understanding the language of research – Concept, Construct, Definition, Variable. Research Process Problem Identification & Formulation – Research Question – Investigation Question – Measurement Issues – Hypothesis – Qualities of a good Hypothesis –Null Hypothesis & Alternative Hypothesis. Hypothesis Testing – Logic & Importance Research Design: Concept and Importance in Research – Features of a good research design – Exploratory Research Design – concept, types and uses, Descriptive Research Designs – concept, types and uses. Experimental Design: Concept of Independent & Dependent variables.	15 hours
	Qualitative and Quantitative Research: Qualitative research – Quantitative research – Concept of measurement, causality, generalization, replication. Merging the two approaches. Measurement: Concept of measurement– what is measured? Problems in measurement in research – Validity and Reliability. Levels of measurement – Nominal, Ordinal, Interval, Ratio. Sampling: Concepts of Statistical Population, Sample, Sampling Frame, Sampling Error, Sample Size, Non-Response. Characteristics of a good sample. Probability Sample – Simple Random Sample, Systematic Sample, Stratified Random Sample & Multi-stage sampling. Determining size of the sample – Practical considerations in sampling and sample size.	15 hours
	Data Analysis: Data Preparation – Univariate analysis (frequency tables, bar charts, pie charts, percentages), Bivariate analysis – Cross tabulations and Chi-square test including testing hypothesis of association. Interpretation of Data and results	15 hours
	Paper Writing – Layout of a Research Paper, Software for paper formatting like LaTeX/MS Office. Journals in Computer Science, Impact factor of Journals, When and where to publish? Ethical issues related to publishing, Plagiarism and Self-Plagiarism. Software for detection of Plagiarism . Use of Encyclopedias, Research Guides, Handbook etc., Academic Databases for Computer Science Discipline. Use of tools / techniques for Research: methods to search required information effectively, Reference Management Software like Zotero/Mendeley	15 hours
Pedagogy:	Lecture/Presentations/Assignments/Case Study/	
<u>References/</u> <u>Readings</u>	 Business Research Methods – Donald Cooper & Pamela Schindle edition Business Research Methods – Alan Bryman & Emma Bell, Sixth Ed University Press. Research Methodology: Methods and Techniques, C.R.Kothari, Se Edition, New Age International Publishers 	dition, Oxford

	4. Social Science Research: Principles, Methods, and Practices, Anol Bhattarchajee,		
	University of South Florida, Scholar Commons.		
	https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=1002&context=oa_t		
	<u>extbooks</u>		
<u>Course</u>	After completion of this course, students will –		
<u>Outcomes</u>	 Understand how to formulate a research problem 		
	Understand data collection and analysis techniques		
	Understand all aspects related to publishing research papers		

Course Code: CSA-608

Title of the Course: Deep Learning Number of Credits: 4(2L+2T+0P)

Effective from AY: 2022-23 Prerequisites Familiarity with linear algebra, probability theory, machine learning, for the course familiarity with python This course is aimed at any one who wishes to explore deep learning **Objectives:** from scratch. This course offers a practical hands on exploration of deep learning, avoiding mathematical notation, preferring instead to explain quantitative concepts through programming using python API **Content:** Introduction :- what is deep learning ?- Artificial Intelligence, machine 2 hours learning and deep learning -learning representation from data-"the deep " in deep learning -understanding how deep learning works what deep learning has achieved so far. of Fundamentals of machine learning- probabilistic Revision 3 hours modeling - early neural networks- kernel methods-decision tree, random forest and gradient boosting machines -back to neural networks- what makes deep learning different-the modern machine learning landscape. Four branches of machine learning -supervised -unsupervised-self-3 hours supervised – reinforcement learning – evaluating machine learning models - data processing, feature engineering- overfitting and underfitting -universal workflow of machine learning The mathematical building block of neural networks – a first look at 3 hours neural networks – data representation for neural networks- the gears of neural networks : Tensor operations- the engine of neural networks : Gradient -based optimization. Neural networks – anatomy of neural networks- building blocks of 3 hours deep learning -models of layers -loss functions and optimizers-keys to configuring the learning process.-introduction to keras -keras,tensor flow, theoano and CNTK – developing with keras -setting up a deep learning workstation -case studies - classification movie reviews classification newswires -predicting house prices. Deep Learning for computer vision – Introduction to convnets – 3 hours training convnets from scratch on small data sets – using pre trained convnet – visualizing what convnets learn Deep learning for text and sequences – working with text -one-hot 3 hours encoding of words and characters -using word embeddingsunderstanding recurrent neural networks – A recurrent layer in Keras -understanding LSTM and GRU layers- A concrete LSTM example in Keras. Advanced use of recurrent neural networks- A temperature-5 hours forecasting problem – preparing the data – a common-sense, non machine learning baseline-using recurrent drop out to fight overfitting- stacking recurrent layers-using bidirectional RNNs sequences processing with convnets Generative deep learning – text generation with LSTM- deep Dream – 5 hours neural style transfer-generative images with variational autoencoders- introduction to generative adversarial networks. Assignments to be carried out during Tutorial Slot -10 * 3 = 30Assignment 1 - Logistic Regression with a Neural Network hours mindset

 Assignment 2 - Planar data classification with one hidden 	
layer	
 Assignment 3 - Building your Deep Neural Network: Step by 	
Step	
 Assignment 4 - Deep Neural Network for Image Classification: 	
Application	
 Assignment 5 – Initialization and performance of model, 	
Regularization and whether it helps eliminate overfitting,	
Gradient Checking with model used, Optimization Methods	
used for every model	
Assignment 6- TensorFlow Tutorial	
 Assignment 7 - Convolution model Step by Step demo 	
Assignment 8 - Convolution model Application for image	
classification	
 Assignment 9- Keras Tutorial - Autonomous driving 	
application - Car Detection, Face Recognition	
 Assignment 10 - Art Generation with Neural Style transfer 	
Pedagogy: Lectures/ tutorials/lab assignments/self-study	
References/ Main Reading :-	
<u>Readings</u> 1. Introduction to Statistical Learning, Gareth James, Daniela Witten,	
Trevor Hastie, Robert Tibshirani, Springer, 2013.	
2. EthemAlpaydin, Introduction to Machine Learning, MIT Press.	
3. Richard O. Duda, Peter E. Hart, David G. Stork Pattern	
Classification,	
4. Peter Flach , Machine Learning , Cambridge	
5. Christopher M. Bishop,Pattern recognition and machine Learning,	
springer.	
6. Deep Learning, Ian Good fellow, MIT press	
7. Tom Michele, Machine Learning, McGraw-Hill.	
Course By the end of the course , students will be able to:	
• understand a wide variety of deep learning algorithms.	
 understand how to apply a variety of learning algorithms to data. 	
 understand how to perform evaluation of learning algorithms and 	
model selection.	
• equip themselves with a general understanding of deep learning.	

Course code: CSA-609

Title of course: Programming Paradigms

Number of credits: 4 (4L-0T-0P) Effective from AY: 2022-23

Effective from A		
<u>Prerequisites</u>	Knowledge of programming	
for the course		
<u>Objectives</u>	To learn and understand various programming paradigms.	
<u>Content</u>	Understanding Programming Paradigm	4 hours
	 Programming paradigm concept, motivation, types and 	
	classification of paradigms.	
	• Factors with respect to programming languages: Binding	
	times and flexibility; Scoping; First class values; Abstraction;	
	Typing; Storage Allocation & Dynamic Memory	
	Imperative Programming	4 hours
	 Variables and data types; Operators and expressions; 	
	Input/Output operations, Decision constructs; Looping	
	constructs	
	 Procedural (in Python/C) blocks & scope; procedures 	
	(functions)	
	 Object Oriented (in Java/C++) classes & objects, object- 	
	oriented principles (encapsulation, abstraction, inheritance,	
	polymorphism)	
	Functional Programming (in Haskell/Clojure/Scala)	20 hours
	 Revision of mathematical Functions' concepts 	
	• Side effects; Pure functions	
	• Type induction	
	Defining functions	
	 Currying; Function composition 	
	• Recursion	
	• Lazy evaluation; infinite lists	
	List comprehensions	
	 Higher order functions; Folds 	
	Logic Programming (in Prolog/ECLiPSe Constraint language)	12 hours
	 Revision of mathematical Logic concepts 	
	 Programming "without algorithms" 	
	 Logic programming with facts, rules and goals 	
	 Recursion; Lists 	
	 Constraint logic programming; constraints as relationship 	
	between variables; solving puzzles (like sudoku)	
	Event-driven Programming (in Python/.NET)	8 hours
	• Events	0
	 Main loop & callback 	
	 Scheduler & Event handlers; Triggers 	
	 Exception handling 	
	 Reliable eventing 	
	 Asynchronous triggers 	
	Multi-Paradigms and more	12 hours
	 Language support for multi paradigms; Benefits & issues 	12 110013
	 Parallel programming Data Parallelism (in OpenMP) and 	
	• Parallel programming Data Parallelism (in OpenWP) and Message Passing (in MPI)	
	 Reactive programming (in Elm/ReactiveX for Java, JS) 	
	 Meta programming (in Lisp) 	
	 Natural Language Programming (in SciLab/MATLAB) 	

Hands-on assignments / tutorials / peer-learning / pair programming/
analysis of research (or white) papers
 Terrance W. Pratt, Marvin V. Zelkowitz, "Programming Languages -
Design & Implementation"
 Robert L. Sebesta, "Concepts of Programming Languages"
 Ravi Sethi, "Programming Languages Concepts & Constructs"
Bruce J. Mac Lennan, "Principles of Programming Languages:
Design, Evaluation, and Implementation"
 Kenneth C. Louden, "Programming Languages: Principles and
Practice"
Allen Tucker, Robert Noonan, "Programming Languages: Principles
and Paradigms"
 Graham Hutton, "Programming in Haskell"
 W. Clocksin, "Programming in Prolog"
 Slim Abdennadher, Thom Frühwirth, "Essentials of Constraint
Programming"
 Roland Kuhn, Brian Hanafee, Jamie Allen, "Reactive Design
Patterns"
1. Learner will be able to distinguish between different programming
paradigms
2. Learner will be able to choose an adequate programming
paradigm in solving specific software engineering problems
3. Learner will be able to recognize the similar concepts
implemented in a different way across different programming
languages and paradigms

Course code:CSA-610

Title of course: Software Testing

Number of Credits: 4 (2L-2T-0P)

Encedive nom A	Y: 2022-23	
Prerequisites for the course	Software Engineering, OOT, Web Technology, Agile Methodology	
<u>Objectives</u>	 Inculcate the concepts and skills related to testing and quality assurance To empower the learner to evaluate and select appropriate testing methods and tools Develop Test first approach to software development. Inculcate the concepts and skills related to testing and quality assurance. Use various tools for testing and test automation To empower the learner to evaluate and select appropriate testing methods and tools. 	8 hours
	Levels of testing: Unit, Integration, system, Acceptance Testing Types of testing: White box and black box, various techniques – Cyclomatic complexity, equivalence class partitioning, boundary value analysis Functional and non-functional testing.	
	Test Driven Development: TDD frameworks and refactoring using Junit, pair programming	8 hours
	Debugging approaches and principles, debugging guidelines	4 hours
	Testing tools and frameworks for Web and App development: Selenium, Jmeter, Jira, Bugzilla, API testing, DB testing,	4 hours
	Continuous Integrations and DevOPs	2 hours
	Quality Assurance: Reviews, walkthroughs, quality frameworks	4 hours
	Tools to be discussed during Tutorial Slots -	10 * 3 = 30 hours
	Test management tool: keep track of all the testing activity, fast data analysis, manage manual and automation test cases, various environments, and plan and maintain manual testing	3 hours
	Bug tracking tool: commonly used bug tracking tools such as: Jira, Bugzilla	3 hours
	Automated testing tool: how to change the manual test cases into a test script with the help of some automation tools. commonly used automation testing tools: Selenium	3 hours
	Performance testing tool: test the performance of the software or an application. Performance testing tools such as Apache JMeter, LoadRunner	3 hours
	Cross-browser testing tool: to test application on multiple browsers , perform compatibility testing through various browsers by using cross-browser testing tools such as LambdaTest, Sauce Labs	3 hours
	Integration testing tool: test the interface between modules and find the bugs. Some of the most used integration testing tools : Citrus, FitNesse	3 hours
	Unit testing tool using Junit/NUnit/phpunit and refactoring tools	3 hours

	Mobile/android testing tool to check the usability, functionality,	3 hours
	security, and consistency of the application.	
	Use of tools of mobile testing such as Appium	
	GUI testing tool	3 hours
	GUI testing:Navigation validation, verify the check screens, data	
	integrity validation, verification of usability situations, and also check	
	the numeric, date field formats.	
	Security testing tool authorization, confidentiality, authentication,	3 hours
	and availability types of aspect SonarQube	
	ZAP	
Pedagogy	Classroom/handson instructions, assignments, mini projects.	
	Demo of tools, Classroom/handson instructions, assignments, mini	
	projects	
References/	1. Agile Java: Crafting Code with Test-Driven Development, Prentice	
Readings	Hall; 1st edition, 2005	
	2.A Practitioner's Guide to Software Test Design, Lee Copeland,	
	Artech House	
	3. Refactoring: Improving the Design of Existing Code by Martin	
	Fowler, Pearson, 2009	
	4. Code Complete- Steve McConnel, Microsoft Press US; 2nd edition,	
	2004	
	Websites and online tutorials	
<u>Course</u>	At the end of the course, the students will be able to –	
<u>Outcomes</u>	1. design test cases	
	2. apply agile and lean principles in software design	
	3. configure and use various test automation tools	
	4. adopt best practices in software testing and quality assurance	
	5. use testing tools for all aspects of software testing	
	6. evaluate and select appropriate tools for a software project	

Course Code: CSA-611

Title of the Course: Artificial Intelligence Number of Credits: 4 (2L-2T-0P)

Effective from A	Y: 2022-23	
Prerequisites	Strong knowledge of Mathematics; Good command over	
for the course	programming languages; Good Analytical Skills; basic knowledge of	
	Statistics and modelling.	
Objectives		
Objectives:	This course provides students with an in-depth introduction to the	
	five main tribes of Artificial Intelligence-namely Symbolists,	
	Connectionists, Bayesians, Evolutionaries and Analogizers.	
	Symbolists systems include Decision trees, Random decision forests,	
	Production rule systems, inductive programming.	
	Connectionists include Artificial Neural nets, Reinforcement learning,	
	Deep learning	
	Bayesians include Hidden Markov Chains-Graphical Models-Causal	
	inference	
	Evolutionary -biologist - biologically inspired computing	
	Analogizers (psychologists) include k nearest neighbour algorithm.	
	This course is aimed at exploring all facets of AI and obtain in-depth	
	understanding of this facilitating field.	
	Unit-1 :-Introduction to AI :- The roots of Artificial Intelligence - Five	1 hour
Content:	tribe of AI -The symbolist - connectionist -Evolutionaries-The	
	Bayesians-Analogizer	
	, .	F b aa
	, , , , , , , , , , , , , , , , , , , ,	5 hours
	Problems by Searching -Search in Complex Environments -	
	Adversarial Search and Games -Constraint Satisfaction Problems .	
	Knowledge, reasoning, and planning Logical Agents - First-Order	
	Logic - Inference in First-Order Logic - Knowledge Representation -	
	Automated Planning .	
	Unit-3 :-Bayesian Tribe :- Uncertain knowledge and reasoning -	5 hours
	Quantifying Uncertainty -Probabilistic Reasoning-Probabilistic	
	Reasoning over Time -Probabilistic Programming -Making Simple	
	Decisions -Making Complex Decisions -Multiagent Decision Making	
	Unit-4 :- Connectionism tribe :- Machine Learning - supervised	5 hours
		JIIOUIS
	learning -unsupervised learning-Artificial neural networks-	
	perceptron-MLP-deep neural network -CNN-RNN-LSTM -hop field	
	neural network	
	Unit-5 :- Evolutionaries tribe:- An Overview of Combinatorial	5 hours
	Optimization-An Introduction to Genetic Algorithms-Theoretical	
	Foundations of Genetic Algorithms-Genetic Algorithms in Engineering	
	and Optimization-Genetic Algorithms in Natural Evolution-Simulated	
	Annealing and Tabu Search GALib-Genetic Algorithm Optimization	
	Toolbox (GAOT) under Matlab.	
	Unit-6 :- Analogizers :- constrained optimization ,Margin and SVM-	5 hours
	hard margin and soft margin, non-linearity - kernel- different types of	
	kernels-k nearest neighbors	
	Unit 7 :- Communicating, perceiving, and acting-Natural Language	4 hours
	Processing -Deep Learning for Natural Language Processing -	
	Computer Vision -Robotics	
	Conclusions- Philosophy, Ethics, and Safety of AI - Explainable AI - The	
	Future of Al	
		10 * 2 22
	Problem Solving during Tutorial Slots	10 * 3 = 30
		hours
	1. Real-world path planning for pedestrians. In the first part,	
	I. Real-world path planning for pedestillaris. In the first part,	

	students implement A* over a map that includes roads/paths	
	as well as elevations. In the second part, students collect	
	actual data through walking around the real world, and the	
	cost model is then learned via regression techniques.	
	2. Solve maze via search -this assignment involves formulating	
	maze-solving as a search problem, image processing (via	
	OpenCV) as a step in maze-solving, as well as guided	
	performance/quality analysis of representational parameters.	
	3. Within the context of an artificial intelligence course, students	
	are taught to identify ethical issues within technical projects	
	and to engage in moral problem solving with regard to such	
	issues.	
	4. Neural network for face recognition using tensor flow -build	
	feedforward neural networks for face recognition using	
	TensorFlow. Students then visualize the weights of the neural	
	networks they train. The visualization allows students to	
	understand feedforward one-hidden layer neural networks in	
	terms of template matching, and allows students to explore	
	overfitting.	
	5. Organic path finding -Students develop a "human-like"	
	pathfinding technique by specializing a generic search	
	algorithm with custom action cost and heuristic cost	
	functions. Students apply classical search algorithms and	
	reflect on example organic paths to achieve "human-like"	
	pathfinding.	
	6. Implement a genetic algorithm in Python to evolve strategies	
	for Robby the Robot to collect empty soda cans that lie	
	scattered around his rectangular grid world.	
	7. Compare the performances of a brute-force search and a	
	search employing the Minimum Remaining Values (MRV)	
	heuristic in solving Sudoku puzzles.	
	 The students need to understand and extend an existing implementation of the back-propagation algorithm and use it 	
	to recognize static hand gestures in images.	
	9. Students learn about feedforward neural networks and the	
	backpropagation algorithm by implementing a perceptron	
	network for AND and XOR Boolean functions and, given an	
	implementation of a feedforward network, learn digit	
	recognition using the MNIST data set.	
	10. In this assignment students extend a Tic Tac Toe program to	
	Ultimate Tic Tac Toe and implement a different search	
	strategy than the example code.	
	strategy than the example code.	
Pedagogy:	Lectures/ tutorials/assignments/self-study.	
References/	Main Reading :-	
Readings	1. Master algorithm by pedro domingos	
_	2. Artificial Intelligence -Modern approach -Russel and Norvig- 4th	
	Edition	
	3. Hands on Machine learning with sci-kit learn and tensorflow-	
	Orellie	
	4. Deep learning with python by Francois -	
	5. Elements of statistical learning - Trevor Hastie, Robert and Jerome	
	-springer.	
	6. Bayesian reasoning and machine learning - David barber	
	7. Genetic algorithm by David E Goldberg.	

	- [
	8. Artificial Intelligence- A Modern Approach (3rd edition) by norvig ,
	russel
	9. Artificial Intelligence By Example-2nd edition by Denies
	Rothman, PACKT
	10. Artificial Intelligence Engines: A Tutorial Introduction to the
	Mathematics of Deep Learning
	11. Human Compatible: Artificial Intelligence and the Problem of
	Control by Stuart Russel
	References
	1. Artificial Intelligence - A guide for thinking humans by Melaine
	Mitchell.
	2. A world without work - by Daniel susskind.
	3. Genius Makers -Cade Metz
	4. what computer still cannot do by Hubert Dreyfus
	5. The alignment problem -Brian Christian
	6. Clara and sun by Kazuo Ishiguro
	7. Rebooting AI by Gary Marcus and Ernest Davis
	8. Four futures -Peter Frase
	9. Flake, The Computational Beauty of Nature, MIT Press, 1998.
	10. von Neumann, The Computer and the Brain. Yale University Press,
	1958
	11. https://formtek.com/blog/artificial-intelligence-the-five-tribes-of-
	ai/
<u>Course</u>	By the end of the course , students will be able to -
<u>Outcomes</u>	 understand a wide variety of AI algorithms.
	 learn to apply different tribes in different applications.
	 understand how to apply a variety of learning algorithms to data.
	 understand how to perform evaluation of learning algorithms and
	model selection.
	 further learn to understand the need to understand Master
	algorithm - unification of all algorithms to solve complex
	problems.
	 carry out the mini project work with respect to the different
	paradigms.

Course Code: CSA-612

Title of the Course: MLOps

Number of Credits: 4 (2L+2T+0P) Effective from AY: 2022-23

Effective from AY: 2022-23			
Prerequisites for the course	Familiarity with linear algebra, probability theory, machine learning , familiarity with python.		
Objectives:	This course is aimed at any one who wishes to explore deep learning from scratch. This course offers a practical hands on exploration of deep learning, avoiding mathematical notation, preferring instead to explain quantitative concepts through programming using python API		
<u>Content:</u>	Unit 1 . Introduction to MLOps Rise of the Machine Learning Engineer and MLOps-What Is MLOps?-DevOps and MLOps-An MLOps Hierarchy of Needs-Implementing DevOps-Configuring-Continuous Integration with GitHub Actions-DataOps and Data Engineering- Platform Automation-MLOps	3 hours	
	Unit 2 . MLOps Foundations-Bash and the Linux Command Line-Cloud Shell Development Environments-Bash Shell and Commands-List Files Run CommandsFiles and Navigation-Input/Output-Configuration- Writing a Script-Cloud Computing Foundations and Building Blocks- Getting Started with Cloud Computing- minimalistic python revision- Descriptive Statistics and Normal Distributions-Optimization-Machine Learning Key Concepts-Doing Data Science-Build an MLOps Pipeline from Zero	3 hours	
	Unit 3 . MLOps for Containers and Edge Devices Containers-Container Runtime-Creating a Container Running a Container-Best Practices- Serving a Trained Model Over HTTP-Edge Devices-Coral Azure Percept-TFHub-Porting Over Non-TPU Models-Containers for Managed ML Systems-Containers in Monetizing MLOps-Build Once, Run Many MLOps Workflow	3 hours	
	Unit 4 . Continuous Delivery for Machine Learning Models-Packaging for ML Models-Infrastructure as Code for Continuous Delivery of ML Models-Using Cloud Pipelines-Controlled Rollout of Models-Testing Techniques for Model Deployment	3 hours	
	Unit 5 . AutoML and KaizenML-AutoML-MLOps Industrial Revolution- Kaizen Versus KaizenML-Feature Stores-Apple's Ecosystem-Apple's AutoML: Create ML-Apple's Core ML Tools orGoogle's AutoML and Edge Computer Vision or Azure's AutoMLor AWS AutoML-Open Source AutoML Solutions-Ludwig-FLAML-Model Explainability	3 hours	
	Unit 6 . Monitoring and Logging-Observability for Cloud MLOps- Introduction to Logging-Logging in Python-Modifying Log Levels- Logging Different Applications-Monitoring and Observability-Basics of Model Monitoring-Monitoring Drift with AWS SageMaker-Monitoring Drift with Azure ML	3 hours	
	Unit 7 . MLOps for AWS-Introduction to AWS-Getting Started with AWS Services-MLOps on AWS-MLOps Cookbook on AWS-CLI Tools- Flask Microservice-AWS Lambda Recipes-AWS Lambda-SAM Local- AWS Lambda-SAM Containerized Deploy-Applying AWS Machine Learning to the Real World	3 hours	
	Unit 8. Machine Learning Interoperability-Why Interoperability Is Critical-ONNX: Open Neural Network Exchange-ONNX Model Zoo- Convert PyTorch into ONNX -Convert TensorFlow into ONNX-Deploy ONNX to Azure-Apple Core ML-Edge Integration Unit 9 : Building MLOps Command Line Tools and Microservices-	3 hours 3 hours	
	one of building whops command the roots and wheroservices-	5 110015	

Course code: CSA-613

Title of course: IoT Application Development

Number of Credits: 4 (2L-2T-0P) Effective from AY: 2022-23

Effective from A		[]
<u>Prerequisites</u>	Programming skills, basic knowledge of electronics, Basics of	
for the course	networking	
Objectives	The basic objectives are:	
	 To introduce the concept of the Internet of Things and its 	
	applications in various domains	
	• To explore the different protocols and communication methods	
	used in IoT systems	
	 To provide a working knowledge of Node-RED, a popular 	
	programming tool for developing IoT applications	
	• To equip students with the skills to design and build IoT systems	
	for a variety of use cases	
<u>Content</u>	Fundamentals of IoT	8 hours
	 Understanding IoT and its applications 	
	 IoT architecture and components 	
	 Introduction to sensors and actuators 	
	IoT protocols and communication	8 hours
	 Wired and wireless communication protocols 	
	• Overview of IoT protocols: MQTT, CoAP, HTTP, WebSocket, etc.	
	 LoRaWAN and its applications 	
	Cloud Computing for IoT	8 hours
	Cloud computing fundamentals	
	Cloud services for IoT	
	Cloud platforms for IoT	
	 IoT data management and storage on the cloud 	
	IoT Security and Privacy	6 hours
	 IoT security risks and challenges 	
	 IoT security protocols and practices 	
	 IoT privacy concerns and regulations 	
	Assignments to be discussed and carried out during the Tutorial	
	Slots	
	Introduction to Node-RED	
	 features, architecture, and installation 	6 hours
	• Building the flow: understanding nodes, messages, and flows	
	• Debugging the flows: using the debug node, logging, and error	
	handling	
	Data acquisition and visualization	8 hours
	 Using sensors and actuators in Node-RED 	
	 Connecting to sensors and devices: using input nodes and 	
	protocols (MQTT, HTTP, WebSocket, etc.)	
	• Data processing and manipulation: using function nodes and	
	JavaScript	
	• Building dashboards: using the Node-RED Dashboard module for	
	data visualization and control	
	 Using APIs and cloud services in Node-RED 	
	IoT protocols and communication	8 hours
	• Overview of IoT protocols: MQTT, CoAP, HTTP, WebSocket, etc.	
	• Setting up an MQTT broker: installation, configuration, and	
	security	
	 MQTT publishing and subscribing: using MQTT nodes in Node-RED 	

	- Duilding on MOTT based Lat puttern internation concern	
	• Building an MQTT-based IoT system: integrating sensors,	
	actuators, and applications	
	Advanced topics in IoT and Node-RED	8 hours
	 Node-RED extensions and plugins 	
	• Deploying and scaling Node-RED: hosting Node-RED flows on	
	cloud platforms like AWS	
	IoT Project Development with Node-RED	
	• Developing IoT projects using Node-RED and sensors, actuators,	
	and communication protocols	
Pedagogy	Assignments / tutorials / peer-learning / troubleshooting/ case	
	studies	
References/	1. Buyya, Rajkumar, and Amir Vahid Dastjerdi, eds. Internet of	
Readings	Things: Principles and paradigms. Elsevier, 2016.	
	2. Raj, Pethuru, and Anupama C. Raman. The Internet of Things:	
	Enabling technologies, platforms, and use cases. CRC press, 2017.	
	3. "Internet of Things: A Hands-on Approach", by Arshdeep Bahga	
	and Vijay Madisetti (Universities Press)	
	4. Research papers	
	5. Hagino, Taiji. Practical Node-RED Programming: Learn powerful	
	visual programming techniques and best practices for the web and	
	IoT. Packt Publishing Ltd, 2021.	
	6. https://cookbook.nodered.org/	
Courso	After completion of the course, the learner will be able to:	
<u>Course</u> Outcomos	•	
<u>Outcomes</u>	1. design some IOT-based prototypes	
	2. understand the various protocols and communication methods	
	used in IoT systems, including MQTT, CoAP, and HTTP.	
	3. implement various protocols and communication methods used in	
	IoT systems, including MQTT in NodeRED	
	4. design and build IoT systems for a variety of use cases, including	
	smart home automation,	

Course Code: CSA-621

Title of Course: Corporate Skills

Number of Credits: 4 (4L-0T-0P)

Effective from A		[]
Prerequisites	Programme prerequisites	
for the course		
<u>Objectives</u>	The course is aimed at learners to gain practical and essential skills to	
	work effectively in the industry.	
<u>Content</u>	Understanding the Industry and Companies	8 hours
	Understanding the evolution of the industry and technology and	
	methods used	
	Understanding Innovation and how new Impactful ideas have	
	evolved	
	• Types of companies and typical organization - Who does What	
	Understanding companies - Domain, Offering, Customers, Strategy	
	Company Culture & Professionalism	
	Understanding companies financially	20.1
	Understanding Execution and day to day work in organizations	20 hours
	 Product Solutioning and Development - Understanding beyond the 	
	theory	
	 Product Management - Understanding beyond the theory 	
	Quality - Understanding beyond the theory	
	 Solutioning and Design - A key step between requirements and 	
	delivery	
	 Site Reliability, Devops, Support - Understanding beyond the 	
	theory	
	Common Metrics and Measurements	
	Key Tools in a Product Life Cycle	
	 Issues Management and Lifecycle - A key aspect of customer Satisfaction 	
	 Software delivery models and Release cycles - how they work in 	
	the real world	
	 Usability by end user - UI/UX and other key concepts and its 	
	importance	
	 Understanding Data engineering and Data science 	
	• Writing good product or service specifications which can be	
	translated to building a good product	
	 Understanding data from collection to modelling to usage 	
	How to do effective product, competition or technical research	
	and use it effectively	
	• testing and testing automation - understand beyond the theory	
	• what is effective program management and scrum management	
	• Designing for performance, scalability and reliability in products	
	• Effective root cause analysis and building products which can	
	allow quicker RCA	
	• Understanding dev ops and its importance and role in a company	
	• Understanding product architecture with respect to a monolith or	
	modularity and its pros and cons	
	 Governance, alerts and monitoring and its importance 	
	Useful skills to work effectively in an organization	20 hours
	 Continuous learning and improvement - An essential skill 	
	Ownership and Leadership	
	• Analyzing one's career path and making educated judgements	
	Time management and multi-tasking model	
L		iI

	 Being an effective Mentee and Mentor 	
	 Being Inquisitive: Why is asking questions more difficult than 	
	giving answers?	
	Effective Articulation and Communication	
	 Introducing yourself & Making Effective Presentations 	
	 Problem breakdown and resolving model 	
	Effective project Management	
	 Mind Mapping - A powerful technique to learn 	
	 Must have tips to succeed in any career 	
	Mini-Project	12 hours
Destaura		
<u>Pedagogy</u>	Hands-on assignments / tutorials / peer-teaching / mini-project /	
	case studies	
<u>References/</u>	All the course material is based on real life industry practices,	
<u>Readings</u>	experiences and case studies and focusedon application of skills and	
	knowledge. The course is being imparted by experienced industry	
	professionals who are still working in the industry and leading critical	
	functions and teams and have the pedigree of building products,	
	managing and delivering to customers, managing teams,	
	entrepreneurs or being part of core teams in software product or	
	services organization.	
Course	At the end of the course, the students will be able to -	
Outcomes	1. understand core concepts. (To measure this outcome, Question	
	and Answers, Situations analysis, case studies would be used)	
	2. analyze the problem and apply the appropriate concept. (To	
	measure this outcome, Projects and Case studies would be used)	
	3. give reasoning. (To measure this outcome, Problem analysis and	
	solving techniques would be taught and used, Question and	
	answers and use cases would be utilized)	
	4. apply core concepts to new situations. (To measure this outcome,	
	Group projects and Case studies based homework would be used)	
L		

(Back to top)