ATMANIRBHAR BHARAT Swayampurna goa

Goa University

Taleigao Plateau, Goa-403 206 Tel : +91-8669609048 Email : registrar@unigoa.ac.in Website : www.unigoa.ac.in

(Accredited by NAAC)

Date: 17.05.2024

GU/Acad -PG/BoS -NEP/2024/111

गोंय विद्यापीठ

फोन : +९१-८६६९६०९०४८

ताळगांव पठार,

गोंय -४०३ २०६

Ref: GU/Acad -PG/BoS -NEP/2023/102/36 dated 15.06.2023

CIRCULAR

In supersession to the above referred Circular, the Syllabus of Semester III to VIII of the **Bachelor of Science in Mathematics** Programme approved by the Standing Committee of the Academic Council in its meeting held on 06th, 07th and 21st March 2024 is enclosed. The syllabus of Semester I and II approved earlier is also attached.

The Dean/ Vice-Deans of the School of Physical and Applied Sciences and Principals of the Affiliated Colleges offering the **Bachelor of Science in Mathematics** programme are requested to take note of the above and bring the contents of the Circular to the notice of all concerned.

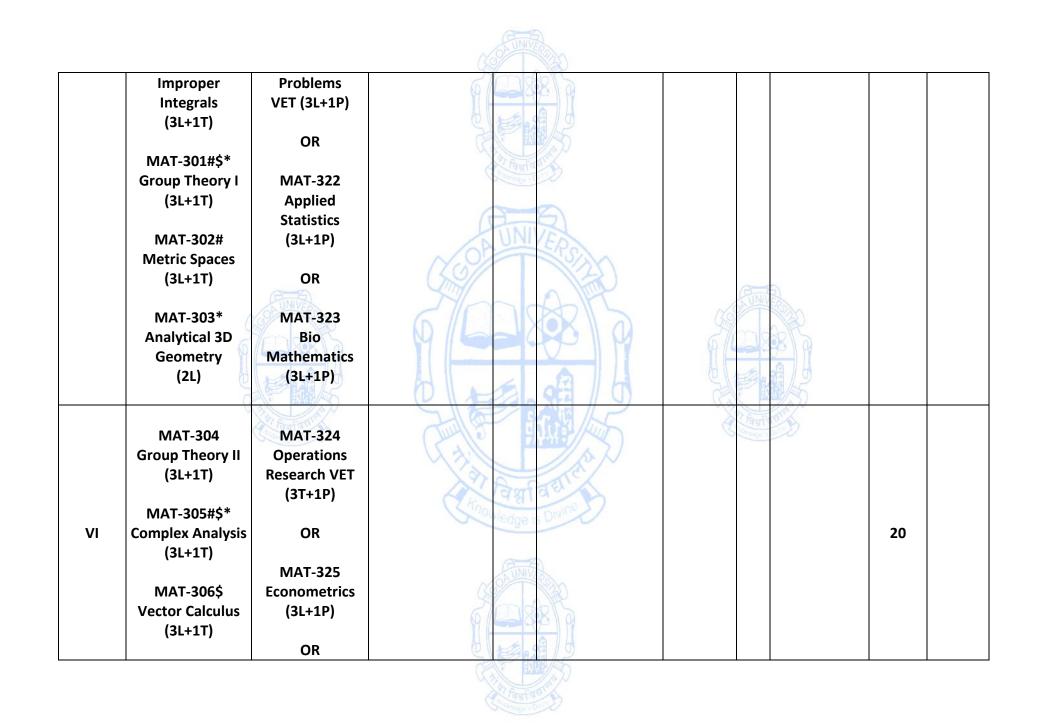
> (Ashwin Lawande) Assistant Registrar – Academic-PG

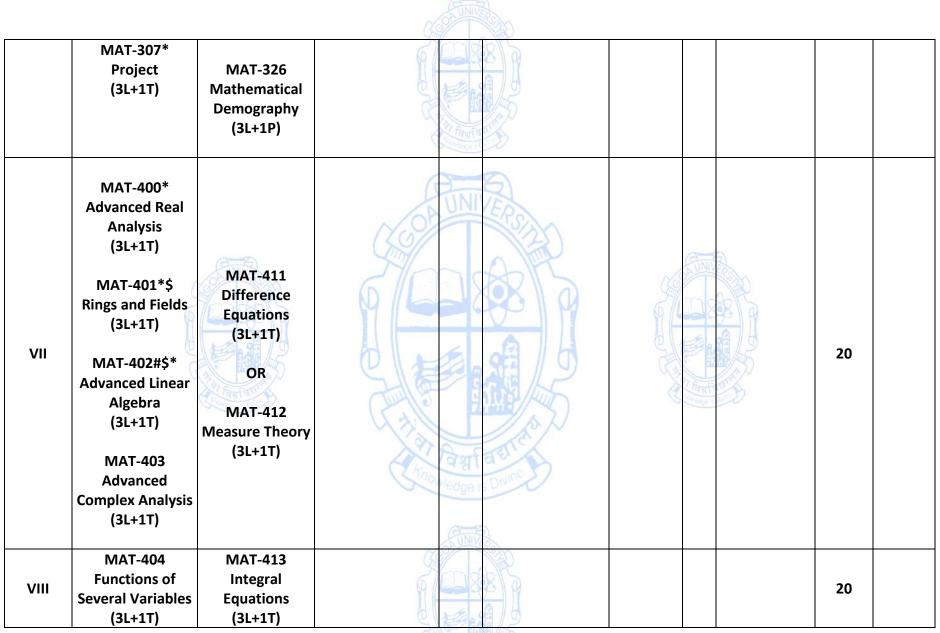
To,

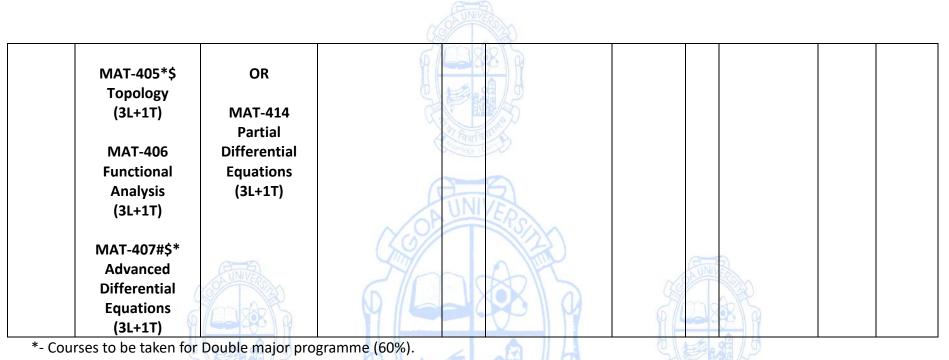
The Principals of Affiliated Colleges offering the Bachelor of Science in Mathematics Programme.

Copy to:

- 1. The Director, Directorate of Higher Education, Govt. of Goa
- 2. The Dean, School of Physical and Applied Sciences, Goa University.
- 3. The Vice-Deans, School of Physical and Applied Sciences, Goa University.
- 4. The Chairperson, BOS in Mathematics.
- 5. The Controller of Examinations, Goa University.
- 6. The Assistant Registrar, UG Examinations, Goa University.
- 7. Directorate of Internal Quality Assurance, Goa University for uploading the Syllabus on the University website.




	Pr	ogramme Structur	e for Semester I to	o VIII U	nder Graduate Progra	amme - N	lather	natics		
Semester	Major -Core	Minor	мс	AEC	SEC	I	D	VAC	Total Credits	Exit
I	MAT-100* Foundational Mathematics (3L+1P)	MAT-111 Elementary Mathematics (3L+1T) OR	MAT-131 Mathematical Techniques in Competitive Exams (3L)		MAT-141 Numerical Analysis using Python/SageMath (1L+2P)				20	
11		MAT-112 Elementary Statistics (3L+1T)	MAT-132 Discreptive Statistics (3L)		MAT-142 (Statistical Methods Using R/SPSS/PSPP (1L+2P)					MAT- 161 (4)*
III	MAT-200 #\$* Calculus of One Variable (3L+1T) MAT-201 Ordinary Differential Equations (3L+1T)	MAT-211 Matrix Algebra (3L+1P) OR MAT-212 Enumerative Combinatorics (3L+1P)	MAT-231 Basic Financial Mathematics (3L)		MAT-241 Technical Typesetting Using LaTeX (1L + 2P)	C.			20	


			CESSE UNIVERSITY			
		OR MAT-213 Transformation Techniques (3L+1P)				
IV	MAT-202* Analysis (3L+1T) MAT-203#\$* Linear Algebra (3L+1T) MAT-204 Basic Number Theory (3L+1T) MAT-205#* Analytical 2D Geometry (2L)	MAT-221 Probability Theory VET (3T+1P) OR MAT-222 Theory of Equations (3L+1P) OR MAT-223 Graph Theory (3L+1P)			20	MAT- 162 (4)@
v	MAT-300* Riemann Integration and	MAT-321 Linear Programming		Internship (2)	20	

\$- Courses to be taken for Double major programme (40%).

#- Courses to be taken for Multidisciplinary/Interdisciplinary programmes.

@- List of Exit Courses will be provided separately.

Name of the Programm Course Code	: MAT-100	
Title of the Course Number of Credits Effective from AY	: Foundational Mathematics : 4 (3L+1P) : 2023-24	
Prerequisites for the Course	Basic 12 th standard mathematics.	
Course Objectives	To develop logical reasoning among students in order to be organize all aspects of mathematics in such a way that at the t the most fundamental concepts, assumptions and principles, other aspects depend on this base.	ase are
Content	Townships o Dails	No. of Hours
Unit I	Statements and Logic : Statements; Statements with quantifiers; Compound statements; Implications; Proofs in Mathematics. Sets : Basic Terminologies; Operations on sets; Family of sets;	03 06
Unit II	Power sets;Cartesian product of sets.Functions:Basic definitions:One-One,Onto functions andBijections;Composition of functions;Inverse of a function;Image of subsets under functions;Inverse image of subsetsunder functions.	12
Unit III	Relations : Relation on sets; Types of relations; Equivalence relations; Equivalence classes and partitions of sets. Induction Principles : The Induction Principle; The Strong Induction Principle; The Well – Ordering Principle; Equivalence of the three principles.	05 05
Unit IV	System of Linear Equations:Solutions & Elementary Operations:Linear system ofequations and their solutions; Equivalence of two systems;Elementary operations on equations; elementary rowoperations.Gaussian Elimination: Row reduced echelon forms; Gaussianalgorithm; Rank.Homogeneous Equations:Sufficient condition for theexistence of a non-trivial solution.Determinants:The Laplace Expansion: Determinants and their properties.Determinant & Matrix inverses: Product theorem and otherrelated theorems (Statements of these theorems only.However, the idea of the proof, though not a part of thesyllabus, is encouraged); Adjoint formula for A^{-1} ; Cramer's	08

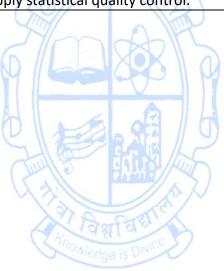
	30 hours are to be dedicated for working with exercises	30
	and solving problems on the following:	50
	1. Identifying and using quantifiers, Negating	
	statements with single and multiple quantifiers,	
	Compound statements with quantifiers, Conjunction	
	and disjunction of statements, and Negation of a	
	compound statement.	
	2. Different forms of implications, Converse of	
	implications, Negating implications, and	
	Contrapositive of implications.	
	3. Different types of proofs in mathematics.	
	4. Operations on sets like union, intersection, set	
	difference, and complementation.	
	5. Identifying one – one and onto functions – I.	
Practical	6. Identifying one – one and onto functions – II.	
	7. Finding "natural" bijections between given sets and	
	finding the inverse of a bijective function.	
	8. Inverse image of subsets under functions.	
SINVES	9. Identifying the type of relation and Obtaining	al a
	equivalence classes of an equivalence relation.	3
amars	10. Using induction principles to establish statements.	312
A Resort A	11. Solving systems of linear equations using elementary	
0 100 10	operations.	
ALL INFO	12. Reducing a matrix to row – echelon form using	
A Frank and the	Gaussian algorithm.	X
Constanting a Diversion	13. Solving homogeneous systems of equations.	
	14. Computing determinants using the properties of	
	determinants.	
	15. Solving a system of equations using Cramer's rule.	
	Lectures/Practical/Self study.	
	Lectures should include theory and examples. Practical	to be
Pedagogy	exclusively dedicated for problem solving. The record of practic	al shall
	be maintained by students in a separate manual/journal duly c	ertified
	by the instructor.	
	1) Ajit Kumar, S. Kumaresan, and B. K. Sarma: A Foundation Co	ourse in
	Mathematics, Narosa Publishers, 2018.	
	(Principal Text)	
	2) W. K. Nicholson: Linear Algebra with Applications, 4 th E	Edition,
Defense /Deedlinge	McGraw – Hill Ryerson Limited, 2003. (Principal Text)	
References/Readings	3) Vipul Kakkar: Set Theory: Read it, Absorb it and Forget it,	Narosa
	Publishers, 2018.	
	4) Paul Halmos: Set Theory, Springer – Verlag, 1960.	
	5) S. Lipschitz: Schaum's Outlines: Theory and Problems of	Linear
	Algebra, McGraw Hill, 2009.	
	· · · · · · · · · · · · · · · · · · ·	

	The student will be able to,
	1. Infer the truth of various sentences and its equivalents and outline
	various properties of sets.
Course Outcomes	Examine and Identify the types of relations and functions.
	3. Make use of the strong and weak induction.
	4. Solve systems of linear equations.
	5. Discuss the properties of determinants.

Name of the Programm Course Code Title of the Course	: MAT-111 : Elementary Mathematics	
Number of Credits Effective from AY	: 4 (3L+1T) : 2023-24	
Prerequisites for the	Basic 12 th standard mathematics.	
Course	busic 12 standard mathematics.	
Course Objectives	To help students understand and acquire basic mathematical c and computational skills and apply these fundamental cond related disciplines.	-
Content	A CAMPANIAN CANADA CANA	No. of Hours
	Logic and Propositional Calculus: Propositions and Compound Statements; Basic Logical Operations; Propositions and Truth Tables; Tautologies and Contradictions; Logical Equivalence; Algebra of Propositions; Conditional and Biconditional Statements.	05
Unit I	Sets: Sets and their representation; The empty set; Finite and Infinite Sets; Equal Sets; Subsets; Power Set; Universal Set; Union and Intersection of sets; Venn Diagrams; Operations on Sets; Complement of a set. Relations and Functions: Cartesian product of sets; Relation and their types; Functions and their types; Algebra of functions; Composition of functions; Invertible functions; Binary operations.	04
Continue is Dir D	Limits: Geometric meaning of limits; Standard limits. Continuity: Geometric meaning of continuity; Continuous functions; Algebra of continuous functions; Examples of continuous functions; Discontinuities; Types of discontinuities.	02 04
Unit II	Differentiability: First principle of differentiation; Algebra of differentiability namely sum/product/quotient rule; Examples; Result that every differentiable function is continuous; Derivative of the composition; Chain rule; (Statements of these results only. However, the idea of the proof, though not a part of the syllabus, is encouraged) Examples; Optimization problems.	04
Unit III	Complex Numbers: Algebra of complex numbers; Modulus and Complex conjugate; Argand plane and polar representation. Vector Algebra: Types of vectors; Addition of vectors;	04
	Multiplication of a vector by a scalar; Dot product and cross product of vectors, and their geometrical interpretation;	06

	Concept and computation of gradient divergence, and our of	
	Concept and computation of gradient, divergence, and curl of a vector field.	
		.0
	equations; Order and Degree of a differential equation;	.0
	Solution of a differential equation; Types of solutions;	
Unit IV	Formation of a differential equation by eliminating arbitrary	
	constants; Methods of solving first – order and first – degree	
	differential equations.15 hours shall be utilized for solving the following:1	.5
	1. Constructing and understanding truth tables.	.5
	 Constructing and understanding truth tables. Problems on set theory. 	
	 Identifying types of relations. 	
	 Identifying types of relations. Identifying injective/surjective functions. 	
	 Computing the inverse of a bijective function. 	
	 6. Evaluating limits of functions. 	
	7. Testing the continuity/discontinuity of a function and	
	identifying the type of discontinuity.	
Tutorial	8. Using the various differentiation rules to find the	
	derivative of a given function.	
(269)	9. Finding the maximum value of functions.	
Smars	10. Finding the minimum value of functions.	2
M COOL M	11. Expressing complex numbers in polar form.	1
6 20 20 10	12. Solving problems involving gradient, divergence, and	9
215	curl.)
A CONTRACTOR	13. Forming a differential equation.	
Condenade - Dis.	14. Solving ordinary differential equations – I.	
	15. Solving ordinary differential equations – II.	
	Lectures/Tutorials/Self-study.	
	Lectures should include theoretical concepts and examples. Tutoria	al
Pedagogy	to be exclusively dedicated for problem solving. The record of	
	tutorials may be maintained by students in a separate notebook.	
	1) E. Mendelson: Shaum's Outlines: Beginning Calculus, 3rd Editi	ion,
	McGraw Hill Education, 2007.	-
	2) M. R. Spiegel, S. Lipschutz, J. J. Schiller, and D. Spellman: Shau	m's
	Outlines: Complex Variables, 2 nd Edition, McGraw Hill Education, 20)17.
Defense of Decelines	3) M. R. Spiegel, S. Lipschutz, and D. Spellman: Shaum's Outlin	nes:
References/Readings	Vector Analysis, 2 nd Edition, McGraw Hill Education, 2017.	
	4) R. Bronson: Shaum's Outlines: Differential Equations, 3rd Editi	ion,
	McGraw Hill Education, 2017.	
	5) S. Lipschutz, and M. L. Lipson: Shaum's Outlines: Discrete	
	Mathematics, 3 rd Edition, McGraw Hill Education, 2017.	

	The student will be able to,
	1. Identify the truth and falsity of a statement.
	2. Comprehend the concept of Sets, Relations, and Functions.
Course Outcome	3. Evaluate basic limits, Identify discontinuous functions, and Apply
Course Outcome	the techniques of differentiation.
	4. Construct the polar form of complex numbers.
	5. Compute the gradient, curl, and divergence.
	6. Formulate and Solve differential equations.



Name of the Programm		
Course Code	: MAT-112	
Title of the Course	: Elementary Statistics	
Number of Credits	: 4 (3L+1T)	
Effective from AY	: 2023-24	
Prerequisites for the	NIL	
Course		
Course Objectives:	This course is intended to familiarize students with or summarizing, analyzing data, and drawing appropriate con from it. The various tools and techniques are also intended to in day-to-day real – world problems.	nclusions be used
Content	Lines and David	No. of Hours
Unit	Introductory concepts: Definition and scope of Statistics; Concept of population and sample. Types of data: Quantitative; Qualitative; Attributes; Variates. Tabulation of data: Class intervals; Frequency tables. Presentation of data: Diagrams and graphs: Bar diagrams and their types; Pie charts; Frequency polygon; Histogram; Ogives. Consistency and independence of data with special reference to attributes. Scales of measurement: Nominal, Ordinal, Interval, Ratio. Measures of Central Tendency: Mathematical and Positional – Mean, Median, Mode, Quartiles, Percentiles. Measures of Dispersion: Range, Quartile deviation, Standard deviation, Coefficient of variation.	15
Unit II	Bivariate data : Definition; Scatter diagram. Correlation and Regression: Simple, Partial and Multiple Correlation (3 variables only); Rank correlation; Simple linear regression.	10
Unit III	Probability : Introduction; Random experiments; Sample space; Events and algebra of events; Definitions of Probability – Classical, Statistical, and Axiomatic; Conditional Probability; Addition and Multiplication theorem of probability; Independent events; Theorem of Total probability; Bayes' theorem and its applications.	10
Unit IV	Statistical Quality Control: Introduction; Causes of variation in quality; Objective, advantages, and techniques of SQC. Attribute data: P chart, U chart, C chart. Numerical data: X bar chart, R bar chart, S bar chart.	10

	Sampling techniques: Various methods of data collection; Census survey and sample survey.Sampling Methods: Simple random sampling; Systematic sampling; Stratified sampling; Clustered sampling.Non - probability Sampling Methods: Sampling; Consecutive sampling; Quota sampling; Purposive or Judgmental sampling; Snowball sampling.
Tutorial	 15 hours are to be dedicated for illustrations with specific examples and numerical exercises. The following topics are to be covered during practical: Data entry in Excel and basic tools in Excel. Drawing of Frequency tables for raw, grouped, and ungrouped data. Graphical representations using various diagrams. Finding Mean, Median, Mode. Finding Quartiles and Percentiles. Computing measures of dispersion, namely, Range, Quartile deviation, Standard deviation, and Coefficient of variation. Computing and Analyzing the various types of correlation. Finding the Rank correlation. Analysing Multiple correlation. Solving problems on the addition and multiplication theorem of probability. Solving problems on Bayes' theorem. Demonstration of quality control using X bar chart, R bar chart, S bar chart.
Pedagogy	Lectures/Tutorials/Self-study. Lectures should include theoretical concepts and examples. Tutorial to be exclusively dedicated for problem solving. In Unit I and II, more focus is to be kept on the applications of measures. The record of tutorials may be maintained by students in a separate notebook. Tutorial to be conducted using case studies/secondary data. The use of simple software like Excel during tutorial, wherever possible, is encouraged.
References/Readings	Principal Text

	1) S. C. Gupta: <i>Fundamentals of Statistics</i> , 7 th Edition, Himalaya
	Publishing House, 2018.
	Other Texts
	2) A. M. Goon, M. K. Gupta, and B. Dasgupta: Fundamentals of
	<i>Statistics, Vol. I</i> , 8 th Edition, The World Press, Kolkata, 2016.
	3) S. C. Gupta, and V. K. Kapoor: Fundamentals of Mathematical
	Statistics, 12 th Edition, S. Chand and Sons, Delhi, 2020.
	4) S. P. Gupta: Statistical Methods, S. Chand & Sons, 2017.
	5) S. Bernstein, and R. Bernstein: Schaum's Outlines: Elements of
	Statistics I – Descriptive Statistics and Probability, McGraw Hill, 2020.
	The student will be able to,
	1. Interpret data and graphically represent it.
	2. Calculate measures of central tendencies and variations.
Course Outcomes	3. Analyze correlation and regression.
	4. Solve problems in Probability theory.
	5. Understand different data sampling techniques.
	6. Apply statistical quality control.

Name of the Programm Course Code Title of the Course	e : B.Sc. Mathematics : MAT-131 : Mathematical Techniques in Competitive Exams		
Number of Credits Effective from AY	: 3 (3L) : 2023-24		
Prerequisites for the Course	NIL		
Course Objectives	To make students competent enough to answer com examinations like Banks, Post Office, SSC, LIC, CDS, CSAT, CAT GMAT, MAT, UPSC, CBI, CPO, Civil Services, Hotel Manag Railway, Police, Defence, etc.	, CMAT,	
Content	Townstry + Dail	No. of Hours	
Unit I	 Ratio and Proportion: Ratio; Comparison of ratios; Proportion. Mixture or Alligation: Mixture; Rule of mixture or allegation. Partnership: Types of partnerships; Types of partners. Problems Based on Ages: Rules for problems based on ages. 	15	
Unit II	 Work and Time: Basic rules related to work and time. Work and Wages: Important points. Pipes and Cisterns: Facts related to pipes and cisterns. Clock and Calendar: Clock; Calendar; Day Gain/Loss. 	15	
Unit III	 True Discount and Banker's Discount: True discount; Banker's discount. Speed, Time and Distance: Basic formulae related to speed, time and distance. Problems Based on Trains: Basic rule related to problems based on trains. Boats and Streams: Concepts and formulae on boats and streams. 	15	
Pedagogy	Lectures/Problem Solving/Self study.		
References/Readings	 R. Verma: Fast Track Objective Artithmtic, Arihant Publications Limited, 2017. (Principal Text) A. Sharma: How to Prepare for Quantitative Aptitude for CAT, 9th Edition, McGraw Hill, 2021. P. K. Mishra, and R. Mishra: Elementary & Advanced Mathematics For Competitive Exams, Source Books, 2018. R. S. Aggarwal: Quantitative Aptitude for Competitive Examinations, S. Chand Publications, 2017. R. Mathuriya: Mathematics for all Competitive Exams SSC (Pre./Mains), Sunita Publications, 2017. 		
Course Outcomes	The student will be able to, 1. Apply mathematical techniques in solving problems.		

4. Manage time in answering several questions appearing in the		Identify tricks in solving problems quickly. Employ various strategies to solve problems arising in various competitive exams.
exam.	4.	

Name of the Programm Course Code Title of the Course	: MAT-132 : Descriptive Statistics	
Number of Credits Effective from AY	: 3 (3L) : 2023-24	
Prerequisites for the Course	NIL	
Course Objectives:	To make students aware of various statistical tools and techni can be employed in data analysis and simple research.	ques that
Content		No. of Hours
Unit I	 Data Visualization Introduction to Statistics: Definition and scope of Statistics; Concepts of statistical population and sample; Variates and attributes. Types of Data: Quantitative and Qualitative data, Crosssectional and Time-series data, Discrete and continuous data. Different types of scales: Nominal, Ordinal, Interval and Ratio. Collection and Scrutiny of Data: Primary data, Secondary data – its major sources, Complete enumeration; Construction of tables with one or more factors of classification; Frequency distributions and cumulative frequency distributions and their graphical representations (Histograms, frequency polygon, Ogives). 	15
Unit II	Data Summarization Measures of Central Tendency: Mean, Median, Mode. Measures of Dispersion: Range, Quartile deviation, Mean deviation, Standard deviation, Coefficient of variation, Skewness and Kurtosis.	15
Unit III	Correlation and Regression Bivariate data: Scatter diagram; Karl Pearson's coefficient of correlation; Spearman's rank correlation coefficient. Bivariate Regression Analysis: Regression lines; Properties of regression coefficients; Residual variance. Principle of least squares and fitting of polynomials and exponential curves.	15
Pedagogy	Lectures/Problem Solving/Self study.	
References/Readings	 S. C. Gupta: Fundamentals of Statistics, 7th Edition, Publishing House, 2018. (Principal Text) A. M. Goon, M. K. Gupta, and B. Dasgupta: Fundam Statistics, Vol. I, 8th Edition, The World Press, Kolkata, 2016. 	-

	3) S. C. Gupta, and V. K. Kapoor: Fundamentals of Mathematical						
	Statistics, 12 th Edition, S. Chand and Sons, Delhi, 2020.						
	4) S. P. Gupta: Statistical Methods, S. Chand & Sons, 2017.						
	5) S. Bernstein, and R. Bernstein: Schaum's Outlines: Elements of						
	Statistics I – Descriptive Statistics and Probability, McGraw Hill, 2020.						
	The student will be able to,						
	1. Understand concepts of sample v/s. population and Identify						
	different types of scales.						
Course Outcomes	2. Distinguish between primary and secondary data and Organize the						
	Statistical data.						
	3. Calculate measures of central tendencies and variations.						
	4. Interpret correlation and regression.						

Name of the Programm		
Course Code	: MAT-141	
Title of the Course	: Numerical Analysis using Python/SageMath	
Number of Credits	: 3 (1L+2P)	
Effective from AY	: 2023-24	
Prerequisites for the	Basic 12 th standard mathematics.	
Course		
Course Objectives:	To make students aware of numerical methods that can be to obtain good approximate numerical solutions to problem not be able to be solved in a closed form and to effect software in these computations.	s that may
Content	Transformer - David	No. of Hours
Unit I	 Elementary Error Analysis: Numbers: Exact and Approximate; Significant digits; Errors: Absolute, Relative and Percentage errors; Examples. Solution of Algebraic and transcendental Equations: Bisection Method; Regula – Falsi Method; Secant Method; Newton – Raphson Method; Special Cases of Newton – Raphson Method like finding qth root of a positive real number 'd' and finding reciprocal of a positive real number 'd' without using division; Bairstow's Method; Remarks on convergence. (PROBLEMS IN THIS UNIT TO BE DONE IN PRACTICAL) 	05
Unit II	Calculus of Finite Differences: Operators Δ , ∇ , & E; Difference Tables; Properties of Δ , ∇ , & E; Fundamental Theorem of Difference Calculus; Expression of any value of a function in terms of leading term and leading differences of a difference table. Interpolation and Extrapolation: Newton's Forward and Backward Interpolation formulae; Central difference Interpolation formula; Lagrange's Interpolation formula; Newton's Divided Difference formula. (PROBLEMS IN THIS UNIT TO BE DONE IN PRACTICAL)	05
Unit III	 Numerical Differentiation and Integration: Differentiation formulae for equidistant arguments; General quadrature formula for equidistant ordinates (Newton – Cotes Formula or Gauss Legendre quadrature formulae); Trapezoidal rule and its Geometrical interpretation; Simpson's one – third rule; Simpson's three – eighth rule; Weddle's rule. Method of Least Squares: Fitting of straight line, Fitting of quadratic curve; Fitting of an exponential curve. 	05

Practical	 (PROBLEMS IN THIS UNIT TO BE DONE IN PRACTICAL) Out of the 60 total hours for practical, around 30 hours may be dedicated for manual problem solving. The remaining time of around 30 hours shall be utilized for executing the following computations using Python/SageMath: Finding roots of equations using Bisection method. Finding roots of equations using Regula – Falsi method. Finding roots of equations using Secant method. Finding roots of equations using Secant method. Finding roots of equations using Newton – Raphson method and Finding qth roots and reciprocals of equations using Newton – Raphson method. Finding roots of polynomials using Bairstow's method. Interpolating data using Newton – Gregory's Forward Difference Interpolation Formula. Interpolating data using Newton – Gregory's Backward Difference Interpolation Formula. Interpolating data using Central Difference Interpolation Formula. Interpolating data using Lagrange Interpolation Formula. Calculating the first and second order numerical derivative. Calculating the numerical integral using Simpson's 1/3rd and 3/8th rule. Fitting a straight line to a given data. 	60
Pedagogy	Lectures/Practical/Self study. Visualizations using software, wherever possible, is encoura	ged.
References/Readings	 B. S. Grewal: Numerical Methods in Engineering and Sci Programs in C & C++, Khanna Publishers, 2010. (Principal Te 2) A. N. Kamthane, and A. A. Kamthane: Programming and Solving with Python, McGraw Hill Education, 2017. P. P. Gupta, G. S. Malik, and J. P. Chauhan: Calculus Differences & Numerical Analysis, Krishna Prakashan Media, 4) S. S. Sastry: Introductory Methods of Numerical Analysis Hall India Pvt. Ltd., 2012. 	xt) d Problem c of Finite 2015.

	5) SAGE Documentation.				
	The student will be able to,				
	1. Find the roots of algebraic and transcendental equations.				
	2. Apply Interpolation to solve real life problems.				
Course Outcomes	3. Make use of the techniques of numerical differentiation and				
	integration.				
	4. Determine the best line/quadratic curve/exponential curve to fit				
	the give data.				
	5. Utilize Python/SageMath software to aid mathematical pursuits.				

Name of the Programm Course Code Title of the Course Number of Credits Effective from AY	: MAT-142 : Statistical Methods Using R/SPSS/PSPP : 3 (1L+2P) : 2023-24	
Prerequisites for the Course	NIL	
Course Objectives	To make students aware of various statistical methods th employed in data analysis, hypothesis testing and research.	at can be
Content		No. of Hours
Unit I	Introduction – Meaning and Scope: Definition of Statistics; Importance and scope of Statistics; Limitations of Statistics. Data Summarization: Measures of Central Tendency: Mean, Median, Mode. Measures of Dispersion: Range, Quartile deviation, Mean deviation, Standard deviation, Coefficient of variation; Skewness and Kurtosis. Graphical representation of various measures of location and dispersion: Bar Graphs, Histograms, Frequency polygons, Ogives, Pie Charts. Correlation and Regression Analysis: Introduction; Karl Pearson's coefficient of Correlation; Spearman's Rank correlation; Bivariate Linear Regression Analysis.	05
Unit II	 Theory of Probability: Introduction; Mathematical probability; Statistical probability; Axiomatic probability; Addition theorem of probability; Multiplication theorem of probability; Pair wise and mutual independence; Total probability theorem; Bayes' theorem. Random Variables: Random variable; Probability distribution of a Discrete Random Variable; Probability distribution of a Continuous Random Variable; Mathematical Expectations. Theoretical Distributions: Binomial distribution; Poisson Distribution; Normal Distribution. (PROBLEMS IN THIS UNIT TO BE DONE IN PRACTICAL) 	05
Unit III	Testing of Hypothesis : Interval Estimation; Testing of Hypothesis.	

	Lawson assessed a standard built of the standard built of	
	 Large sample tests: Introduction; Sampling of Attributes; Sampling of Variables. Parametric tests: Student's t distribution (Independent and Paired 't' test); One Way and Two Way ANOVA. Non-Parametric tests: Chi Square test; Mann-Whitney test; Kruskal Wallis test. (PROBLEMS IN THIS UNIT TO BE DONE IN PRACTICAL) 	05
Practical	 Out of the 60 total hours for practical, 40 hours may be dedicated for manual problem solving. The remaining 20 hours shall be utilized for executing the following computations using R/SPSS/PSPP: Importing data from CSV or Excel file. Data entry in R/SPSS/PSPP. Finding measures of central tendency, namely, mean, median and mode. Finding measures of dispersion, namely, range, quartile deviation, mean deviation and standard deviation. Graphical representations and their interpretations. Analyzing correlation and regression. Testing of hypothesis for single mean and difference of means using independent t- test and paired t-test. Testing of hypothesis regarding independence of attributes using Chi square test. Testing the hypothesis stating that the k independent samples have been drawn from the populations which have identical distributions using Kruskal Wallis test. Working with questionnaires for understanding the collected data and their analysis. 	60
Pedagogy	Lectures/Practical/Case study.	
References/Readings	 S. C. Gupta: Fundamentals of Statistics, 7th Edition, Publishing House, 2018. (Principal Text) A. M. Goon, M. K. Gupta, and B. Dasgupta: Fundam Statistics, Vol. 1, 8th Edition, The World Press, Kolkata, 2016. S. C. Gupta, and V. K. Kapoor: Fundamentals of Mate Statistics, 12th Edition, S. Chand and Sons, Delhi, 2020. S. P. Gupta: Statistical Methods, S. Chand & Sons, 2017. S. Bernstein, and R. Bernstein: Schaum's Outlines: Ele Statistics I – Descriptive Statistics and Probability, McGraw H 	nentals of thematical ements of
Course Outcomes	The student will be able to, 1. Calculate measures of central tendencies and variations	

Interpret correlation and regression. Solve problems in Probability theory.
Demonstrate and Infer based on various statistical tests using statistical software.

Name of the Prog	ramme	e :	: B.Sc. Mathematics						
Course Code	:	: MAT-200							
Title of the Course	e	:	Calculus of	f One Variable					
Number of Credits	s	:	3L+1T						
Effective from AY		:	2024-25	A-A					
Pre-requisites	Basic	12 th	standard	mathematics	and	а	Foundational	Course	in

Pre-requisites for the course:	Basic 12 th standard mathematics and a Foundational Cou Mathematics.	urse in
Course Objectives:	To develop the habit of critical thinking and solving problems involu- fundamental concepts on the Least Upper Bound (LUB) property, co and differentiability of functions of a single variable.	-
Content	Contraine - Distriction	No. of Hours (L+T)
Unit I	Real Number System: Algebra of real number system; Upper and Lower bounds of subsets of \mathbb{R} ; Least Upper Bound Property and its Applications; Absolute value and their properties.	11+3
Unit II	Real Sequences: Sequences and their convergence; Cauchy sequences; Monotonic sequences; Sandwich Lemma; Some important limits; Subsequences.	4+2
Unit III	Continuity: Continuous functions; Sequential criteria and $\epsilon - \delta$ definition of continuity; Intermediate value theorem; Extreme value theorem; Monotone functions; Limits; Uniform continuity and results in uniform continuity.	15+5
Unit IV	Derivatives and its Applications: Derivative of a function at a point; Geometric interpretation of a derivative; Algebra of derivatives; Chain rule; Properties of the derivative; Rolle's theorem, Lagrange's Mean Value Theorem, Cauchy's Mean Value theorem, and their geometric significance; Darboux theorem for differentiable functions; <u>Higher order derivatives' Taylor's</u> <u>theorem; Maclaurin's theorem; Leibnitz rule for higher order</u> <u>derivative of product of functions; Stationary points and their</u> <u>classification; Local maxima and Local minima; Condition for a</u> <u>stationary point to be local maxima and minima; Indeterminate</u> <u>forms of the type $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0, \infty, 0^0, 1^\infty, \infty^0$. (Only statements</u> <u>and examples on the topics underlined and in italics).</u>	15+5
Pedagogy:	Lectures/Tutorials/Self-study. Lectures should include theory and examples. Tutorial to be exc dedicated for problem solving.	clusively

	PRINCIPAL TEXT:					
	A. Kumar, and S. Kumaresan: A Basic Course in Real Analysis, CRC Press,					
	2014.					
	REFERENCES					
	1) M. Spivak: <i>Calculus,</i> Publish or Perish, Inc., 2008.					
	2) R. G. Bartle, and D. R. Sherbert: <i>Introduction to Real Analysis</i> , 4 th Edition,					
Reference/	Wiley, 2014.					
Reading:	3) S. Abbott: <i>Understanding Analysis,</i> 2 nd Edition, Springer Nature, 2016.					
	4) S. Narayan, and M. D. Raisinghania: <i>Elements of Real Analysis</i> , Revised					
	Edition, S. Chand Publications, 2016.					
	5) S. C. Malik, and S. Arora: <i>Mathematical Analysis</i> , 6 th Edition, New Age					
	International Publishers, 2022.					
	6) T. M. Apostol: <i>Mathematical Analysis</i> , 2 nd Edition, Narosa Publishing					
	House, 2002.					
	The student will be able to,					
	1. Explain the algebra and properties of the set of real numbers.					
	2. Analyze various real sequences, their properties, and examine their					
Course	convergence.					
Outcomes:	3. Prove and apply results in limits and continuity and disprove false					
Sand	statements.					
9 600	4. Prove and apply results in differentiability and disprove false					
h ba A	statements.					
KA CA						

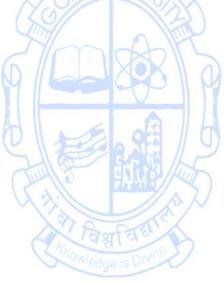
विश्वविद्याद

Name of the Prog Course Code Title of the Cours Number of Credit Effective from AY	: MAT-201 :e : Ordinary Differential Equations ts : 3L+1T	
Pre-requisites for the course:	Basic 12 th standard Mathematics	
Course Objectives:	This course helps in understanding basic concepts of Differential Ed It develops the ability to solve differential equations by analy numerical methods	
Content:	A CONTRACTOR OF A CONTRACTOR O	No. of Hours (L+T)
Unit I	Differential Equations of First Order : Some Basic Mathematical Models; Direction Fields; Solutions of Some Differential Equations; Classification of Differential Equations; Linear Equations; Bernoulli Equation; Method of Separation of Variables; First Order Equations; Linear and Nonlinear Equations; Exact Equations and Integrating Factors; Initial Value Problems; The Existence and Uniqueness Theorem for initial value problem. (Proof to be done).	15+5
Unit II	Differential Equations of Second Order : Homogeneous Equations with Constant Coefficients; Solutions of Linear Homogeneous Equations: The Wronskian; Complex Roots of the Characteristic Equation; Euler-Cauchy Equations, Repeated Roots; Reduction of Order; Nonhomogeneous Equations; Method of Undetermined Coefficients; Variation of Parameters. Higher Order Linear Equations: General Theory of <i>n</i> th Order Linear Equations with Constant Coefficients; Homogeneous and Non- Homogeneous Equations; The Method of Undetermined Coefficients, The Method of Variation of Parameters	14+4
Unit III	D-operator Method ; Inverse D – operators; Solution of $f(D)y = X$ where X = exp(kx), cos(kx), sin(kx), polynomials in x and their products; $\{1/(D^2+a^2)\}f(x)$, where $f(x)=Sin(ax)$, Cos(ax).	10+4
Unit IV	Numerical Solutions of First Order Ordinary Differential Equations: Euler's and Modified Euler's method; Taylor's Method; Runge – Kutta second and fourth order methods. (Formulae and examples only)	6+2
Pedagogy:	Lectures/ tutorials/assignments/self-study. Lectures should includ and examples. Tutorial to be exclusively dedicated for problem solv	

	 PRINCIPAL TEXTS: 1) Boyce, W. E. and DiPrima, R. C.: <i>Elementary Differential Equations and Boundary Value Problems</i>, 9th Edition, Wiley Publications, 2009.
	 Iyengar, T. K. V., Krishna Gandhi, B., Ranganatham, S. and Prasad, M. V. S. S. N.: <i>Mathematical Methods</i>, S. Chand Publications, 2008.
	REFERENCES:
	1. Bronson, Richard. <i>Differential equations</i> , 4th Edition. The McGraw Hill Companies, (1973).
	2. Daniel A. Murray: <i>Introductory Course in Differential Equations</i> , Orient (2003).
Reference/ Reading:	3. Earl A. Coddington, An Introduction to Ordinary Differential Equations, Dover Publications (1920).
	4. George F. Simmons: <i>Differential Equations with Applications and Historical Notes</i> , 2 nd Edition, McGraw Hill Education, 2017.
	5. Kreyszig, Erwin: Advanced Engineering Mathematics (Ed.), United States of America: Laurie Rosatone John Wiley & Sons. (2011).
	6. Raisinghania, M. D.: Ordinary and Partial Differential Equations, 20 th Edition, S. Chand Publications, 2020.
AND	7. Ross, S. L.: <i>Differential Equations,</i> 3 rd Edition, Wiley, 2007.
(<u>6</u>)	8. Sastry, S. S.: Introductory Methods of Numerical Analysis, Fifth Edition,
6 mar	PHI (2012)
	1. Identify the type of a given differential equation.
	2. Understand the concept and apply appropriate analytical techniques for
Course	finding the solution.
Outcomes:	3. Prove various results concerning the methods and existence and uniqueness of solutions of differential equations.
	4. Solve ordinary differential equations by using various numerical methods.

Name of the Progr Course Code Title of the Course Number of Credits Effective from AY	: MAT-202 : Analysis	
Pre-requisites	A course in Calculus of One Variable.	
for the course:		
Course Objectives:	To develop mathematical thinking so as to understand the und geometry behind various concepts in analysis and appreciate concepts in convergence of sequences and series of real number sequences and series of functions.	various
Content	ALINIA	Hours (L+T)
Unit	Real Sequences: Real Sequences; Range of a sequence; Convergence of a sequence; Uniqueness of limit of sequence; Bounded sequence; Algebra of sequences; Cauchy sequences; Monotonic sequences and their convergence; Sandwich Lemma; Some important limits; Sequences diverging to $\pm\infty$; Subsequences; Sequences defined recursively.	12+3
Unit II	Series of Real Numbers: Positive term series; Geometric series; Convergence of series; Cauchy's General principle of Convergence; Absolute convergence; Conditional convergence; Comparison test; Ratio test; Cauchy's root test; Integral test; Cauchy condensation test; Leibinitz test for Alternating series; Abel – Pringsheim theorem; Abel's summation by parts; Dirichlet's test; Dedekind's test; Rearrangements of an infinite series; Riemann's theorem; Cauchy product of two infinite series.	11+4
Unit III	Sequences of Functions: Examples of sequences of real – valued function; Pointwise convergence of sequences of real valued functions defined on a subset of Uniform convergence; Cauchy's condition for uniform convergence of a sequence of functions; Consequences of uniform convergence – Boundedness, Continuity, Integrability and Differentiability of the limit function.	11+4
Unit IV	Series of Functions: Convergence and Uniform convergence of series of functions; Cauchy's condition for uniform Convergence of series; Comparison test; Weierstrass' M-test for Uniform convergence; Dirichlet's test and Abel's test for uniform convergence; Power Series – Uniform convergence and term by term integration and differentiation; Examples of non-uniformly convergent series that can be integrated term by term; Abel's limit	11+4

	theorem; Taylor series for a smooth function; Binomial series;
	Weierstrass Approximation Theorem.
	Lectures/Tutorials/Self-study.
Pedagogy:	Lectures should include theory and examples. Tutorial to be exclusively
	dedicated for problem solving.
	PRINCIPAL TEXT:
	A. Kumar, and S. Kumaresan: A Basic Course in Real Analysis, CRC Press,
	2014.
	REFERENCES:
	1) M. Spivak: Calculus, Publish or Perish, Inc., 2008.
	2) R. G. Bartle, and D. R. Sherbert: <i>Introduction to Real Analysis</i> , 4 th Edition,
Reference/	Wiley, 2014.
Reading:	3) S. Abbott: Understanding Analysis, 2 nd Edition, Springer Nature, 2016.
_	4) S. Narayan, and M. D. Raisinghania: Elements of Real Analysis, Revised
	Edition, S. Chand Publications, 2016.
	5) S. C. Malik, and S. Arora: <i>Mathematical Analysis</i> , 6 th Edition, New Age
	International Publishers, 2022.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6) T. M. Apostol: Mathematical Analysis, 2 nd Edition, Narosa Publishing
SUNVER	House, 2002.
	The student will be able to,
6 COLORA	1. Analyze various real sequences, their properties, and examine their
	convergence.
Course Outcomes:	2. Apply various convergence tests to identify convergent series.
	3. Decide on uniform and pointwise convergence of a sequence of
Faufan	functions.
Chapterage - Dr	4. Judge the uniform and pointwise convergence of a series of functions.






Name of the Progr		
Course Code	: MAT-203	
Title of the Course	5	
Number of Credits		
Effective from AY	: 2024-25	1
Pre-requisites	Basic knowledge of Matrices and Matrix Operations along with Sy	stem of
for the Course:	Linear Equations	
Course	To display familiarity and knowledge of vector spaces,	linear
Objectives:	transformations and related concepts.	
Units	Content	No. of Hours (L+T)
Unit I	<b>Vector spaces:</b> Vector space; Subspaces; Sum and Direct sum of two subspaces; Quotient space; Linear combinations; Span; Generating sets; Linear dependence and linear independence; Bases; Replacement theorem; Dimension; Dimension of (W1+W2); Dimension of V/W.	10+3
Unit II	<b>Linear Transformation :</b> Linear transformation; Null space; Range of linear transformation; Nullity; Rank; Dimension theorem (Rank-Nullity theorem); Ordered basis; Coordinate vector; Matrix representation of linear transformation; Space of linear transformations L(V,W); Composition of linear transformations; Review of matrix multiplication and properties; Left-multiplication transformation; Inverse of a linear transformation; Isomorphism of vector space; Standard representation of a finite dimensional vector space; Change of coordinate matrix; Similar matrices.	12+5
Unit III	<b>Diagonalization:</b> Diagonalizable linear operator; Eigen values and Eigen vectors; Characteristic polynomial; Eigen spaces and Diagonalizability; Test for diagonalization; Diagonalization and direct sums.	13+4
Unit IV	Inner Product Spaces: Inner product; Norm of a vector; Orthogonal and orthonormal vectors; Gram-Schmidt Orthogonalization Process; Orthogonal Complement.	10+3
Pedagogy:	Lectures/Tutorials/Self-study. Lectures should include theory and examples. Tutorial to be exe dedicated for problem solving.	clusively
Reference/ Reading:	<ul> <li>PRINCIPAL TEXT:</li> <li>S. Friedberg, A. Insel, L. Spence: Linear Algebra, 4th Edition</li> <li>REFERENCES:</li> <li>1. Gilbert Strang: Linear Algebra and Applications, 4th Edition, 6 Learning</li> </ul>	Cengage

	2. Howard Anton and Chris Rorres: Elementary Linear Algebra, 11th Edition, Wiley 2014
	3. Keith Nicholson: Linear Algebra with Applications, 3rd Edition, PWS publishing company
	4. Kenneth Hoffmann and Ray Kunze: Linear Algebra, 2nd Edition, PHI, 1997
	5. S. Kumaresan: Linear Algebra, A Geometric Approach, PHI Learning Private Limited, Pearson.
	6. Sheldon Axler: Linear Algebra Done Right, 3rd Edition, Springer 2015.
	1. Display familiarity and knowledge of the concepts in the syllabus.
Course Outcomes:	2. Demonstrate proofs to establish truths related to the concepts in the syllabus.
	3. Choose the appropriate procedures and modify them, if needed, to solve method-based problems on the concepts in the syllabus.
	4. Analyze and solve unseen problems in Linear Algebra and invent mathematically precise arguments to justify their solutions.










Name of the Progr		
Course Code	: MAT-204	
Title of the Course	,	
Number of Credits	: 3L+1T	
Effective from AY	: 2024-25	
Pre-requisites	Basic 12 th standard mathematics.	
for the course:	Sonas	
Course Objectives:	The course aims at providing students with the basic knowled techniques in Number Theory. The course covers various top include, Divisibility Theory, Primes, Theory of Congruences, Ferm Theorem, Number Theoretic Functions, Euler's Generalization of Theorem and Some non linear Diophantine Equations. Students w the basic knowledge and techniques required for an elementary Algebra.	ics which at's Little Fermat's ill acquire
Content:	COA UNIVERS	No. of Hours (L+T)
Unit I	<b>Divisibility Theory in the Integers:</b> The Division Algorithm, The Greatest Common Divisor and its properties, The Euclidean Algorithm, The Linear Diophantine Equation ax+by=c <b>Primes and Their Distribution:</b> The Fundamental Theorem of Arithmetic, The Sieve of Eratosthenes, The Goldbach Conjecture.	12+4
Unit II	The Theory of Congruences: Definition and properties of Congruence, Linear Congruences and Chinese Remainder Theorem. Fermat's Theorem: Fermat's Little Theorem and Pseudoprimes, Wilson's Theorem	9+3
Unit III	Number-Theoretic Functions: The sum and Number of Divisors, The Mobius Inversion Formula, The Greatest Integer Function. Euler's Generalization of Fermat's Theorem: Euler's Phi Function, Euler's Theorem, Properties of the Phi-Function	15L+5T
Unit IV	<b>Some Nonlinear Diophantine Equation:</b> The solutions of the Diophantine Equation $x^2 + y^2 = z^2$ , Insolvability of the Diophantine Equations and $x^4 + y^4 = z^2$ and $x^4 - y^4 = z^2$ . Proof that the area of a Pythagorean triangle can never be equal to a perfect (integral) square.	9L+3T
Pedagogy:	Lectures/Tutorials/Self-study. Lectures should include theory and examples. Tutorial to be exclusively dedicated for problem solving.	
Reference/ Reading:	PRINCIPAL TEXT: David M. Burton, Elementary Number Theory, Seventh Edition, Hill, 2017	Mc Graw

	REFERENCES:		
	1. Gareth A. Jones and J. Mary Jones, Elementary Number Theory, First		
	Edition, Springer, 1998		
	<ol> <li>Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery, An Introduction to the Theory of Numbers, 5th Edition, Wiley, 2008.</li> </ol>		
	3. Joseph H. Silverman, A Friendly Introduction to Number Theory, Third Edition, Pearson, 2009.		
	4. Thomas Koshy, Elementary Number Theory with Applications, Academic Press, 2001.		
	5. Tom M. Apostol, Introduction to Analytic Number Theory, Narosa, 1998.		
	At the end of this course the student will be able to		
Course	1. Recollect the important definitions and theorems in the course.		
Course Outcomes:	2. Explain the various proofs and concepts in the course.		
Outcomes:	3. Solve various computational problems in the course.		
	4. Solve problems using the concepts learnt in the course.		









Name of the Prog Course Code Title of the Course	: MAT-205	
Number of Credits	s : 2L	
Effective from AY Pre-requisites	: 2024-25 Basic 12th standard Mathematics.	
for the course: Course Objectives:	To make students explore the principles of coordinate geometry, for on points, lines, circles and conic sections. To delve into geometric parametric equations, fostering a comprehensive understanding geometric structures and their Mathematical representations.	try and
Content:	Cholestane + Dat	No of Hours
	Metric Properties in Plane Fundamental Notations: Distance Formula; Section Ratio; Slope or Gradient; Locus; Area of Plane figures. Transformations and Invariants: Translation; Rotation; Invariants. Straight Lines in Plane Different Forms of a Line: Gradient Form; Point-gradient Form; Symmetric Form; Parametric Form; Two Point Form; Intercept Form; Normal Form; Algebraic Form. A Point in Relation to a Straight Line; Perpendicular Distance of a Point from a Straight Line; Pair of Straight Lines. Circles in Plane Different Forms: Centre Radius Form, Diametral Form, Three Point Form; A Point in Relation to a Circle; A line in Relation to a Circle; Tangents and Normals.	15
Unit II	Conics in Plane Parabola; Ellipse; Hyperbola; Tangents and Normals; Asymptotes. Metric Classification of Conics: Classification Scheme Polar Coordinate System: Polar Coordinates; Relation Between Cartesian and Polar Coordinates; Distance Between Two Points; Area of a Triangle; Equation of a Straight Line; Equation of a Circle; Equation of a Conic.	15
Pedagogy:	Lectures focusing on developing a strong conceptual understanding of 2D geometry through theoretical frameworks. Use of GeoGebra as a visual aid tool to enhance conceptual understanding. Guiding students to virtually manipulate geometric figures using GeoGebra for intuitive learning,	
Reference/ Reading:	PRINCIPAL TEXT: Chatterjee, D. (2009). Analytical Geometry Two and Three Dime Narosa Publishing House Pvt. Ltd., New Delhi. REFERENCES:	ensions.

	1. Das, A. N. (2009). Analytical Geometry of Two and Three Dimensions.
	New Central Book Agency (P) Ltd. New Delhi.
	2. Jain, P.K., Ahmad, K. (2014). <i>Textbook of Analytical Geometry</i> (3 rd ed.).
	New Age International Publishers, New Delhi.
	3. Loney, S.L. The Elements of Coordinate Geometry. Aitbs Publishers, India.
	Students will be able to
	1. Define terms and explain concepts related to geometry.
Course	2. Understand metric properties in a plane, and the different forms of lines
Outcomes:	and circles in a plane.
	3. Classify various conics in a plane and establish results concerning them.
	4. Develop analytical skills in solving geometric problems.
	Transaction - Davis









Name of the Progr Course Code Title of the Course Number of Credits Effective from AY	: MAT-211 : Matrix Algebra	
Prerequisites for the course:	Basic knowledge of Matrices and Matrix Operations	
Course Objectives:	To introduce and familiarize the learner with the System of Eq Matrices and Matrix Operations, Gauss Elimination Diagonalisation and Quadratic forms.	uations, method,
Content	Faur and the	No. of Hours
Unit I	<b>Vectors in R^n:</b> Operations with vectors in R^3 and generalization to R^n; Linear combinations; Linear dependence and independence; Basis and Dimension.	8
Unit II	<b>Elementary operations on a matrix:</b> Types of matrices, Special matrices – Symmetric, Skew – Symmetric matrices, Conjugate of a matrix, Hermitian matrix, Nilpotent and Idempotent matrices; Properties/Results on each of these; Elementary matrices; Effects of multiplying by these on a matrix; Equivalence of matrices: Row/column equivalence; Echelon forms; Normal form.	12
Unit III	<b>Rank of a matrix:</b> Definition using minors; Finding rank of a matrix using definition (upto 3x3 only); Theorem: Elementary operations do not change the rank of a matrix; Finding the rank using echelon forms; Linear Independence of Row and Column Matrices; Definition of rank of a matrix using independence of Row or column vectors; Equivalence of two definitions of Rank.	12
	<b>Application of matrices:</b> Existence of solutions of a system of linear equations using Rank method and their solution using Gauss Elimination, Gauss – Jacobi and Gauss – Siedel method; Characteristic Values of a Matrix; Caley – Hamilton Theorem; Diagonalisation of a matrix.	9
Unit IV	<b>Quadratic Forms:</b> Quadratic form as a matrix product; Diagonal reduction of a symmetric matrix; Reduction of quadratic form into sum of squares form.	4
	<ol> <li>List of Practicals*:</li> <li>Linearly Independent sets and Basis</li> <li>Identifying properties of Special Matrices (Symmetric, Skew- symmetric, Hermitian, Nilpotent, Idempotent)</li> <li>Elementary matrices and effect of their multiplication</li> <li>Echelon forms; Normal form.</li> <li>Finding rank of a matrix using definition (upto 3x3 only)</li> <li>Finding the rank using echelon forms</li> </ol>	30

	7. Existence of <b>s</b> olutions of a system of linear equations using			
	Rank method and their solution using Gauss Elimination			
	8. Solution of system using Gauss – Jacobi and Gauss – Siedel			
	method			
	9. Diagonalisation of a matrix			
	10. Reduction of quadratic form into sum of squares form			
	11. Counting the number of walks of a given length between a pair			
	of vertices in a Graph using powers of the adjacency matrix.			
	12. Demonstration of various Matrix operations using SageMath			
	or any other relevant software			
	* Any 10 of the above practicals to be completed			
Pedagogy:	Lectures/Practical/Self-study/SageMath. Lectures should include theory			
1 cuugogy.	and examples. Practical to be exclusively dedicated for problem solving.			
	Principal Text			
	H. Kishan: A Textbook of Matrices, Atlantic Publishers, 2008.			
<u>References</u>				
Reference	1. Gilbert Strang: Linear Algebra and Applications, 4th Edition, Cengage			
Reading:	Learning			
nedding.	2. Keith Nicholson: Linear Algebra with Applications, 3rd Edition, PWS			
	publishing company.			
6 (2388)	3. S. Narayan, and P. K. Mittal: A Textbook of Matrices, S. Chand			
	Publications, 2008.			
SIERL	1. Display familiarity and knowledge of System of Equations, Matrices			
Call Press	and Matrix Operations			
Course Outcomes:	2. Demonstrate proofs of Matrix Algebra			
	3. Choose the appropriate procedures and modify them, if needed, to			
Succines.	solve method-based problems on the concepts in the syllabus.			
	4. Analyze and solve unseen problems in Matrix Algebra and invent			
	mathematically precise arguments to justify their solutions.			
	Wieden is DIV"			

reuge is o



Name of the Progr Course Code Title of the Course Number of Credits Effective from AY		
Pre-requisites for the Course:	Basic 12 th standard Mathematics.	
Course Objectives:	To provide a foundation for understanding and applying combinate principles in various mathematical and real-world scenarios.	orial
Content		No. of Hours
Unit I	Basic methods:Basic Pigeon-hole principle, Generalized Pigeon-hole principle,Methods of mathematical induction: Weak induction and Stronginduction.Elementary Counting Problems:Permutations, Strings over finite alphabet, Choice problems.	12
Unit II	The Binomial Theorem:Binomial theorem, Multinomial theorem, Binomial Theorem:When the exponent is not a positive integerPartitions:Compositions, Set partitions, Integer partitions.	10
Unit III	Cycles in permutations: Cycles in permutations, Permutations with restricted cycle structure. The Sieve: Enumerating the elements of intersecting sets, Applications of the sieve formula.	13
Unit IV	Generating Functions: Ordinary generating functions – Recurrence relations and generating functions, Products of generating functions, Compositions of generating functions. Exponential generating functions – Recurrence relations and exponential generating functions, Products of exponential generating functions, Compositions of exponential generating functions.	10
Pedagogy	Lectures/ Practicals/self-study/Assignments. Lectures should inclue theory and examples. Practical to be exclusively dedicated for prob solving.	
Practical	<ul> <li>30 hours are to be dedicated for working with exercises and solving problems based on following topics</li> <li>1. Solving problems on Basic Pigeon-hole principle and generalized Pigeon-hole principle</li> </ul>	30

	<ol> <li>Establishing different identities using weak and strong induction</li> <li>Solving counting problems using permutations, lists and subsets</li> <li>Problems on Binomial Theorem and related identities</li> <li>Problems on Multinomial Theorem</li> <li>Solving Problems on compositions, set partitions and integer partitions</li> </ol>	
	<ol> <li>Problems on cycles in permutation</li> <li>Problems on Sieve formula and its applications</li> <li>Solving various recurrences using ordinary generating function</li> <li>Solving various recurrences using exponential generating</li> </ol>	
	function	
Reference/ Reading:	<ul> <li>Principal Text: Miklos Bona, A Walk Through Combinatorics – An Introduction to Enumeration and Graph Theory, World Scientific Publications, Fourth Edition 2017</li> <li><u>References:</u></li> <li>1. Alan Tucker, Applied Combinatorics, John Wiley and sons, New York, Sixth Edition, 2012</li> <li>2. Chen Chuan-Chong and Koh Khee-Meng, Principles and Techniques in Combinatorics, World Scientific Publishers, 1992</li> <li>3. Richard A. Brualdi, Introductory Combinatorics, Pearson Publication, Fifth Edition, 2018</li> <li>4. V. Krishnamurthy, Combinatorics, Theory and Applications East-West Press private limited, 2015</li> </ul>	
Course Outcomes:	<ul> <li>Upon successful completion of the course, the students will be able to</li> <li>1. Understand various counting techniques demonstrated in the syllabus.</li> <li>2. Develop a combinatorial reasoning and create combinatorial proofs of basic combinatorial identities.</li> <li>3. Apply appropriate combinatorial techniques to break down various complex problems into more manageable parts and facilitate their solution.</li> <li>4. Analyze and provide an efficient framework for solving various problems with discrete structures.</li> </ul>	



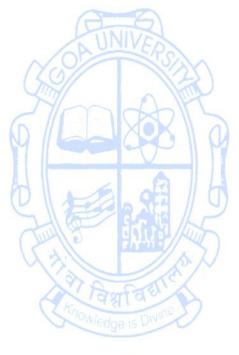
Name of the Programme	: B.Sc. (Mathematics)
Course Code	: MAT-213
Title of the Course	: Transformation Techniques
Number of Credits	: 3L+1P
Effective from AY	: 2024-25

Pre-requisites	District the second sec	
for the Course:	Basic 12 th standard mathematics.	
Course Objectives:	To make students aware of the various available transformation technique like Laplace transforms, Z – transforms, Fourier transforms, and Henke transforms, and their applications in various branches of mathematics.	
Content:	Familia Contraction	No. of Hours
Unit I	<b>Laplace Transforms:</b> Laplace transforms of various functions; General properties of Laplace transforms; Inverse Laplace transforms; Convolution theorem; Application of Laplace transforms to solve differential equations.	12
Unit II	<b>Z – Transforms:</b> Z – transforms of various functions; General properties of Z – transforms; Inverse Z transforms; Convolution theorem; Application of Z – transforms to solve difference equations.	12
Unit III	<b>Fourier Series:</b> Fourier series of a function on an interval of length 2 <i>l</i> , <i>l</i> >0; Half range Fourier series; Statement of Bessel's inequality and statement of Parseval's identity; Trigonometric Fourier series, Fourier series of odd & even function. Integration & differentiation of Fourier series at a point. Fourier theorem; Statement of Riemann – Lebesgue lemma.	8
Unit IV	<b>Infinite Fourier Transforms:</b> Dirichlet's conditions; Fourier integral theorem and Fourier integral representation; Fourier transforms; Fourier sine and cosine transforms; General properties of Fourier transforms; Inverse Fourier transforms; Convolution theorem; Application of Fourier transforms to solve boundary value problems.	8
	<b>Finite Fourier Transforms:</b> Finite Fourier sine and cosine transforms; Results on finite Fourier transforms; Inverse Fourier transforms; Applications of finite Fourier transforms to solve boundary value problems.	5
Practical:	<ul> <li>30 hours are to be dedicated for illustrations with specific examples and computational based exercises. Any 10 of the following topics are to be covered during practical and problems to be solved in:</li> <li>1. Finding Laplace transforms of a given function using various properties.</li> <li>2. Finding inverse Laplace transforms of a given function.</li> </ul>	

	1
	3. Applying Laplace transforms to solve ordinary differential equations.
	4. Finding Z – transforms of a given function using various
	properties.
	5. Finding inverse Z – transforms of a given function.
	6. Applying Z – transforms to solve difference equations.
	7. Computing the Fourier series of a function on an interval of <b>30</b>
	length 2 <i>I, I</i> >0.
	8. Applications of Parseval's identity.
	9. Computing Fourier transforms of a given functions.
	10. Computing Fourier sine and cosine transforms.
	11. Computing inverse Fourier transforms.
	12. Applications of Fourier transforms in solving boundary value
	problems.
	13. Finding finite Fourier transforms – Fourier sine and cosine
	transforms.
	14. Finding inverse finite Fourier transforms – Fourier sine and
	cosine transforms.
SUNVER	15. Applications of finite Fourier transforms in solving boundary
	value problems.
6 CONST	Lectures/Practical/Self-study.
	Lectures should include theory and examples. Practical to be exclusively
Pedagogy:	dedicated for problem solving. The record of practical shall be maintained
CALL HAR	by students in a separate manual/journal duly certified by the instructor.
Faultant	PRINCIPAL TEXTS:
Cheleforge - Dr. 1	1) M. D. Raisinghania: Advanced Differential Equations, 19th Edition, S.
	Chand Publications, 2018.
	2) T. K. V. Iyengar, B. Krishna Gandhi, S. Ranganatham, and M. V. S. S. N.
	Prasad: Mathematical Methods, S. Chand & Company Ltd., 2008.
Reference/	REFERENCES:
Reading:	1) G. F. Simmons: Differential Equations with Applications and Historical
	Notes, 2 nd Edition, Tata McGraw – Hill Edition, 2008.
	2) J. W. Brown, and R. V. Churchill: Fourier Series and Boundary Value
	Problems, 6 th Edition, McGraw Hill Publishers, 2001.
	3) S. Elaydi: An Introduction to Difference Equations, 3 rd Edition, Springer,
	2005.
	The student will be able to,
Course	1. Apply Laplace transforms to solve differential equations.
Outcomes:	<ol><li>Apply Z – transforms to solve difference equations.</li></ol>
Guillomes.	3. Construct the Fourier series of given functions.
	4. Apply Fourier transforms to solve Boundary Value Problems.

Name of the Progr Course Code Fitle of the Course Number of Credits Effective from AY	: MAT-221 : Probability Theory	
Prerequisites for the Course:	Basic 12 th standard Mathematics.	
Course Objectives:	To make students aware of various aspects of probability theory a applications in solving real life problems.	nd their
Content	Part Fart and A	No. of Hours
Unit I	Basics of Probability Theory: Random experiment; Sample space; Events; Types of events; Independence of events; Mathematical/Statistical definitions of probability; Addition and Multiplication theorems; Conditional probability; Baye's theorem	5
Unit II	Random Variables and Distribution Functions: Random variables – discrete and continuous; Distribution functions; Probability mass function and probability density function – Joint probability law; Joint probability mass function; Conditional and marginal probability functions; Stochastic independence; Properties of probability density functions.	10
Unit III	Mathematical Expectation and Generating Functions: Mathematical expectation of discrete and continuous random variables – Properties, theorems and problems; Covariance; Moments; Moment generating functions; Properties of generating functions; Uniqueness theorem	15
Unit IV	Probability Distributions: Discrete probability distributions; Binomial distribution – properties, derivations of mean, variance and moment generating function; Poisson distribution – properties, derivations of mean, variance and moment generating function; Relationship between Binomial and Poisson distributions; Normal distribution – normal curve and properties; Standard normal distribution; Problems on normal distributions and applications.	15

Practical	<ul> <li>Any 10 of the following practicals</li> <li>1. Probability problems based on addition and multiplication theorems.</li> <li>2. Conditional probability and Baye's theorem.</li> <li>3. Probability mass functions and probability density functions.</li> <li>4. Joint probability mass functions, and conditional and marginal probability functions.</li> <li>5. Stochastic independence.</li> <li>6. Mathematical expectation</li> <li>7. Covariance and moments.</li> <li>8. Moments and moment generating functions.</li> <li>9. Binomial distribution: Mean and Variance</li> <li>10. Binomial distribution: Moment Generating Function and Application</li> <li>11. Poisson distribution.</li> <li>12. Normal distribution</li> </ul>	30
Pedagogy	Lectures/Practical/Self-study. Lectures should include theory and examples. Practical to be exc dedicated for problem solving. The record of practical shall be mai by students in a separate manual/journal duly certified by the instru	ntained
Reference/ Reading:	<ul> <li>PRINCIPAL TEXT:</li> <li>S. C. Gupta, and V. K. Kapoor: Fundamentals of Mathematical St 12th Edition, Sultan Chand &amp; Sons, 2020.</li> <li>REFERENCES:</li> <li>1. J. Medhi: Statistical Methods: An Introductory Text, Net International Publishers, 2006.</li> <li>2. R. V. Hogg, J. W. McKean, and A. T. Craig: Introduction to Mathemstatistics, Pearson Education, 2006.</li> <li>3. S. C. Gupta: Fundamentals of Statistics, 7 th Edition, H Publishing House, 2018.</li> <li>4. S. P. Gupta: Statistical Methods, Sultan Chand &amp; Sons, 2023.</li> </ul>	w Age matical
Course Outcomes:	<ul> <li>The student will be able to,</li> <li>1. Apply the knowledge of probability theory in analyzing r situations and case studies.</li> <li>2. Model various probability functions.</li> <li>3. Illustrate and interpret mathematical expectation.</li> <li>4. Solve various problems in probability distributions.</li> </ul>	eal life




Name of the Progr		
Course Code Title of the Course	: MAT-222 : Theory of Equations	
Number of Credits		
Effective from AY	: 2024-25	
Pre-requisites for the Cousre:	Basic 12 th Standard Mathematics	
Course Objectives:	This course is designed to give students of mathematics a good four to the preliminaries required for the study of higher Algebra. The also endeavors to equip students studying related disciplin computational skills and techniques.	e course
Content	Hannanger + Dir	No. of Hours
Unit I Unit I	Complex Numbers: Square Roots, Complex Numbers, Cube Roots of Unity, Product and Quotient of Complex Numbers, Roots of Unity, Primitive Roots of Unity Theorems on Roots of Equations: Quadratic Equations, Polynomials, Remainder Theorem, Synthetic Division, Factored Form of a Polynomial, Multiple Roots, Identical Polynomials, Fundamental Theorem of Algebra, Relations between Roots and Coefficients, Upper Limit to the Real Roots, Integral Roots, Methods for Integral Roots, Rational Roots Constructions with Ruler and Compasses: Impossible Constructions, Graphical Solution of a Quadratic Equation, Analytic Criterion for Constructibility, Cubic Equations with a Constructible Root, Trisection of an Angle, Duplication of a Cube, Regular Polygon of 7 sides, Roots of Unity, Reciprocal Equations,	12 10
Unit III	Regular Polygon of n Sides. <b>Cubic And Quartic Equations:</b> Reduced Cubic Equation, Algebraic Solution of a Cubic, Discriminant Number of Real Roots of a Cubic, Irreducible Case, Trigonometric Solution of a Cubic, Ferrari's Solution of the Quartic Equation, Resolvent Cubic, Discriminant, Descartes' Solution of the Quartic Equation, Symmetrical Form of Descartes' Solution <b>The Graph of an Equation:</b> The Graph of Use of Graphs, Bend Points, Derivatives, Horizontal Tangents, Multiple Roots, Ordinary and Inflexion Tangents, Real Roots of a Cubic Equation, Continuity, Continuity of Polynomials, Condition for a Root Between a and b, Sign of a Polynomial at Infinity, Rolle's Theorem.	10
	<b>Isolation of Real Roots:</b> Descartes' Rule of Signs, Sturm's Method, Sturm's Theorem, Simplifications of Sturm's	13

	Functions, Sturm's Functions for a Quartic Equation, Sturm's	
	Theorem for Multiple Roots, Budan's Theorem	
	Solution of Numerical Equations: Horner's Method, Newton's	
Unit IV	Method, Algebraic and Graphical Discussion, Systematic	
Ontriv	Computation, For Functions not Polynomials, Imaginary Roots.	
	Symmetric Functions: Sigma Functions, Elementary Symmetric	
	Functions, Fundamental Theorem on Symmetric Functions,	
	Rational Functions Symmetric in all but one of the roots, Sums of	
	like powers of the roots, Waring's Formula for $s_k$ in Terms of the	
	coefficients, Computation of Symmetric Functions	
	Any ten of the following Practicals should be completed:	
	1. Use De Moivre's Theorem to find $n^{th}$ roots of unity and	
	complex numbers and represent them on the plane.	
	2. Use the remainder theorem to find the remainder of a	
	polynomial when divided by a linear polynomial, use Synthetic	
	Division to find the remainder and quotient of a polynomial	
	when divided by a linear polynomial.	
	3. Find a polynomial with given roots.	
AND	4. Find an upper limit to the real roots of a polynomial.	
697 192	5. Find the integral roots and rational roots of a polynomial with	N/2D
2 mgar	integral coefficients using the various methods.	RID
M CONT	6. Convert a cubic equation to a reduced cubic and solve the	
	equation, Find the number of real roots of a real cubic	al9
	polynomial without computing the roots.	15D
Practicals	7. Find the solution of a Quartic Equation using Ferrari's method.	30
Consideration of the State	8. Find the solution of a Quartic Equation using Descarte's	
	Method.	
	9. Find the bend points, sketch the graph and find the number of	
	real roots of a given cubic polynomials.	
	10. Use Sturm's Method to isolate the real roots of a given	
	polynomial.	
	11. Use Budan's Theorem to isolate the real roots of a given	
	polynomial.	
	12. Use Horner's Method to compute the real roots of a given	
	polynomial.	
	13. Use Newton's Method to compute the real roots of a given	
	polynomial.	
	14. Express $\sum$ - Functions in terms of $s_k$ .	
	15. Express Symmetric Functions in terms of $s_k$ .	
Pedagogy	Lectures, Self-Study, Assignments. Lectures should include the	•
	examples. Practical to be exclusively dedicated for problem solving	<u>.</u>
Reference	PRINCIPAL TEXT:	
Reading		

	Leonard Eugene Dickson, First Course in the Theory of Equations, John	
	Wiley & Sons, Inc, 2009	
	REFERENCES:	
	1. Hari Kishan, Theory of Equations, Atlantic, 2022	
	2. William Snow Burnside, Arthur William Panton, The Theory of	
	Equations, Wave books, 2022	
	At the end of this course the student will be able to	
	1. Recollect the important definitions and theorems in the Theory of	
Course	Equations.	
Outcomes:	2. Explain the various proofs and concepts in the course.	
	3. Solve problems in using techniques in the course	
	4. Solve unseen problems using the concepts learnt in the course.	









Name of the Progr Course Code	amme : B.Sc. Mathematics : MAT-223	
Title of the Course		
Number of Credits	· · · ·	
Effective from AY	: 2024-25	
Pre-requisites	Basic 12 th Std Mathematics	
for the Course:		
Course	To introduce Graph theory and motivate its study via useful	
Objectives:	computational algorithms.	
Content		No. of Hours
	Fundamental Concente	HOUIS
Unit I	Fundamental ConceptsWhat Is a Graph: The Definition, Graphs as Models, Matrices and Isomorphism, Decomposition and Special Graphs.Paths, Cycles, and Trails: Connection in Graphs, Bipartite Graphs, Eulerian CircuitsVertex Degrees and Counting: Counting and Bijections, Extremal Developed Sequences	17
0	Problems, Graphic Sequences.	
Unit II	Trees and. Distance Basic Properties: Properties of Trees, Distance in Trees and Graphs. Spanning Trees and Enumeration: Enumeration of Trees, Spanning Trees in Graphs, Decomposition and Graceful Labeling. Optimization and Trees: Minimum Spanning Tree, Shortest Paths, Trees in Computer Science.	17
Unit III	Coloring of Graphs Vertex Colorings and Upper Bounds: Definitions and Examples, Upper Bounds, Brooks' Theorem.	6
Unit IV	Planar GraphsEmbeddings and Euler's Formula: Drawings in the Plane, DualGraphs, Euler's Formula.	
	List of Practicals*:	
	<ol> <li>Bellman_Ford/ Floyd-Warshal Algorithm</li> <li>Counting the number of walks of a given length between a pair of vertices using powers of the adjacency matrix (with proof).</li> <li>Dijkstra's algorithm to find the shortest paths between</li> </ol>	
	<ul> <li>vertices in a weighted graph.</li> <li>4. Finding Eulerian Circuit using Hierholzer's Algorithm.</li> <li>5. Finding Eulerian path or Circuit using Fleury's Algorithm.</li> <li>6. Havel's and Hakimi's algorithm to check if a given finite sequence of integers is a degree sequence of a graph.</li> </ul>	30

[		
	<ul> <li>7. Huffman Algorithm to find Optimum Binary Tree (Huffman Tree) and derive the optimum binary prefix code for a given set of weights. Application to Huffman compression.</li> <li>8. Kruskal's/ Prim's algorithm to find the minimum weighted spanning tree in a connected weighted graph.</li> <li>9. Obtain Prufer Sequence for a given labeled tree and vice-versa.</li> <li>10. Showing that 2 given graphs are isomorphic/non-isomorphic.</li> <li>11. Trajan's Algorithm to find bridges in an undirected graph</li> <li>12. Welsh and Powell Algorithm to obtain a vertex coloring of a graph.</li> <li>* Any 10 of the above practicals to be completed</li> </ul>	
Principal Text	Douglas B. West, Graph Theory, 2nd Edition, Pearson Education 2022.	
Pedagogy	Lectures/Practical/Self-study. Lectures should include theory and examples. Practical to be exclusively dedicated for problem solving.	
Reference Reading	<ol> <li>Chartrand and Lesniak, Graphs and Digraphs, 6th edition, Chapman &amp; Hall, 2015</li> <li>Deo and Narsingh, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall India, 1979.</li> <li>G Agnarsson and R. Greenlaw, Graph Theory, 2nd Edition, Pearson Education 2008.</li> <li>R. B. Bapat, Graphs and Matrices, 2nd Edition, Hindustan Book Agency 2014.</li> </ol>	
Course Outcomes:	<ol> <li>Display familiarity and knowledge of the concepts in the syllabus.</li> <li>Demonstrate proofs to establish truths related to the concepts in the syllabus.</li> <li>Choose the appropriate procedures and modify them, if needed, to solve method-based problems on the concepts in the syllabus.</li> <li>Analyze and solve unseen problems in Graph Theory and invent mathematically precise arguments to justify their solutions.</li> </ol>	



Name of the Programme	: B.Sc. Mathematics
Course Code	: MAT-231
Title of the Course	: Basic Financial Mathematics
Number of Credits	: 3L
Effective from AY	: 2024-2025

Pre-requisites	Basic 12 th standard Mathematics.		
for the Course:	Basic 12  standard Mathematics.		
Course Objectives:	<ol> <li>Introduce students to the concepts in financial mathematics</li> <li>Introduce students to financial instruments as they relate to mathematics.</li> <li>Develop student abilities to apply financial mathematics in dail</li> </ol>		
Content	Converge + Davis	No. of Hours	
Unit I	<ol> <li>Tax: Direct, indirect tax, Income tax-assessment of individuals, GST,IGST, SGST, CGST, UTGST</li> <li>Bills: Types of bills, tariff rates, concept of fixed charge, service charge and their applications in various sectors of Indian Economy.</li> </ol>	6	
Unit II	<ol> <li>Interest: rate of interest, simple interest, compound interest, accumulation function, future value, current value, present value, net present value, discount factor, discount rate (rate of discount), convertible monthly, nominal rate, effective rate, inflation and real rate of interest, force of interest, equation of value</li> <li>Annuity-immediate, annuity due, perpetuity, payable monthly or payable continuously, level payment annuity, arithmetic increasing/decreasing annuity, term of annuity</li> <li>Loans: principal, interest, term of loan, outstanding balance, final payment (drop payment, balloon payment), amortization, sinking fund</li> <li>Bonds: price, book value, amortization of premium, accumulation of discount, redemption value, par value/face value, yield rate, coupon, coupon rate, term of bond, callable/non- callable .</li> </ol>	18	
Unit III	<ol> <li>Intro to equities. Dividend discount models. Stock valuation. Mutual funds. Sinking funds.</li> <li>Term structure. Duration and convexity. Calculating duration and convexity.</li> </ol>	15	
Unit IV	<ol> <li>Hedging: Hedging, arbitrage, diversifiable risk, non- diversifiable risk.</li> </ol>	6	

2. Investment Strategies : spreads (option, bull, bear, vertical, box, ratio), collar width, collared stock, zero-cost collar, straddle, strangle, written straddle, butterfly         Pedagogy:       Lectures/group work/student presentations/ comparison assignments/tutorials/Spectrum         1. Derivatives Markets (3rd Edition) (Pearson Series in Finance) 3rd Edi by Robert L. McDonald (Author) Publisher: Prentice Hall; 3 edi (September 6, 2012) ISBN: 0321543084         2. Financial Mathematics by B.L.Bajpai, New royal Book Company, 202         3. Financial Mathematics by Leena S. Shimpi, Bimal Jaiswal, New R Book Company, 2020         4. Financial Mathematics: A Practical Guide for Actuaries and Or Business Professionals. Chris Ruckman and Joe Francis. Publisher: Professional Education; 2nd edition (October 2005). ISBN: 09753130         5. Introduction to Mathematics of Finance, Ruth.J.Williams, The Amer Mathematical Society, 2006         6. Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019         1. Introduction to the use of mathematical tools for financial calculation	
straddle, strangle, written straddle, butterflyPedagogy:Lectures/group work/student presentations/ comparison assignments/tutorials/Spectrum1. Derivatives Markets (3rd Edition) (Pearson Series in Finance) 3rd Edi by Robert L. McDonald (Author) Publisher: Prentice Hall; 3 edi (September 6, 2012) ISBN: 0321543084Reference/ Reading:Financial Mathematics by B.L.Bajpai, New royal Book Company, 20204. Financial Mathematics by Leena S. Shimpi, Bimal Jaiswal, New R Book Company, 20204. Financial Mathematics: A Practical Guide for Actuaries and Or Business Professionals. Chris Ruckman and Joe Francis. Publisher: Professional Education; 2nd edition (October 2005). ISBN: 097531305. Introduction to Mathematics of Finance, Ruth.J.Williams, The Amer Mathematical Society, 20066. Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019	
Pedagogy:Lectures/group assignments/tutorials/Spectrumpresentations/ compared compared compared assignments/tutorials/Spectrum1.Derivatives Markets (3rd Edition) (Pearson Series in Finance) 3rd Edi by Robert L. McDonald (Author) Publisher: Prentice Hall; 3 edi (September 6, 2012) ISBN: 03215430842.Financial Mathematics by B.L.Bajpai, New royal Book Company, 2023.Financial Mathematics by Leena S. Shimpi, Bimal Jaiswal, New Re Book Company, 20204.Financial Mathematics: A Practical Guide for Actuaries and Or Business Professionals. Chris Ruckman and Joe Francis. Publisher: Professional Education; 2nd edition (October 2005). ISBN: 097531365.Introduction to Mathematics of Finance, Ruth.J.Williams, The Amer Mathematical Society, 20066.Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019	
Pedagogy:assignments/tutorials/Spectrum1. Derivatives Markets (3rd Edition) (Pearson Series in Finance) 3rd Edi by Robert L. McDonald (Author) Publisher: Prentice Hall; 3 edi (September 6, 2012) ISBN: 03215430842. Financial Mathematics by B.L.Bajpai, New royal Book Company, 2023. Financial Mathematics by Leena S. Shimpi, Bimal Jaiswal, New R Book Company, 20204. Financial Mathematics: A Practical Guide for Actuaries and O Business Professionals. Chris Ruckman and Joe Francis. Publisher: Professional Education; 2nd edition (October 2005). ISBN: 097531365. Introduction to Mathematics of Finance, Ruth.J.Williams, The Amer Mathematical Society, 20066. Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019	
Assignments/tutorials/spectrum1. Derivatives Markets (3rd Edition) (Pearson Series in Finance) 3rd Edi by Robert L. McDonald (Author) Publisher: Prentice Hall; 3 edi (September 6, 2012) ISBN: 03215430842. Financial Mathematics by B.L.Bajpai, New royal Book Company, 2023. Financial Mathematics by Leena S. Shimpi, Bimal Jaiswal, New Re Book Company, 20204. Financial Mathematics: A Practical Guide for Actuaries and Or Business Professionals. Chris Ruckman and Joe Francis. Publisher: Professional Education; 2nd edition (October 2005). ISBN: 097531305. Introduction to Mathematics of Finance, Ruth.J.Williams, The Amer Mathematical Society, 20066. Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019	ter
<ul> <li>keference/ Reading:</li> <li>By Robert L. McDonald (Author) Publisher: Prentice Hall; 3 edi (September 6, 2012) ISBN: 0321543084</li> <li>Financial Mathematics by B.L.Bajpai, New royal Book Company, 2023</li> <li>Financial Mathematics by Leena S. Shimpi, Bimal Jaiswal, New R Book Company, 2020</li> <li>Financial Mathematics: A Practical Guide for Actuaries and O Business Professionals. Chris Ruckman and Joe Francis. Publisher: Professional Education; 2nd edition (October 2005). ISBN: 09753130</li> <li>Introduction to Mathematics of Finance, Ruth.J.Williams, The Amer Mathematical Society, 2006</li> <li>Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019</li> </ul>	
<ul> <li>Reference/ Reading:</li> <li>Reference/ Reading:</li> <li>Kinancial Mathematics by B.L.Bajpai, New royal Book Company, 2020</li> <li>Financial Mathematics by Leena S. Shimpi, Bimal Jaiswal, New Rebook Company, 2020</li> <li>Financial Mathematics: A Practical Guide for Actuaries and Or Business Professionals. Chris Ruckman and Joe Francis. Publisher: Professional Education; 2nd edition (October 2005). ISBN: 09753130</li> <li>Introduction to Mathematics of Finance, Ruth.J.Williams, The Amer Mathematical Society, 2006</li> <li>Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019</li> </ul>	ion
<ul> <li>Reference/ Reading:</li> <li>2. Financial Mathematics by B.L.Bajpai, New royal Book Company, 202</li> <li>3. Financial Mathematics by Leena S. Shimpi, Bimal Jaiswal, New Rebook Company, 2020</li> <li>4. Financial Mathematics: A Practical Guide for Actuaries and Or Business Professionals. Chris Ruckman and Joe Francis. Publisher: Professional Education; 2nd edition (October 2005). ISBN: 09753136</li> <li>5. Introduction to Mathematics of Finance, Ruth.J.Williams, The Amer Mathematical Society, 2006</li> <li>6. Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019</li> </ul>	ion
<ul> <li>Reference/ Reading:</li> <li>2. Financial Mathematics by B.L.Bajpai, New royal Book Company, 202</li> <li>3. Financial Mathematics by Leena S. Shimpi, Bimal Jaiswal, New Rebook Company, 2020</li> <li>4. Financial Mathematics: A Practical Guide for Actuaries and Or Business Professionals. Chris Ruckman and Joe Francis. Publisher: Professional Education; 2nd edition (October 2005). ISBN: 09753136</li> <li>5. Introduction to Mathematics of Finance, Ruth.J.Williams, The Amer Mathematical Society, 2006</li> <li>6. Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019</li> </ul>	
<ul> <li>Reference/ Reading:</li> <li>3. Financial Mathematics by Leena S. Shimpi, Bimal Jaiswal, New Rebook Company, 2020</li> <li>4. Financial Mathematics: A Practical Guide for Actuaries and Or Business Professionals. Chris Ruckman and Joe Francis. Publisher: Professional Education; 2nd edition (October 2005). ISBN: 09753130</li> <li>5. Introduction to Mathematics of Finance, Ruth.J.Williams, The Amer Mathematical Society, 2006</li> <li>6. Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019</li> </ul>	5
<ul> <li>Reference/ Reading:</li> <li>Book Company, 2020</li> <li>Financial Mathematics: A Practical Guide for Actuaries and O Business Professionals. Chris Ruckman and Joe Francis. Publisher: Professional Education; 2nd edition (October 2005). ISBN: 09753136</li> <li>Introduction to Mathematics of Finance, Ruth.J.Williams, The Amer Mathematical Society, 2006</li> <li>Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019</li> </ul>	
<ul> <li>Reference/ Reading:</li> <li>4. Financial Mathematics: A Practical Guide for Actuaries and O Business Professionals. Chris Ruckman and Joe Francis. Publisher: Professional Education; 2nd edition (October 2005). ISBN: 09753130</li> <li>5. Introduction to Mathematics of Finance, Ruth.J.Williams, The Amer Mathematical Society, 2006</li> <li>6. Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019</li> </ul>	yan
<ul> <li>Business Professionals. Chris Ruckman and Joe Francis. Publisher: Professional Education; 2nd edition (October 2005). ISBN: 09753130</li> <li>Introduction to Mathematics of Finance, Ruth.J.Williams, The Amer Mathematical Society, 2006</li> <li>Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019</li> </ul>	hor
<ul> <li>Professional Education; 2nd edition (October 2005). ISBN: 09753130</li> <li>5. Introduction to Mathematics of Finance, Ruth.J.Williams, The Amer Mathematical Society, 2006</li> <li>6. Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019</li> </ul>	
<ol> <li>Introduction to Mathematics of Finance, Ruth.J.Williams, The Amer Mathematical Society, 2006</li> <li>Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019</li> </ol>	
Mathematical Society, 2006 6. Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019	
6. Mathematics of Finance-An Intuitive Introduction, Donald G Sa Springer, 2019	:an
Springer, 2019	
	ari,
1 Introduction to the use of mathematical tools for financial calculation	
1. Inclocation to the use of mathematical tools for finalicial calculation	۱s.
2. Develop abilities to create, derive, and apply financial mathema	cal
Course tools.	)
Outcomes: 3. Apply tax rules to file income tax returns.	
4. Use appropriate principles to plan in stock market investment.	)



AT PARTARIA

0

Name of the Progr Course Code Title of the Course Number of Credits Effective from AY Pre-requisites for the Course: Course Objectives:	: MAT-241 : Technical Typesetting Using LaTeX	echnical
Content		No. of Hours
Unit I Unit II	<ul> <li>Basics of LaTeX: Introduction to TeX and LaTeX; Document classes; Typesetting a simple document; Adding basic information to a document; Adding watermark to a document; Fonts and Sizes; Sectioning command and alignment; list and Enumeration; Quotations; Environments; Footnotes; Typesetting tables with multiple columns and tabular environment ; boxed text,Minipage. (DEMONSTRATIONS TO BE DONE DURING PRACTICAL)</li> <li>Mathematical Typesetting with LaTeX: Accents and symbols; Mathematical formula typesetting (elementary and advanced): Subscript/Superscript, Fractions, Roots,Ellipsis,greek letters, Mathematical Symbols, Special characters, Arrays, Delimiters, Multiline formulas, Matrices, Spacing and changing style in math mode; Boxed equations; Creating mathematical environments, \newtheorem command.</li> <li>Cross Referencing, Index and Bibliography: Cross referencing figures, tables, sections, equations, etc; Table of contents; Bibliography using NATBIB; Bibliographic styles; BIBTeX and Database creation.</li> </ul>	4
Unit III	Graphics and Beamer Presentation in LaTeX: Graphics in LaTeX; Simple pictures using PSTricks; Beamer presentation. (DEMONSTRATIONS TO BE DONE DURING PRACTICAL)	3
	<ul> <li>60 hours (4 hours each) of practical should be dedicated for the following:</li> <li>1. Typing a basic document in LaTeX – trying out the effect of spaces, line breaks, empty lines, writing special characters in text, adjusting fonts, shapes and styles, adding watermark, sectioning and paragraphs.</li> </ul>	60

	2. Exploring simple documents – customizing margins, page
	numbers, quotations, horizontal lines, using vspace and
	hspace and flushleft/flushright commands, enumeration and
	itemize environments.
	3. Understanding the various document classes such as
	article/report/thesis/book and experimenting with each class
	to understand the output.
	4. Customizing tables, minipage environment.
	5. Typesetting accents and Greek symbols, Basic
	mathematical typesetting.
	6. Working with Subscript/Superscript, Fractions, Roots, Ellipsis,
	Mathematical operators, Special characters, Arrays,
	Delimiters.
	7. Using equation environment, breaking/appropriately writing
	long equations, typing equations with cases, spaces in math
	mode, text in math mode.
	8. Typing of matrices, infinite series, continued fractions, and
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	boxed equations, and the like.
AUNIVERS	9. Using the theorem environment to typeset definitions,
	remarks, lemmas, theorems, corollaries, etc.
	10. Cross referencing – using tag commands, hyperref
	environment, adding hyperlinks to text.
	11. Graphics in LaTeX(Inserting images) using additional apps
Call Harry	like geogebra, latexdraw etc .
Transformer - Dr. C	12. Creating bibliographic database and exploring various
	bibliographic environments to create bibliography.
	Generating the Table of Contents.
	13. Drawing simple pictures using PSTricks.
	14. Making presentations using Beamer in LaTeX.
	15. Making use of the exam class to prepare question papers in
	LaTeX.
	Lectures/Practical/Self study.
Pedagogy:	Theory to be kept for explaining what exactly will be done and answering
	common queries/errors.
	Practical to focus on how exactly it will be done.
	PRINCIPAL TEXT:
Reference	L. Lamport : A Documentation Preparation System LATEX User's Guide and
	Reference Manual, Second Edition, Pearson, 2006.
	REFERENCES:
Reading:	1) E. Krishnan : <i>LaTeX Tutorials – A Primer,</i> Indian TeX Users Group, 2003.
	2) G. Gratzer: <i>More Math Into LaTeX</i> , Springer, 2016.
	3) Karl Berry, Stephen Gilmore and Torsten Martinsen LATEX2e: An
	unofficial reference manual, January 2023
	4) S. Kottwitz: LaTeX – Beginner's Guide, Packt Publishing, 2011.

	5) Van M. R. C. Dongen: LaTeX and Friends, Springer – Verlag, 2012.
	1.To Create and typeset a LaTeX document.
Course Outcomes:	2.To Build documents containing Mathematics.
	3.To experiment with pictures and graphics in LaTeX.
	4.To Prepare impressive beamer presentations and typeset question
	papers using the exam class.

Name of the Progra Course Code Title of the Course Number of Credits Effective from AY	amme : B.Sc. Mathematics : MAT-300 : Riemann Integration and Improper Integrals : 3L+1T : 2025-26	
Pre-requisites for the Course:	A course in Analysis.	
Course Objectives:	To be competent in discussing the integrability of real valued funct to build the skills required in establishing results in integration.	ions and
Content		No. of Hours (L+T)
Unit I	Riemann Integral: Partition of an interval; properties of partitions – Upper and Lower sums of a bounded real valued function over a closed interval; Upper and Lower integrals; Examples and related results; Darboux condition for integrability; Riemann Integrability – Necessary and sufficient conditions.	10+3
Unit II	Results in Riemann Integration: Riemann Integrals of Step; monotonic and continuous functions; Integrability of the absolute value; Monotonicity of Riemann integrals; Integrability of composition of a continuous function with an integrable function on a closed and bounded interval. Properties of Riemann integrals: (i) $\int_{a}^{b} \alpha f(x) dx = \alpha \int_{a}^{b} f(x) dx$. (ii) $\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$. (iii) $\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$, $a \le c \le b$. (iv) $ \int_{a}^{b} f(x) dx \le \int_{a}^{b} f(x) dx$.	11+4
Unit III	Further Results in Riemann Integration: First and Second Fundamental theorem of Calculus; Integration by parts; Change of variables; Mean Value Theorem for integrals; Riemann's original definition; Sum of an infinite series as a Riemann integral.	9+3
Unit IV	Improper Integrals: Improper integrals of Type I, II and III – Convergence results and examples; Beta and Gamma functions – properties and examples.	15+5
Pedagogy	Lectures/Tutorials/Self-study. Lectures should include theory and examples. Tutorial to be exclusively dedicated for problem solving.	
Reference Reading	PRINCIPAL TEXT: A. Kumar, and S. Kumaresan: A Basic Course in Real Analysis, CR 2014.	C Press,

	REFERENCES:		
	1. M. Spivak: Calculus, Publish or Perish, Inc., 2008.		
	2. R. D. Bhat: Mathematical Analysis II, Vipul Prakashan, 1997.		
	3. R. G. Bartle, and D. R. Sherbert: <i>Introduction to Real Analysis</i> , 4 th Edition,		
	 Wiley, 2014. S. Abbott: Understanding Analysis, 2nd Edition, Springer Nature, 2016. S. Narayan, and M. D. Raisinghania: <i>Elements of Real Analysis</i>, Revised 		
	Edition, S. Chand Publications, 2016.		
	6. S. C. Malik, and S. Arora: <i>Mathematical Analysis</i> , 6 th Edition, New Age International Publishers, 2022.		
	7. T. M. Apostol: <i>Mathematical Analysis</i> , 2 nd Edition, Narosa Publishing House, 2002.		
The student will be able to,			
Course	1. Apply the theory of Riemann integration in evaluating integrals.		
Course	2. Prove various results in Riemann integration.		
Outcomes:	3. Analyze and compare various number theoretic functions.		
	4. Examine the convergence of improper integrals.		

Name of the Programme	: B.Sc. Mathematics
Course Code	: MAT-301
Title of the Course	: Group Theory I
Number of Credits	: 3L+1T
Effective from AY	: 2025-26
	- KINING -

	. 2023-20	
Pre-requisites for the course:	An Elementary course in Number theory.	
Course Objectives:	The course is designed keeping in mind that it is the first course in algebra. The course will give the student a gentle introduction to bas theory. The various topics covered in this course are Binary Str Groups and Subgroups, Cyclic Groups, Permutations Group Fundamental Theorem of Finitely Generated Abelian Homomorphisms and The Fundamental Homomorphism Theorem.	sic group actures,
Content	DUNIVERS	No. of Hours (L+T)
Unit I	Binary Structures: Multiplication of Complex Numbers, Euler's Formula, Roots of Unity, Binary Operations, Isomorphic Binary Structures.	6+2
Unit II	Groups and Subgroups: Groups, Examples of Groups, Subgroups, Cyclic Groups, Generating Sets and Cayley Digraphs	15+5
Unit III	Permutations, Cosets and Direct Products: Groups of Permutations, Orbits, Cycles, and the Alternating Groups, Cosets and the Theorem of Lagrange, Direct Products and Finitely Generated Abelian Groups (Proof of Fundamental Theorem of Finitely Generated Abelian Groups is not included.), Plane Isometries, Discussion of groups D_3 , D_4 and D_5	12+4
Unit IV	Homomorphisms and Factor Groups: Group Homomorphisms, Properties of Homomorphisms and kernel of a homomorphism, Normal Subgroups and Factor Groups, The Fundamental Homomorphism Theorem, Definitions of automorphisms and inner automorphisms.	12+4
Pedagogy:	Lectures, Self-Study, Assignments. Lectures should include the examples. Tutorial to be exclusively dedicated for problem solving.	ory and
Reference/ Reading:	 PRINCIPAL TEXT: John B. Fraleigh, A First Course in Abstract Algebra, Seventh Pearson, 2013 REFERENCES: 1. David S. Dummit and Richard M. Foote, Abstract Algebra, 3rd Wiley, 2011 2. Joseph A. Gallian, Contemporary Abstract Algebra, Eight Cengage India Private Ltd, 2019 3. Michael Artin, Algebra, Second Edition, Pearson, 2015 	Edition,

	4. Vivek Sahai and Vikas Bist, Algebra, 3 rd Edition, Narosa, 2015.
Course	At the end of this course the student will be able to
Outcomes:	1. Recollect the basic definitions and theorems in Group Theory.
	2. Explain the various proofs and concepts in Group Theory.
	3. Solve the various computations problems in Group Theory
	4. Solve problems using the concepts learnt in the course.

Name of the Programme	: B.Sc. Mathematics
Course Code	: MAT-302
Title of the Course	: Metric Spaces
Number of Credits	: 3L+1T
Effective from AY	: 2025-26

Pre-requisites for the Course:	Courses on Foundations of Mathematics and Basic Real Analysis	
Course Objectives:	 i) To understand the introductory concepts of metric spaces ii) To apply sequences and their properties in concepts like compl continuity and connectedness iii) To analyse continuous functions and their properties. iv) To understand the abstractness of the topic 'connectedness' b their geometrical imaginations. v) To acquire knowledge for advanced courses in real analysis, fur analysis, and topology. 	eyond
Content		No. of Hours
Unit	INTRODUCTORY CONCEPTS IN METRIC SPACES Inequalities (only statements), Definition and examples of metric Spaces, Bounded and unbounded metric spaces, Open and Closed Balls(spheres), Neighbourhoods, Hausdorff Property, Interior Points and Interior of a Set, Open Sets, Closed Sets, Limit Points and Isolated Points, Derived Set, Closure of a Set and its properties, Boundary Points, Distance between Sets, Diameter of a Set, Subspace of Metric Space and its properties.	S R
Unit II	COMPLETENESS IN METRIC SPACES: - Convergence of a Sequence in a Metric Space, Cauchy Sequence in a Metric Space, Complete Metric Spaces, Cantor's Intersection Theorem	6L+2T
Unit III	CONTINUOUS FUNCTIONS ON METRIC SPACES: - Definition and Characterizations, Sequential Continuity, Continuity of Functions using Open Sets and Closed Sets, Continuity of Functions using Closure of a Set, fixed point, Contraction mapping, Banach's fixed point theorem.	11L+4T
Unit IV	CONNECTEDNESS IN METRIC SPACES: - Separated Sets, Disconnected Sets and Connected Sets in a Metric Spaces, Connected Subsets of IR, Continuous Functions and connected sets	12L+3T

Pedagogy	Lectures/tutorials/assignments/self-study.
	(All concepts have to be taught with plenty of examples and worked out in
	special case of Euclidean space, Complex plane and other metric spaces
	mentioned in Unit I.
Reference	Principal Text:
Reading	Pawan K. Jain, Khalil Ahmad; Metric Spaces (Third Edition) (Narosa
	Publishing House)
	References:
	1. E. T. Copson; Metric Spaces (Cambridge University Press)
	2. J. N. Sharma; Mathematical Analysis-I (Metric Spaces) (Krishna
	Prakashan)
	3. M. O. Searcoid; Metric spaces: Springer, 2007.
	4. S. Kumaresan; Topology of Metric Spaces (Narosa Publishing House).
	5. Satish Shirali, H. Vasudeva; Metric Spacesn (Springer)
Course	1. Display familiarity and knowledge of the concepts in the syllabus.
Outcomes:	 Demonstrate proofs to establish truths related to the concepts in the
	syllabus.
000	3. Choose the appropriate procedures and modify them, if needed, to
OF UNIVERS	solve method-based problems on the concepts in the syllabus.
	4. Analyze and solve unseen problems in Metric Spaces and invent
6 CAR	mathematically precise arguments to justify their solutions.
SIERL	

Name of the Progr Course Code Title of the Course Number of Credits Effective from AY	: MAT-303 : Analytical 3D Geometry	
Pre-requisites for the Course:	Basic 12 th standard Mathematics.	
Course Objectives:	To make students explore the principles of coordinate geometry, on planes, lines, spheres, cones, cylinders and conicoids.	focusing
Content		No. of Hours
Unit I	Coordinates in 3D Coordinates of a Point in Space and Distance Formula; Direction Cosines of a Line and its Properties; Projection on a Straight Line; Angle between two straight lines; Condition for perpendicularity and parallelism. Plane Different Forms: Normal Form; Algebraic Form; Intercept Form; Three-point Form. Distance of a Point from a Plane; Angle Between Two Planes; Pair of Planes. Transformations Translation and Rotation. Straight Line Equations of Straight Lines; Distance of a Point from a Straight Line; Distance Between Two Straight Lines; Distance Between a Straight Line and a Plane.	15
Unit II	SphereDifferent Forms: Centre-Radius Form; Four Point Form; DiametralForm.Some Positional Studies.ConeEquation of a Cone with a guiding curve; Equation of a RightCircular Cone.CylinderEquation of a Cylinder; Equation of a Right Circular Cylinder.ConicoidsEllipsoid; Hyperboloid of One Sheet; Hyperboloid of Two Sheets;Elliptic Paraboloid; Hyperbolic Paraboloid.	15
Pedagogy:	Lectures focusing on developing a strong conceptual understandi geometry through theoretical frameworks. Use of GeoGebra as a visual aid tool to enhance conceptual unders	-

Guiding students to virtually manipulate geometric figures using GeoGe for intuitive learning, PRINCIPAL TEXT: Chatterjee, D. (2009). Analytical Geometry Two and Three Dimensi Narosa Publishing House Pvt. Ltd., New Delhi. Reference/ Reading: 1. Das, A. N. (2009). Analytical Geometry of Two and Three Dimensi New Central Book Agency (P) Ltd. New Delhi. 2. Jain, P. K., Ahmad, K. (2014). Textbook of Analytical Geometry (3 rd e New Age International Publishers, New Delhi.	
PRINCIPAL TEXT: Chatterjee, D. (2009). Analytical Geometry Two and Three Dimensi Narosa Publishing House Pvt. Ltd., New Delhi. Reference/ Reading: 1. Das, A. N. (2009). Analytical Geometry of Two and Three Dimensi New Central Book Agency (P) Ltd. New Delhi. 2. Jain, P. K., Ahmad, K. (2014). Textbook of Analytical Geometry (3 rd e	ons.
Reference/ Reading:Chatterjee, D. (2009). Analytical Geometry Two and Three Dimensi Narosa Publishing House Pvt. Ltd., New Delhi.Reference/ Reading:1. Das, A. N. (2009). Analytical Geometry of Two and Three Dimensi New Central Book Agency (P) Ltd. New Delhi.2. Jain, P. K., Ahmad, K. (2014). Textbook of Analytical Geometry (3 rd e	ons.
Narosa Publishing House Pvt. Ltd., New Delhi.Reference/ Reading:I. Das, A. N. (2009). Analytical Geometry of Two and Three Dimensi New Central Book Agency (P) Ltd. New Delhi.2. Jain, P. K., Ahmad, K. (2014). Textbook of Analytical Geometry (3rd e)	ons.
Reference/ Reading:REFERENCES:1. Das, A. N. (2009). Analytical Geometry of Two and Three Dimensi New Central Book Agency (P) Ltd. New Delhi.2. Jain, P. K., Ahmad, K. (2014). Textbook of Analytical Geometry (3rd e)	
Reference/ Reading:1. Das, A. N. (2009). Analytical Geometry of Two and Three Dimensi New Central Book Agency (P) Ltd. New Delhi.2. Jain, P. K., Ahmad, K. (2014). Textbook of Analytical Geometry (3rd e)	ļ
Reading:New Central Book Agency (P) Ltd. New Delhi.2. Jain, P. K., Ahmad, K. (2014). Textbook of Analytical Geometry (3rd e)	
2. Jain, P. K., Ahmad, K. (2014). Textbook of Analytical Geometry (3rd e	ons.
Now Ago International Publishers, Now Dalhi	ed.).
New Age international Publishers, New Delin.	
3. Narayan, S. and Mittal, P. K. (2007). Analytical Solid Geometry, S. Ch	and
& Company.	
Students will be able to	
1. Define terms and explain concepts related to 3D Geometry.	
Course 2. Understand the properties of straight lines, spheres, cones	and
Outcomes: cylinders.	
3. Establish various properties and results on conicoids.	
4. Develop analytical skills in solving geometric problems.	

Name of the Progr	amme : B.Sc. Mathematics	
Course Code	: MAT-304	
Title of the Course		
Number of Credits		
Effective from AY	: 2025-26	
Pre-requisites	A First course in Group Theory,	
for the Course:	Stand B	
Course Objectives:	The course is designed to give the student an exposure to advanced in group theory which are useful in higher mathematics. The course various topics starting with Group Action on a set, Isomorphism The Series of Groups, Sylow Theorem and their applications, Free Groups, Free Groups and Group Presentations.	e covers eorems,
Content		No. of Hours (L+T)
Unit I	Group Action on a Set: Factor Group Computations and Simple Groups, Group Action on a Set, Burnside's Formula, Examples Groups Actions	9+3
Unit II	Isomorphism Theorems and Series of Groups: Review of the First Isomorphism Theorem, Second Isomorphism Theorem, Third Isomorphism Theorem, Subnormal and Normal Series, Butterfly Lemma, Jordan-Holders Theorem, Solvable Groups, Ascending central series of the group.	12+4
Unit III	Sylow Theorem: p-Groups, Cauchy's Theorem, First Sylow Theorem, Second Sylow Theorem, Third Sylow Theorem, Applications of the Sylow Theory: Class Equation of a group, Proof that every group of order prime square is abelian, Groups of orders products of two primes	12+4
Unit IV	Free Abelian Group: Free abelian groups, basis and rank of a free abelian group, Statement and proof of The Fundamental Theorem of Finitely Generated Abelian Groups Free Groups and Group Presentations: Words and reduced words, Free Groups, Homomorphisms of Free Groups, Homomorphisms of Free Groups, Group Presentations, Applications of Group Presentations.	12+4
Pedagogy:	Lectures, Self Study, Assignments. Lectures should include the examples. Tutorial to be exclusively dedicated for problem solving. PRINCIPAL TEXT:	ory and
	A B C C C C C C C C C C C C C C C C C C	Edition
Poforonco /	John B. Fraleigh, A First Course in Abstract Algebra, Seventh	Eultion,
Reference/	Pearson, 2013	
Reading:	 <u>REFERENCES:</u> 1. David S. Dummit and Richard M. Foote, Abstract Algebra, 3rd Wiley, 2011 	Edition,

	2. Joseph A. Gallian, Contemporary Abstract Algebra, Eight Edition,
	Cengage India Private Ltd, 2019
	3. Michael Artin, Algebra, Second Edition, Pearson Edition, 2015
	4. Vivek Sahai and Vikas Bist, Algebra, 3 rd Edition, Narosa, 2015.
	At the end of this course the student will be able to
Course	1. Recollect the basic definitions and theorems in Group Theory.
Course Outcomes:	2. Explain the various proofs and concepts in the course.
Outcomes:	3. Solve the various computations problems in the course
	4. Solve problems using the concepts learnt in the course.

Name of the Progr Course Code Title of the Course Number of Credits Effective from AY Pre-requisites for the Course: Course	: MAT-305 : Complex Analysis : 3L+1T : 2025-26 A First Course in Real Analysis. To provide an introduction to the theory of functions of complex va	-
Objectives: Units	analytic functions, contour integrations and to furnish an introduction their applications.	No. of Hours (L+T)
	Complex Numbers: Sums and products; Algebraic properties; Vectors and moduli; Complex conjugates; Exponential form; Arguments of products and quotients; Roots of complex numbers; Regions in the complex plane.	5 + 2
Unit	Analytic Functions: Functions of a complex variable; Limits; Continuity; Derivatives; Differentiation formulas; Cauchy – Riemann equations; Sufficient condition for Differentiability; Polar coordinates; Analytic functions; Harmonic functions; Uniquely determined analytic functions.	9+3
Unit II	Elementary Functions: Exponential function; Logarithmic function; Branches and Derivatives of Logarithms; Identities involving logarithms; Complex exponents; Trigonometric functions; Hyperbolic functions; Inverse Trigonometric and Hyperbolic Functions.	8+2
Unit III	Integrals: Derivatives of functions; Definite integrals of functions; Contours; Contour integrals; Contour integrals of functions with branch cuts; Upper bounds for moduli of contour integrals; Antiderivatives; Cauchy – Goursat theorem (without proof); Simply and Multiply connected domains; Cauchy integral formula; Extension of Cauchy integral formula [statement only]; Some consequences of the extension; Liouville's theorem; Fundamental theorem of Algebra; Maximum modulus principle.	13 + 4
	Series: Convergence of sequences and series; Taylor series; Taylor's theorem [statement only]; Laurent series; Laurent's theorem. [statement only].	3+1
Unit IV	Residues and Poles: Isolated singular points; Residues; Cauchy Residue theorem; Residue at infinity; The three types of Isolated singular points; Residues at poles.	7 + 3

	Lectures/Tutorials/Self-study.
Pedagogy:	Lectures should include theory and examples. Tutorial to be exclusively
	dedicated for problem solving.
	PRINCIPAL TEXT:
	J. Brown and R. Churchill: Complex Variables and Applications, 8th Edition,
	McGraw Hill Education, 2017.
	REFERENCES:
	1. A. R. Shastri: Complex Analysis, Laxmi Publications, 2010.
	2. E. B. Saff and A. D. Snider: Fundamentals of Complex Analysis with
Reference/	Applications to Engineering and Science, 3rd Edition, Pearson
Reading:	Education, 2008
	3. J. B. Conway: Functions of a Complex Variable, Springer – Verlag, 1973.
	4. J. E. Marsden, and M. J. Hoffman: Basic Complex Analysis, 2nd Edition,
	W. H. Freeman & Co. Ltd., 1987.
	5. L.V. Ahlfors: Complex Analysis, McGraw-Hill Book Company, 1979
	6. S. Ponnusamy: Foundations of Complex Analysis, 2nd Edition, Narosa
	Publishing House, 2005.
(Canal)	The student will be able to:
NON UNIVERSION	1. Build the theory of limits, continuity, and differentiation to a function
Course	of a complex variable.
	2. Prove several results and assess suitable techniques of complex
Outcomes:	integration.
AP NA	3. Evaluate integrals of a complex valued function over contours.
(a)	4. Apply the theory of residues, and theorems of Taylor and Laurent to
Chanfall	solve complex integrals.

Name of the Progr	amme : B.Sc. Mathematics	
Course Code	: MAT-306	
Title of the Course	: Vector Calculus	
Number of Credits	: 3L+1T	
Effective from AY	: 2025-2026	
Pre-requisites	Courses in Calculus of One Variable, Real Analysis, and Linear algebr	ra.
for the Course:		
Course	This course helps in understanding the basic concepts in multiv	variable
Objectives:	calculus	
Content:		No.of Hours (L+T)
	The geometry of Euclidean space:	. ,
Unit I	Vectors in two and three dimensional space, geometry theorems by vector methods, equation of line (parametric form), inner product, length and distance, Cauchy-Schwarz inequality, orthogonal projection, triangle inequality, cross product and its elementary properties, equation of plane in vector form, n- dimensional Euclidean space revisit.	5+2
Unit II	 Differentiation: Graph of functions, level sets, curves and surfaces, limit of function and its properties, continuous functions and its properties, continuity of composite functions. Partial derivatives, the linear approximation, differentiability of functions of two and three variables, tangent plane, differentiability-the general case. Basic theorems related to differentiability and continuity. Paths and curves, velocity and tangents to path, chain rule (no proof), special cases of chain rule, gradient and directional derivatives and its elementary properties, Iterated partial derivatives and equality of mixed partial derivatives, implicit differentiation Vector valued functions: Differentiation of paths, differentiation rules, arc length function, reparametrization, vector fields and scalar fields, gradient field, divergence and curl, physical interpretations of divergence and curl 	19+6
Unit III	curl, Laplacian operator, Basic identities of vector analysis. Double and triple integrals: Double integrals and triple integrals as volume, reduction to iterated integrals, Fubini's theorem (no proof), Integrals over general regions, change of order of integrations	6+2

	Change of variable formula (no proof) for two and three variables,	
	special cases- polar co-ordinates, cylindrical co-ordinates and	
	spherical co-ordinates.	
	Integration over paths and surfaces:	
	Path integrals, line integrals, reparametrization of paths and its	
	properties, parametrized surfaces, tangent vector and tangent	
	plane to a parametrized surface, area of parametrized surface,	
	integrals of scalar fields and vector fields over surfaces,	15+5
Unit IV	reparametrization of surfaces and its properties, physical	1343
	interpretation of surface and volume integrals.	
	The integral theorems of vector analysis:	
	Green's theorem and its applications, Stokes theorem,	
	Conservative fields, physical interpretations of line integrals, Gauss	
	Divergence theorem.	
Dedeses	Lectures/tutorials/assignments/self-study. Lectures should include	theory
Pedagogy:	and examples. Tutorial to be exclusively dedicated for problem solvi	ing.
	PRINCIPAL TEXT:	
	Jerrold E. Marsden and Anthony Tromba: Vector calculus, Sixth edit	ion <i>,</i> W.
UNIVERS	H. Freeman and Company New York, 2012	and and a second
	REFERENCES:	(B)
- 5 max	1. Gosh and Maity: Vector Analysis, 7th Edition, New Central bo	ok
Reference Reading:	agency, 2011.	
	2. J. N. Sharma, and A. R. Vasishtha: Vector Calculus, Krishna Pra	kashan
	Media, 2019	1 and
	3. Md. A. Ashraf and Md. A. K. Hazra : Vector Analysis with Applic	ations,
	4 th Edition, New Age International Publishers, 2018.	\mathcal{D}
	4. T. M Apostol: Calculus Vol II, Second Edition, John Wiley & Sons,	2005
	1. To build student's knowledge of multivariable calculus and intro	
	calculus on manifolds.	
Course Outcomes:	2. To develop the ability to work with limits and continuity and	
	differentiability of vector valued functions.	
	3. To be able to calculate line, surface and volume integrals.	
	4. To apply the concepts in calculus to solve some problems in p	physics,
	engineering etc.	

Title of the Course Number of Credits Effective from AY	6 6	
Pre-requisites for the Course:	Basic 12 th standard Mathematics.	
Course Objectives:	 To make students familiarize with the mathematical formulation of rea world problems. To acquaint students with the problem-solving techniques theoretical and graphically. 	
Content	The second	No. of Hours
Unit I	Convex sets: convex set, extreme points of convex sets, convex combination, convex polyhedron, simplex. Linear Programming Problem: Introduction, formulation of LPP. General LPP, canonical and standard forms of LPP. Basic solution and degenerate solution of a system of equations, basic feasible solution, optimum basic feasible solution, improved basic feasible solution.	10
Unit II	Simplex method : reduction of a feasible solution to basic feasible solution, extreme point correspondence, fundamental theorem of linear programming, replacement of a basis vector, net evaluation, improved basic feasible solution, unbounded solution, conditions of optimality.	14
Unit III	Duality in Linear Programming : general primal-dual pair, formulating a dual problem, primal-dual pair in matrix form. Theorems in Duality, Fundamental theorem of duality, existence theorem. Post optimal analysis : changes in objective function coefficients c_i 's and changes in the b_i 's values.	13
Unit IV	Transportation Problem : LP formulation of the transportation problem, existence of feasible solution, basic feasible solution, duality in transportation problem, the transportation table, loops in transportation table. Assignment problem : mathematical formulation of the problem, reduction theorem.	08

	30 Hours to be dedicated for solving problems on:	
	1. Graphical solution method to LPP	
	 Computational procedure of Simplex Method 	
	3. Two Phase Method	
	4. Big M method	
	5. Duality and simplex method	
	6. Dual Simplex Method	
	7. Post-Optimal analysis:	
	i. Changes in objective function coefficients	
Practical	ii. changes in the values	30
	7. Finding initial basic feasible solution to transportation	
	problem (balanced and unbalanced):	
	i. North-West corner method	
	ii. Least Cost Method	
	iii. Vogel's Approximation method	
	8. Optimal solution (degenerate and nondegenerate) to	
	transportation problem (MODI method)	
(8-8)	9. Hungarian Assignment Method (balanced and unbalanced)	2
OC UNIVERSION	Lectures/Practical/Self study/Assignments/TORA	820 .
Sama A	Lectures shall include theory and examples. Practical to be exe	
Pedagogy	dedicated to problem solving. The record of practical shall be mai	
	by students in a separate manual/journal duly certified by the instr	
SIE	* Introduction to the use of TORA software to solve the prob	plems is
THE REAL PROPERTY AND	recommended.	7 pV
Taufar S	Principal Text:	D _ th
A linealBe 2 Auro	Kanti Swarup, P. K. Gupta and Man Mohan, Operations Resea	rch, 5 ^m
	Edition, Sultan Chand and sons, 2016	
	Reference:	
Reference	1. G. Hadley, Linear Programming, Narosa, 2002	
Reading	2. J. K. Sharma, Operations Research: Theory and Applications, Ma	acmillan
	India Limited	
	3. P. K. Gupta and D. S. Hira, Operations Research, S. Chand, 2019.	
	4. S. D. Sharma, Operations Research: Theory, methods and appli	cations,
	Kedar Nath Ram Nath, 2014	
	The student will be able to,	
	1. Construct Linear Programming Problems and Solve them Graphically.	
	2. Solve Linear Programming Problems by simplex method and Interpret	
Course	the solution.	
Outcomes	3. Determine a minimum transportation cost of a given commodity from a	
	number of sources.	
	4. Choose the minimum cost or time of completing a number of je	obs by a

Name of the Progr Course Code Title of the Course Number of Credits Effective from AY	: MAT-322 : Applied Statistics	
Pre-requisites for the Course:	Basic 12 th standard Mathematics.	
Course Objectives:	To make students aware of various ways of doing data ana employing statistical techniques in applied statistics.	lysis by
Content	Taufatta Converse + DU	No. of Hours
Unit I	Correlation and Regression: Multiple correlation; Multiple regression; Log linear and Log Log models; Partial correlation – computations and their coefficients	15
Unit II	Analysis of time series data; Moving Averages; Linear trend and quadratic curves	6
Unit III	Parametric tests: Snedecor's F – distribution; F – test; One way and Two way ANOVA with and without repetition, Interactions; Post – hoc analysis. Non – Parametric tests: Chi square test for goodness of fit and independence of attributes; Run's test; median test	10
Unit IV	Factor Analysis: Mathematical basis; Exploratory Factor analysis; Important methods of factor analysis – Centroid method, Principal Components method, Maximum Likelihood method; Rotation in factor analysis.	14
Practical	 30 hours are to be dedicated for illustrations with specific examples on the concepts learnt in unit I to Unit IV using manual computation and/or statistical softwares SPSS/PSPP/R. Any 10 of the following: Partial and Multiple Corelation Multiple Regression Log Log Model Log Linear Model Estimation of Moving Averages Estimation using Linear Trend Estimation using Quadratic curves One way ANOVA Two way ANOVA Non-Parametric (Run's test; median test) Post-hoc Analysis Factor Analysis (Principal Component Analysis) Factor Analysis (Rotation) 	30

	Lectures/Practical/Self-study.	
Pedagogy	Lectures should include theory and examples. Practical to be exclusively	
	dedicated for problem solving. The record of practical shall be maintained	
	by students in a separate manual/journal duly certified by the instructor.	
-	PRINCIPAL TEXT:	
	1) S. C. Gupta, and V. K. Kapoor: Fundamentals of Mathematical Statistics,	
	12th Edition, Sultan Chand & Sons, 2020.	
	2) J. F. Hair Jr., W. C. Black, B. J. Babin, and R. E. Anderson: <i>Multivariate</i>	
	Data Analysis, 8th Edition, Cengage, 2018.	
Reference/		
Reading	REFERENCES:	
	1. G. B. Singh: <i>Statistical Probability</i> , Paradise Publishers, 2012.	
	2. J. Medhi: Statistical Methods: An Introductory Text, New Age	
	International Publishers, 2006.	
	3. S. C. Gupta, and V. K. Kapoor: Fundamentals of Applied Statistics,	
	11 th Edition, Sultan Chand & Sons, 1994.	
	The student will be able to,	
	1. Apply the various techniques in applied statistics for doing data	
Course	analysis.	
Outcomes:	2. Solve problems in testing hypothesis.	
	3. Construct multiple regression models for real life problems.	
2 marth	4. Set up suitable models using factor analysis and discriminant analysis.	
R Contract	4. Set up suitable models using factor analysis and discriminant analysis.	

Name of the Progr Course Code Title of the Course Number of Credits	: MAT-323 : Bio Mathematics	
Effective from AY	: 2025-26	
Pre-requisites for the Cours:	Basic 12 th standard Mathematics and any computer programming t	ool.
Course Objectives:	 To enable students to understand how mathematics can be us describe biological processes. Make students appreciate the power and limitations of mathematics solving practical real life problems. 	
Content	Production and A Daries	No. of Hours
Unit I	Introduction: Scope and Role of mathematics in biomathematics, Population dynamics, Mathematical ecology, Mathematical epidemiology, Mathematical genetics.	5
Unit II	Mathematical Biology: Single species continuous population model, Malthus model, Logistic model (Formulation, analytic solution, behaviour of population as t tends to infinity, Carrying capacity), Steady state, equilibrium point, biological interpretation of steady state, stability of steady state, Geometric analyses.	15
Unit III	Interacting Population:Prey predator system, Lotka Volterra model, Competition model Harvesting problems of single natural population: constant yield harvesting and constant effort harvesting	15
Unit IV	Epidemic Models: Basic terminologies, SI, SIRS models, basic reproduction number	10
Practicals	 30 Hours to be dedicated for problem solving in: 1. Take any modelling equation, find its solution, check the stability of equilibrium point and analyse the solution geometrically (Using any software any six modeling equations)(Six Practicals) 7. Take any logistic equation, find its solution, check the stability of equilibrium point and analyse the solution geometrically (Using any software) 8. Take any logistic equation, find its solution, check the stability of equilibrium point and analyse the solution analytically (Using any software) 9. Model a prey predator situation with One prey two predators 10. Model a prey predator situation with two preys and a predator 	30

	11. Model any Epidemic or disease and analyse the data using the software
Pedagogy:	Lectures/Tutorials/Self-study/MATLAB/Scilab
Reference/ Reading:	 F. Braler, P.V.D.Driessche and J.Wu, Mathematical Epidemiology, Springer 2008. I.D.Murray, Mathematical Biology, Springer, 1993. J.N. Kapur, EWP 1981, Mathematical Models in Biology and Medicine J.N. Kapur, 2022, Mathematical Modelling, New Age International Publishers. Mathematical Models in Biology, SIAM, 1988 Y.C. Fung, Biomechanics, Springer-Verlag, 1990
Course Outcomes:	 Apply Mathematical techniques to get insight into the problems of biosciences. Solve any modelling equation and check its stability. Model prey-predator situations. Analyze the date modelled by any epidemic or disease.

Name of the Progr Course Code	: MAT-324	
Title of the Course Number of Credits Effective from AY	•	
Pre-requisites for the Course:	Basic 12 th standard Mathematics.	
Course Objectives:	To apply various optimisation techniques for decision making.	
Content		No. of Hours
Unit I	Network Scheduling by PERT/CPM: Basic components of network, logical sequencing, rules of network construction, concurrent activities. Critical path analysis: forward pass, backward pass, critical path, floats.	08
Unit II	Game Theory : Introduction, two-person zero-sum games, basic terms, minimax-maximin principle, solving games with saddle points, mixed strategies games	10
	Queueing Theory: queueing system, elements of a queueing system, operating characteristics of a queueing system, deterministic queueing system and probability distributions in queueing systems: distribution of arrivals, distribution of interarrival times, distribution of departures, distribution of service times. Classification of queueing models, transient and steady states, Poisson queueing systems: $(M/M/1):(\infty/FIFO), (M/M/1):(\infty/FIFO), (M/M/1):(\infty/FIFO), * Derivation of the formulae to be done in theory and problems to be done in the practical$	14
Unit IV	 Inventory Control: Introduction, types of inventories, objectives of scientific inventory control, costs associated with inventories, factors affecting inventory control, the concept of EOQ. Deterministic inventory problems with no shortages: i) the fundamental problem of EOQ, ii) EOQ with several production runs of unequal length iii) EOQ with finite replenishment Deterministic inventory problem with shortages: i) EOQ with instantaneous production and variable order cycle time ii) EOQ with instantaneous production and fixed order cycle One period problem without set-up cost: i) uniform demand (discrete and continuous units) 	13

	* Derivation of the formulae to be done in theory and problems
	to be done in the practical
	30 Hours to be dedicated for problem solving on the following
	topics:
	1. Critical path method (deterministic and probabilistic time)
	2. Graphical solution of $2 \times n$ games
	3. Graphical solution of $m \times 2$ games
	4. Dominance property
	5. (M/M/1):(∞/FIFO), (M/M/1):(N/FIFO)
	6. (M/M/C):(∞/FIFO), (M/M/C):(N/FIFO)
	7. FOO without shortages having
Practical	i. uniform demand and equal production length 30
	ii. unequal production length
	iii. with finite replenishment
	8. EOQ with instantaneous production with shortages and
	i. variable order cycle time
	ii. fixed order cycle
	9. One period problem without set-up cost, uniform demand,
AND	discrete and continuous units
(69) TEX	10. One period problem without set-up cost, instantaneous
Zmar	demand, discrete and continuous units
	Lectures/Practical/Self study/Assignment/TORA
0 000	Lectures shall include theory and examples. Practical to be exclusively
	dedicated to problem solving. The record of practical shall be maintained
Pedagogy	by students in a separate manual/journal duly certified by the instructor.
Contractor Distance	* Introduction to the use of TORA software to solve the problems i
	recommended.
	Principal Text:
	Kanti Swarup, P. K. Gupta and Man Mohan, Operations Research, Sultar
	Chand and sons, 2016
	References:
Reference	1. G. Hadley, Linear Programming, Narosa, 2002
Reading	2. J. K. Sharma, Operations Research: Theory and Applications, Macmilla
	India Limited
	3. P. K. Gupta and D. S. Hira, Operations Research, S. Chand, 2019.
	4. S. D. Sharma, Operations Research: Theory, methods and applications
	4. S. D. Sharma, Operations Research: Theory, methods and applications
Course	 S. D. Sharma, Operations Research: Theory, methods and applications Kedar Nath Ram Nath, 2014
Course	 4. S. D. Sharma, Operations Research: Theory, methods and applications Kedar Nath Ram Nath, 2014 The student will be able to,
Course Outcomes:	 4. S. D. Sharma, Operations Research: Theory, methods and applications Kedar Nath Ram Nath, 2014 The student will be able to, 1. Design a project management technique when the time to finish a

 Construct the most cost – effective services by studying the movement of people, objects, or information through a line.
 Organize inventory levels to ensure an optimal amount of each product for the smooth functioning of a supply chain.

Name of the Program	nme : B.Sc. Mathematics	
Course Code	: MAT-326	
Title of the Course	: Mathematical Demography	
Number of Credits	: 3L+1P	
Effective from AY	: 2025-26	
Dro roquisitos	Pasia 12 th standard Mathematics and knowledge of computers	

Pre-requisites	Basic 12 th standard Mathematics and knowledge of computers		
for the Course:			
Course Objectives:	 To equip the students with a comprehensive understanding of the techniques and tools of demography and to provide analytical skills To impart a thorough knowledge about the past, present and future population scenario of the world and India To make students understand the various demographic events and processes that shape the population size and structure, various factors affecting population and its determinants 		
Content	OAUNIVERS	No. of Hours	
Unit	Introduction: Definition, Origin and Scope of demography, history of population growth, sources of demographic data: census and sample survey. Population Composition: Based on age, sex, religion and education, Components of population change: Fertility, mortality, migration(factors, causes and consequences)	10	
Unit II	Demographic theories: Malthus theory, socialistic views of population, demographic transition theory, Social theory of fertility: Freedman Davis-Blake model, Theory of migration.	8	
Unit III	Techniques of demographic analyses: Measures of age, sex composition of population, age pyramid, measures of population growth-arithmetic, exponential, logistic Mortality rate, morbidity rate, fertility rate(Crude and specific)	12	
Unit IV	Life Tables: Concept, assumptions, construction of age tables, uses, methods of population estimation and projections (Mathematical and cohort component method)	15	
Practicals	 30 Hours to be dedicated for problem in: 1. Extract the migration/ various factors data from census data and analyze using the software. 2. Take population data of any Taluka/city / village of Goa and find mortality change of population change using the software. 	30	

гг	
	 Take population data of any Taluka/city / village of Goa and find morbidity change of population change using the software.
	 Take population data of any Taluka/city / village of Goa and find rate of fertility change using the software.
	5. Take population data of any Taluka/city / village of Goa and
	find migration of males and population change using the software.
	 Take population data of any Taluka/city / village of Goa and find migration of females and population change using the software.
	 Take population data of any Taluka/city / village of Goa and find population ageing using the software.
	8. Carry out population analyses of Goa using the software.
	 9. Carry out population projection of Goa using the software.
	10. Construct Life Tables.5
Pedagogy	Lectures/seminars/fieldwork/tutorials/MortPak/DemProj/Spectrum
	 Bougue, Donald J: Principles of demography – New York: John Wiley and Sons, 1969
Ser and	2. Bhende, Asha A and Tara Kanitkar: Principles of population studies –
	5th rev. ed. Delhi: Himalaya, 1997
h to A	3. Ghosh B N Population Theories and demographic analysis – New Delhi
SAFILIA	 Pollard J H Demographic Techniques Australia, Pengamon Press Prakasa Rao VLS: Urbanisation in India: Spatial Dimensions – New
	Delhi: Concept, 1983
Concession of Day	6. Ramakumar R; Technical Demography, New Delhi, Wiley Eastern Ltd.
Reference Reading	 Ramakumar. R and Gopal Y S: Technical demography – New Delhi: Wiley Eastern, 1986
	 Spiegelman M, Introduction to Demography, Cambridge, Harvard University Press
	 Srinivasan K, Basic Demographic Techniques and Applications, New Delhi Sage Publications
	 10. United Nations: Determinants and consequences of population trends – New York, United Nations
	11. United Nations, Determinants and consequences of population trends – New York United Nations
	 Acquire practical knowledge of the important components of formal demography.
Course	2. Forecast various factors affecting population.
Outcomes:	 Projection of population in addition to finding morbidity, migration and fertility changes.
	4. Use appropriate software in carrying out population analysis.

Name of the Progr Course Code Title of the Course Number of Credits Effective from AY	: MAT-325 : Econometrics	
Pre-requisites for the course:	Basic 12 th standard mathematics.	
Course Objectives:	To provide learners with the knowledge and skills of basic econometrics to enable them to understand and to conduc econometrics analyses.	
Content	A Faur and the	No. of Hours
Unit I	The Structure of Economic Data: Cross-Sectional Data; Time Series Data; Pooled Cross Sections; Panel and Longitudinal Data. Simple Linear Regression Model: Two Variable Case Estimation of model by method of ordinary least squares; properties of estimators; goodness of fit; tests of hypotheses; scaling and units of measurement; confidence intervals; Efficiency of OLS: Gauss- Markov theorem; forecasting.	15
Unit II	Multiple Linear Regression Model : Estimation of parameters; properties of OLS estimators; goodness of fit - R ² (R square) and adjusted R ² ; partial regression coefficients; testing hypotheses – individual and joint; functional forms of regression models; Omitted Variable Bias, Multicollinearity: Nature of the problem and its consequences; econometric solutions.	10
Unit III	Heteroscedasticity and Autocorrelation: Problems of Heteroscedasticity and Autocorrelation; Identification & Solution, GLS method of estimation; tests for heteroscedasticity and autocorrelation.	10
Unit IV	Qualitative Response Models: Qualitative (dummy) independent variables; Probit model, Alternative measures of Goodness of Fit (R^2) in Qualitative response models, Logit vs Probit model selection, Limited dependent variable model/ Tobit Model.	10
Practical	 Any 10 practicals may be done by using manual computation / SPSS/ R 1. Structure of Data: Preparing cross sectional and time series data base in SPSS/ EXCEL worksheet. 2. Representation of time series in graph. 3. Fitting of linear regression equation (y= f(x)) 4. Fitting of linear regression equation (x = f(y)) 5. Forecasting using regression equations. 6. Multiple regression equation (2 independent variables) 7. Multiple regression equation (3 independent variables) 	30

	8. Estimation by log linear model and log log model		
	9. Computation of partial regression coefficients		
	10. Problem of multicollinearity: Methods of removing the		
	multicollinearity in regression models.		
	11. Illustration of autocorrelation: Calculation of Durbin- Watson		
	coefficient.		
	12. Illustration and computation of heteroskedasticity.		
	Lectures/Practical/Self-study.		
	Lectures should include theory and examples. Practical to be exclusively		
	dedicated for problem solving. The record of practical shall be maintained		
	by students in a separate manual/journal duly certified by the instructor.		
	A discussion on Economic Concepts and Database for Econometric		
Pedagogy	Analysis namely National Income Accounting – Base year – Methods of		
	estimation – Types of reporting – BOP and NI – SGDP; Census - types –		
	other data sets from Census – Economic Census, Educational Census,		
	Agricultural census, etc.; NSSO – sample – large and small samples, NFHS,		
	RBI; International data – World bank, IMF, ILO, WTO, UNCTAD, UN,		
	wherever required in the course, must be done.		
SUNVERS	PRINCIPAL TEXT:		
	Gujarati, D. N. and Porter, D.C., Essentials of Econometrics, McGraw Hill, 4th		
6 CONST	edition, International Edition, 2009.		
	REFERENCES:		
Reference	1) Dougherty Christopher, Introduction to Econometrics, Oxford University		
Reading	Press, 3rd edition, Indian edition, 2007.		
Faufaur	2) Maddala, G.S., Introduction to Econometrics, John Wiley, 2001.		
Supplements - Die	3) Wooldridge, J. M., Introductory Econometrics: A Modern Approach,		
	Cengage Learning, 2008.		
	The student will be able to,		
Course	1. Understand economic data.		
	2. Evaluate economic data.		
Outcomes:	3. Analyse economic data.		
	4. Interpret statistical evidence from economic data.		
	X INVEX		

Name of the Programme	: B.Sc. Mathematics
Course Code	: MAT-400
Title of the Course	: Advanced Real Analysis
Number of Credits	: 3L+1T
Effective from AY	: 2026-27
	LA UNIVERS

Effective from AY	: 2026-27	
Pre-requisites for the course:	A course in Calculus of One Variable, Analysis, and Riemann Integra	ation
Course Objectives:	To construct solutions/strategies/proofs oneself and effect communicate the same by understanding the mathematical m behind the most fundamental concepts, apply the results to solve pro- in analysis at hand, and appreciate the connection between w branches of mathematics.	
Content	AUNIVERS	No. o Hours (L+T)
Unit I	Real Number System: Peano's Axioms for Natural Numbers; Finite sets; Cardinality of finite sets; Subset of finite sets. Theorem: Proper subset of a finite set has cardinality strictly less that the super set. Integers and Rational numbers (Discussion); Ordered sets and LUB Property; Ordered Field Axioms; Field of Real Numbers and Completeness; Existence of n^{th} roots of nonnegative reals; Proof of existence of decimal representation of reals; Countable sets – definition and equivalent reformulations of countability; Countability of unions and Cartesian products of sets; Uncountable sets; Countability of rationals; Uncountability of reals, Extended Real Number System; Lindelöf Covering Theorem. Cantor's Set: Cantor set – Construction and basic properties; Cantor set and ternary expansion. Perfect sets: Theorem: Every non – empty perfect set of \mathbb{R}^n is uncountable.	15+5
Unit II	Calculus: Limit inferior and Limit superior of a sequence; Higher order derivatives; Inflection points; Convex functions and differentiability; Taylor's theorem (with Cauchy and Lagrange form of remainder); Maclaurin's theorem; Leibnitz rule for higher order derivative of product of functions; Stationary points and their classification; Local maxima and Local minima; Indeterminate forms of the type $\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0, \infty, 0^0, 1^\infty, \infty^0$.	7+3
Unit III	Riemann Steiltjes Integration: Weights and measures; The Riemann – Steiltjes integral; Space of integrable functions; Integrators of bounded variation.	11+4

	Compactness: Compact sets in Metric Spaces; Properties of	
	Compact Sets; Sequential Compactness; Bolzano – Weierstrass	
	Property; Heine – Borel Theorem; Totally Boundedness;	
	Equivalence of Compactness and Sequential Compactness; 12+3	
Unit IV	Lebesgue Covering Lemma; Compactness and Finite Intersection	
	Property; Continuous functions and Compactness in Metric	
	Spaces; Cantor Intersection Theorem; Compactness in \mathbb{R}^n .	
	Lectures/Tutorials/Self-study.	
Pedagogy	Lectures should include theory and examples. Tutorial to be exclusively	
	dedicated for problem solving.	
	PRINCIPAL TEXTS (UNITWISE):	
	1. T. Tao: Analysis I, 4 th Edition, Hindustan Book Agency, 2022. [For Unit I]	
	2. A. Kumar, and S. Kumaresan: A Basic Course in Real Analysis, CRC Press,	
	2014. [For Unit II]	
	3. W. Rudin: Principles of Mathematical Analysis, Standard Edition,	
	McGraw Hill Publisher, 2023. [For Unit III]	
	4. P. K. Jain, and K. Ahmad: <i>Metric Spaces</i> , 3rd Edition, Narosa Publishing	
Reference	House, 2019. [For Unit IV]	
Reading	REFERENCES:	
	1. A. Kumar, S. Kumaresan, and B. K. Sarma: A Foundation Course in	
6 (2388)	Mathematics, Narosa Publishing House, 2.18.	
A	2. N. L. Carothers: <i>Real Analysis</i> , Cambridge University Press, 2000.	
SIERAL	3. S. Narayan, and M. D. Raisinghania: <i>Elements of Real Analysis</i> , Revised	
	Edition, S. Chand Publications, 2016.	
र्श विश्वविश्व	4. S. C. Malik, and S. Arora: <i>Mathematical Analysis</i> , 6 th Edition, New Age	
Shinkage's Div	International Publishers, 2022.	
	The student will be able to,	
Course	1. Deduce properties of real numbers by applying definitions and axioms.	
Outcomes:	2. Explain the advance theory of differentiability.	
	3. Prove theorems in Riemann – Steiltjes integration.	
	4. Build results in compactness in metric space.	

Name of the Progr		
Course Code	: MAT-401	
Title of the Course	6	
Number of Credits		
Effective from AY	: 2026-2027	
Pre-requisites	A course in Group Theory.	
for the Course:		
Course	The 'Rings and Fields' course aims to acquaint students with fund	
Objectives:	concepts within rings and fields. Encompassing diverse subjects li	•
	and Fields, Ring of Polynomials, Ideals and Factor Rings, and Factor	
	in Integral Domains. Students will acquire the necessary knowle	-
	techniques to advance into topics like Field Extensions and Galois T	-
Content:		No. of
		Hours
Unit I	Basic Topics in Rings: Rings, Homomorphisms and Isomorphisms,	
	Division Rings, Skew Fields, Integral Domains, Theorems in	
	Integral Domains, Characteristic of a Ring, Fermat's and Euler's	15+5
A-A	Theorems, Application to solution of linear congruences, Field of	
AUNIVERS	Quotients of an Integral Domain, Uniqueness of field of Quotients	Con
Unit II	Ring of Polynomials Polynomials, The polynomial ring R[x], The	AR
6 (2388)	Evaluation Homomorphism, Zero of a Polynomial, Factorization of	X A
	Polynomials over Fields, The Division Algorithm, Factor Theorem,	9+3
SIE	Irreducible Polynomials, Eisenstein's Criterion and consequences	
Unit III	Ideals and Factor Rings: Ring Homomorphisms, Properties of	1 BN
विद्या विद्या कि	Homomorphisms, Quotient Rings, Ideals, Fundamental	9+3
Sevening of the	Homomorphism Theorem, Prime and Maximal Ideals Prime Fields	
Unit IV	Factorization in Integral Domains: Division in Rings, Unique	
	Factorization Domain and Principal Ideal Domain, Every PID is a	
	UFD and consequence to F[x] and integers, If D is a UFD then D[x]	12+4
	is a UFD, Euclidean Domains, Every Euclidean Domain is a PID,	
	Arithmetic in Euclidean Domains, Gaussian Integers, Fermat's $p =$	
	$a^2 + b^2$ theorem	
Pedagogy:	Lectures, Self Study, Assignments. Lectures to be dedicated for the	eory and
	problems. Tutorials shall be exclusively for solving exercises.	
Reference/	PRINCIPAL TEXT:	
Reading;	John B. Fraleigh, A First Course in Abstract Algebra, Seventh	Edition,
	Pearson, 2013	
	REFERENCES:	
	1. David S. Dummit and Richard M. Foote, Abstract Algebra, 3rd	Edition,
	Wiley, 2011	
	2. Joseph A. Gallian, Contemporary Abstract Algebra, Eight	Edition,
	Cengage India Private Ltd, 2019	
	3. Michael Artin, Algebra, Second Edition, Pearson Edition, 2015	

	4. Vivek Sahai and Vikas Bist, Algebra, 3 rd Edition, Narosa, 2015.
Course	At the end of this course the student will be able to
Outcomes:	1. Recollect the basic definitions and theorems in Ring Theory.
	2. Explain the various proofs and concepts in the course.
	3. Solve the various computations problems in the course
	4. Solve problems using the concepts learnt in the course.

Name of the Programme	: B.Sc. Mathematics
Course Code	: MAT-402
Title of the Course	: Advanced Linear Algebra
Number of Credits	: 3L+1T
Effective from AY	: 2026-2027

	. 2020-2027	
Pre-requisites for the Course:	A First Course in Linear Algebra	
Course Objectives:	To introduce and familiarize the learner with Linear Functionals, Triangulable and Diagonalizable Operators, Annihilating Polynomials, Decompositions of Vector Spaces using Operators and the Jordan Canonical Form.	
Content:	Charlenge - Dar v	No. of Hours (L+T)
Unit I	Linear functional on vector spaces, Hyper plane, Annihilator, Dual of vector spaces and properties, Transpose of linear Transformation and it's matrix, row rank equal to column rank.	9 + 3
	Elementary Canonical Forms: Characteristic values and Characteristic vectors, Characteristic spaces, Diagonalizable Operators, Characterization of Diagonalizable operators using the Characteristic spaces.	9+3
	Annihilating polynomials, Minimal Polynomial, Caley Hamilton Theorem, Invariant subspaces, T-conductor, Triangulable operators, Characterization of Triangulable and Diagonalizable operators using the Minimal polynomial.	9+3
	Simultaneous Triangulation & Simultaneous Diagonalization, Independent Subspaces, Projections, Invariant direct sums, Primary Decomposition Theorem, Nilpotent operators, T=D+N decomposition.	9+3
Unit IV	Rational and Jordan Forms: Cyclic subspaces and Annihilators, Companion matrix, Complementary subspace, T-admissible subspace, Cyclic Decomposition theorem (without proof), Generalized Cayley Hamilton theorem, Rational form, Invariant factors, Elementary Jordan matrices, Jordan Canonical form.	9+3
Principal Text	Kenneth Hoffmann and Ray Kunze, Linear Algebra, Second edition, PHI, 1997.	
Pedagogy:	Lectures/Tutorials/Self-study. Lectures to be dedicated for theory and problems. Tutorials shall be exclusively for solving problems.	
Reference Reading:	 I.R. Shafarevich and A. O. Remiz Linear Algebra and Geometry, S Verlag. S. Friedberg, A. Insel, L. Spence Linear Algebra (5th Edition), I 2022. 	

	3. S. Kumaresan, Linear Algebra, PHI, 2000.
	4. Y. I. Manim, Linear Algebra and Geometry, CRC Press.
Course Outcomes:	1. Display familiarity and knowledge of the concepts in the syllabus.
	2. Demonstrate proofs to establish truths related to the concepts in the
	syllabus.
	3. Choose the appropriate procedures and modify them, if needed, to
	solve method-based problems on the concepts in the syllabus.
	4. Analyze and solve unseen problems in Linear Algebra and invent
	mathematically precise arguments to justify their solutions.

Name of the Progr Course Code Title of the Course Number of Credits Effective from AY	: MAT-403 : Advanced Complex Analysis	
Pre-requisites for the Course:	A First Course in Complex Analysis	
Course Objectives:	To introduce students to advanced concepts in complex integration, understand conformal mappings and apply calculus of residues to solve problems in integration.	
Units	Content	No. of Hours (L +T)
Unit I	Power Series: Uniform Convergence of Power Series; Exponential and Trigonometric Functions; Logarithmic Functions.	6+2
	Complex Integration: Curves in the complex plane; Properties of complex line integrals [without proof] ; Cauchy - Goursat Theorem; Consequences of Simply Connectivity; Winding number of a curve; Homotopic Version of Cauchy's Theorem; Cauchy Integral Formula; Taylor's Theorem [Statement and Proof]; Zeroes of analytic functions; Laurent's Theorem [Statement and Proof] Maximum Principle and Schwarz Lemma: Maximum Modulus Principle and Minimum Modulus Theorem [statements only]; Schwarz Lemma and its consequences; Zeroes of Certain Polynomials; Conformal Mappings and Mobius Transformations: Principle of	15+5
Unit III	Conformal Mapping; Basic properties of Mobius maps; Fixed points and Mobius maps; Triples to Triples under Mobius maps; Cross ratio and its invariance property; Principle of Symmetry.	9+3
Unit IV	Classification of Singularities: Isolated and Non-Isolated singularities; Removable singularities; Poles; Isolated singularities at infinity; Meromorphic functions; Essential singularities and Picard's Theorem Calculus of Residues and Applications: Residue at a finite point [statements without proof]; Residue at a point at infinity; Residue theorem [statement only]; Number of Zeroes and Poles (Argument Principle); Rouche's Theorem; Open mapping theorem; Definite integrals involving sines and cosines; Evaluation of improper integrals; Singularities along the Real Axis; Integrating along branch cuts; Estimation of Sums, open mapping theorem.	15+5
Pedagogy:	Lectures/Tutorials/Self-study. Lectures should include theory and examples. Tutorial to be exadedicated for problem solving.	clusively

	PRINCIPAL TEXT:
	S. Ponnusamy: Foundations of Complex Analysis, 2nd Edition, Narosa
	Publishing House, 2005.
	REFERENCES:
	1. A. R. Shastri: Complex Analysis, Laxmi Publications, 2010.
	2. E. B. Saff and A. D. Snider: Fundamentals of Complex Analysis with
Reference/	Applications to Engineering and Science, 3rd Edition, Pearson
Reading:	Education, 2008.
	3. E. M. Stein and R. Shakarchi: Complex Analysis, Princeton University
	Press, 2005.
	4. J. B. Conway: Functions of a Complex Variable, Springer – Verlag, 1973.
	5. J. Brown and R. Churchill: Complex Variables and Applications, 8th
	Edition, McGraw Hill Education, 2017.
	6. L. V. Ahlfors: Complex Analysis, McGraw-Hill Book Company, 1979.
	The student will be able to:
Courses	1. Discuss uniform convergence of Power Series
Course	2. Prove various results in complex integration
Outcomes:	3. Solve problems in and illustrate the concept of Conformal Mappings
SINVERS	4. Classify singularities and apply residues to solve integrals.

Name of the Progr		
Course Code	: MAT-404	
Title of the Course		
Number of Credits		
Effective from AY	: 2026-2027]
Pre-requisites	A Course in Real Analysis and Linear Algebra.	
of the Course:		
Course	To develop the ability to understand and analyze the concepts of fu	nctions
Objectives:	of several variables.	
Content	A RANT OF THE	No. of Hours (L+T)
Unit I	Differentiation in \mathbb{R}^n : Partial Derivatives, Directional derivative, Directional derivatives and Continuity, Total derivative, Total derivative expressed in terms of partial derivatives, Jacobian matrix, Chain rule, Matrix form of the chain rule, Mean Value theorem for differentiable functions, Sufficient condition for differentiability. Higher order partial derivatives, Sufficient condition for equality of mixed partial derivatives, Taylor's formula for functions from \mathbb{R}^n to \mathbb{R} .	15 + 5
	Extrema of real valued functions of several variables: Local (relative) Maxima & Minima, Global (absolute) maxima and minima, extrema, Saddle (Inflexion) point, Necessary condition for a differentiable function to have local maxima (minima), critical points, Stationary point, Second Derivative test for extrema, Extremum problems with side conditions: Lagrange's multipliers.	9+4
Unit III	Inverse & Implicit Function Theorem: Implicit function, Functions with non-zero Jacobian determinant, Inverse Function Theorem, Implicit Function Theorem.	7 + 2
Unit IV	Multiple Riemann Integrals: Measure of a bounded interval in \mathbb{R}^n . Riemann integral of a bounded function defined on a compact interval in \mathbb{R}^n . Sets of measure zero and Lebesgue's criterion for existence of a multiple Riemann integral (Only statement), Evaluation of a multiple Riemann integral by iterated integration: Fubini's Theorem, Jordan measurable sets in \mathbb{R}^n , Multiple Riemann integral over Jordan measurable sets, Jordan content expressed as a Riemann integral, Additive property of the Riemann integral, Mean value theorem for multiple integrals.	14 + 4
Pedagogy	Classroom lectures, tutorials, self-study, assignments and references.	library
Reference/ Reading	LIOM M ADOSTOL <i>Mathematical Analysis</i> Narosa Publishing House 1985	

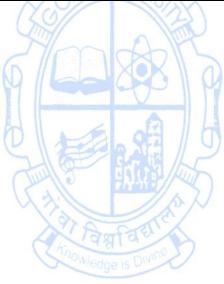
	1. B. V Limaye & S. Ghorpade: <i>A course in multivariable calculus,</i> Springer.
	2. C. H Edwards, Jr.: Advanced Calculus of several variables, Dover
	Publications.
	3. J. E Marsden, A.J. Tromba, Alan Weinstein: <i>Basic Multivariable Calculus</i> ,
	W.H. Freeman & Co Ltd.
	4. James Munkres: Analysis on Manifolds, Addison Wesley Publishing
	Company, 1991.
	5. Joel Hass, Christopher Heil and Maurice D. Weir, Thomas' Calculus,
	Fourteenth Edition, Pearson Education, 2018
	6. M. Spivak: Calculus on Manifolds, Benjamin Cummings, London.
	7. Martin Moskowitz, Fotios Paliogiannis: Functions of several real
	variables, World Scientific.
	8. T. M. Apostol: Calculus Vol II. John Wiley and Sons.
	The students will be able to,
	1. Examine the differentiability of functions and Find directional and total
	derivative and prove results related to differentiability.
Course	2. Determine extremum of real valued function of several variables.
Outcomes:	3. Prove Inverse and Implicit function theorems.
UNIVERS	4. Define Riemann integral over Jordan measurable sets and Evaluate
	Multiple Riemann integral.
6 MAR	5. Understand and Explain the concepts of functions of several variables.

Name of the Progr Course Code Title of the Course Number of Credits Effective from AY	: MAT-405 : Topology : 3L+1T	
Pre-requisites	: 2026-2027 A First course in Real Analysis.	
for the Course:		
Course Objectives:	To introduce the learner to the general setting Topology, in which powerful results can be proved using only the minimum required assumptions, thus letting the learner see and appreciate cause-effect with much more clarity.	
Content	Taufautre	No. of Hours
	Topological Spaces and Continuous Functions: Definition of Topological spaces, Basis, Subbasis, Order Topology, Product topology on XxY, Subspace topology, Closed sets, Limit points, Closure, Interior, Boundary, Hausdorff Space and T1 axiom.	9 + 3
Unit I	Continuous functions, Homeomorphisms, Imbeddings, Construction of continuous functions, Maps into products, The Product Topology, Comparison of Box and Product Topology, Metric topology, Diameter, Standard bounded metric, Euclidean metric, Square metric, Topologies in R^n induced by Euclidean and square metric are same as product topology.	8+2
Unit II	Connectedness : Connected spaces, connected subsets of \mathbb{R} , path connected spaces, Product and continuous images of connected spaces, locally connected spaces, components and path components.	9+3
Unit III	Compactness : Compact subsets of topological spaces, Compact subsets of \mathbb{R} , Products and continuous images of compact subsets, Compact Hausdorff spaces, Limit point compactness, Sequential compactness, Compact metric spaces, Lebesgue number lemma, Locally compact spaces and one-point compactification.	10+4
Unit IV	Countability Properties: First and second countable spaces, Separable spaces, Metric spaces and countability properties. Separation Properties: Hausdorff spaces, Regular spaces and normal spaces, Product, subspace and continuous images of regular and normal spaces.	9 + 3
Pedagogy:	Lectures/Tutorials/Self-study. Lectures should include theory and examples. Tutorial to be exclusively dedicated for problem solving.	
Reference/ Reading:	 <u>PRINCIPAL TEXT:</u> James Munkres, Topology and Introduction, Pearson Education, 2 <u>REFERENCES:</u> John L. Kelley, General Topology, First Edition, Springer, 1955 	002.

	2. K. Parthasarathy, Topology: An Invitation, First Edition, Springer, 2022
	3. K. D. Joshi, Introduction to General Topology, First Edition, New Age
	International Publishers, 1983
	4. M. A. Amstrong, Basic Topology, Springer Verlag, 1983.
Course Outcomes:	1. Display familiarity and knowledge of the concepts in the syllabus.
	2. Demonstrate proofs to establish truths related to the concepts in the
	syllabus.
	3. Choose the appropriate procedures and modify them, if needed, to
	solve method-based problems on the concepts in the syllabus.
	4. Analyze and solve unseen problems in Topology and invent
	mathematically precise arguments to justify their solutions.
	Land and the second sec

Name of the Prog Course Code	: MAT-406	
Title of the Course : Functional Analysis		
Number of Credit Effective from AY		
Pre-requisites	A first course in Real Analysis, Linear Algebra and Metric Topolog	
for Course:	understanding of Lebesgue Integral Theory is desirable.	sy. Dasic
	Starting with the basics this course will cover the foundations of Fu	nctional
Course Objectives:	Analysis such as normed spaces, inner product spaces, Banach spaces spaces, bounded linear operators and bounded functional, and t fundamental theorems-Hahn-Banach Theorem. Uniform Boun Principle, Open Mapping Theorem and Closed Graph Theorem	s, Hilbert the four
Content		No. of Hours
Unit I	Preliminaries from Metric Spaces Definition of the standard sequence spaces $s, c, c_0, c_{00}, l^p; 1 \le p \le \infty$, and standard function spaces C[a,b] and $B[a,b]$. Idea of completion of a metric space, completeness and separability properties of these standard spaces.	12
	Normed Spaces, Banach Spaces Normed spaces- Properties and Banach spaces, Standard normed spaces –Sequence spaces, Function spaces and subspaces, Finite dimensional normed spaces and subspaces, Equivalence of norms, Compactness and finite dimension, Linear Operators-Boundedness and Continuity. Linear functional. Normed spaces of Operators, Dual space Algebraic and Topological duals.	16
Unit III	Inner Product Spaces, Hilbert Spaces Inner Product Spaces- Properties and Hilbert spaces, Orthogonal Complement and Direct Sums, Orthonormal Sets and Sequences, Total Orthonormal Sets and Sequences, Representation of Functional on Hilbert Spaces, Hilbert - Adjoint Operator, Self Adjoint, Unitary and Normal Operators.	16
Unit IV	Fundamental Theorems for Normed and Banach Spaces Hahn- Banach Theorem (Statements and idea of proof for the case of vector spaces, statement and proof for normed spaces), Applications to Existence of Functionals, Adjoint Operators, Reflexivity of Spaces, Baire Category Theorem (Statement only), Uniform Boundedness Theorem, Open Mapping Theorem, Closed Graph Theorem.	16
Pedagogy:	Lectures/ Tutorials/Assignments/Self-study. Lectures should include and examples. Tutorial to be exclusively dedicated for problem solvi	
Reference/ Reading:	Principal Text	

	Envis Knownig, Introductory Eventional Analysis with Analisations, John Miley
	Ervin Kreyszig: Introductory Functional Analysis with Applications, John Wiley
	& Sons, 1978.
	<u>References</u>
	 Balmohan V. Limaye: Functional Analysis, 3rd edition, New Age International Private Limited, 2014
	2. Balmohan V. Limaye: <i>Linear Real analysis for Scientists and Engineers</i> , Springer. 2016
	3. George Bachman and Lawrence Narici: <i>Functional Analysis</i> , Dover Publishing House, 2000
	 Israel Gohberg and Seymour Goldberg: Basic Operator Theory, Birkhäuser, 1981.
	5. S. Kumaresan and D. Sukumar: <i>Functional Analysis, A First Course</i> , Narosa, 2020
	Student will be able to
	 Understand the basic concepts and fundamental theorems of Functional Analysis
Course	2. Prove important theorems in functional analysis.
Outcomes:	3. Relate and apply the concepts learnt in the course to problems.
AND	4. Analyse and solve unseen problems in normed spaces and inner product
12.80	spaces and invent mathematically precise arguments to justify their
8 mar	solutions.



Name of the Progr		
Course Code: MAT-407Title of the Course: Advanced Differential EquationsNumber of Credits: 3L+1TEffective from AY: 2026-2027		
Pre-requisites for the Course:	A First Course in Ordinary Differential Equations.	
Course Objectives:	This course helps in understanding advanced concepts of Dif- Equations. It develops the ability to solve system of differential equations and study qualitative property of differential equations	
Content	A THE WEATHER STORES	No. of Hours (L+T)
Unit I	Review: Linear differential equations of the first and higher order; Linear differential equations with constant and variable coefficients; Exact equations; Wronskian; Separable equations; Euler's equation; Reduction of order of equation; Variation of parameters.	7+3
Unit II	System of Linear Differential Equations: System of first order Equations, Existence and Uniqueness Theorem, Fundamental Matrix, Non – Homogeneous Linear Systems, Linear Systems with Constant Coefficients Linear Systems with Periodic Coefficients.	10+4
Unit III	Existence and Uniqueness of Solutions: Picard's Successive Approximations, Picard's Theorem – Some Examples, Continuation and Dependence on Initial Conditions, Existence of Solutions in the Large, Existence and Uniqueness for Systems, Fixed Point Method.	14+4
Unit IV	Boundary – Value Problems: Sturm – Liouville Problem, Green's Functions, Application of BVPs. Picard's theorem. Oscillation Theory: Self-adjoint second order differential equation; Sturm Liouville Problem; Green's function; Picard's theorem; Zeros of solutions; Comparison Theorems; Linear oscillations; Oscillations of $x''(t) + a(t)x(t) = 0$.	14+4
Pedagogy	Lectures/ tutorials/assignments/self-study. Lectures should include and examples. Tutorial to be exclusively dedicated for problem solved by the solved statement of the solved set of the solve	
Reference/ Reading	 <u>PRINCIPAL TEXT:</u> Deo, S. G., Raghvendra, V., Kar, R., and Lakshmikantham, V.: Text Ordinary Differential Equations, 3rd Edition, McGraw Hill Education <u>REFERENCES:</u> 1. Ahmad, S. and Rao, M. R. M.: Theory of Ordinary Differential Equations With Applications in Biology and Engineering, Affiliated East 	n, 2017. quations

	2. Coddington, E. A.: An Introduction to Ordinary Differential Equations, Prentice Hall, India, 2003.
	 Kelly, W., and Petterson, A. C.: Theory of Differential Equations, Springer, 2010.
	4. Kreyszig, E.: Advanced Engineering Mathematics (Ed.), United States of America: Laurie Rosatone John Wiley & Sons. (2011).
	 Simmons, G. F.: Differential Equations with Applications and Historical Notes, 2nd Edition, McGraw Hill Education, 2017.
Course	1. Identify the type of a given differential equation and system of linear
Outcomes:	differential equations and select and apply appropriate analytical techniques for finding the solution.
	2. Determine whether the existence and uniqueness of solutions are guaranteed to exist.
	3. Learn about Equilibrium points giving interpretation of phase plane.
	4. Explain the Oscillation theory of differential equations and understand
	the qualitative properties of solutions of differential equations .

Name of the Programme: B.Sc. MathematicsCourse Code: MAT-411Title of the Course: Difference EquationsNumber of Credits: 3L+1PEffective from AY: 2026-2027		
Pre-requisites	Basic 12 th standard Mathematics.	
of the Course:	basic 12 standard Watternatics.	
Course Objectives:	This course helps in understanding basic concepts of discrete calc develops the ability to solve Difference Equations by standard metho	
Content	A CLAS	No. of Hours
Unit I	Calculus of finite differences Introduction to difference operator, shift operator and their properties, The Power Shift, Factorial Polynomials, The Anti- difference Operator and properties	08
Unit II	Linear Difference Equations Linear First-Order Difference Equations (homogenous and non- homogenous), The logistic equation, General Theory of Linear Difference Equations, Casoration and fundamental set of solutions, Abel's Lemma (statement and proof), The fundamental theorem (statement and proof), Superposition Principle, Linear Homogeneous Equations with Constant Coefficients, Linear Nonhomogeneous Equations: Method of Undetermined Coefficients, annihilator, The Method of Variation of Constants (Parameters), equilibrium points, Limiting Behavior of Solutions. Nonlinear Equations Transformable to Linear Equations, Higher order equations	20
Unit III	Systems of Linear Difference Equations: Autonomous and Non- autonomous Systems, Putzer Algorithm, Stability theory of Linear Systems	10
Unit IV	Z-Transforms: properties, inverse z-transforms and their application in solving difference equations. (The Power Series Method, The Partial Fractions Method)	07
Practicals	 30 Hours to be dedicated for solving problems on the following topics: 1. Difference operators of logarithmic, exponential, trigonometric functions. 2. Antidifference Operator of logarithmic, exponential, trigonometric functions. 3. Casoration and fundamental set of solutions 4. Linear Homogeneous Equations with Constant Coefficients 5. Method of Undetermined Coefficients 6. The Method of Variation of Constants (Parameters) 	30

	7. Nonlinear Equations Transformable to Linear Equations Part I	
	8. Nonlinear Equations Transformable to Linear Equations Part II	
	9. Equilibrium points and their stability	
	10. Solution of Autonomous Systems	
	11. Solution of difference equation using z-transform Part I	
	12. Solution of difference equation using z-transform Part II	
Pedagogy	Lecture/Practical/ self-study. Lectures should include theory and example	amples.
	Practical to be exclusively dedicated for problem solving.	
Reference	Principal Text:	
Reading	Elaydi, Saber N., An Introduction to Difference Equations, Springe	r, Third
	edition, 2005	
	References:	
	1. K. S. Miller, Linear Difference equations, W. A. Benjamin Publisher	s, 1968.
	2. Kelley, W., Allen Peterson, Difference Equations: An introduction	on with
	applications, Second edition, Academic Press, 2000	
	3. M. A. Radin, Difference Equations for Scientists and Engir	neering:
	Interdisciplinary Difference Equations, World Scientific Publishers,	2020.
~~~~	4. S. Goldberg, Introduction to Difference equations, Dover Public	cations,
LINVER	1987.	Sin
Course	Student will be able to	SPP .
Outcomes:	1. Solve difference equations using appropriate methods.	S/B
	2. Analyze the properties of solutions of difference equations.	alla
	3. Test the stability of equilibrium points of linear systems.	R
	4. Find Z-Transform of various difference equation	20D
13		V A





Name of the Programme : B.Sc. Mathematics Course Code : MAT-412		
Title of the Course Number of Credits	: 3L+1P	
Effective from AY	: 2026-2027	1
Pre-requisites for the Course:	A First Course in Real Analysis	
Course Objectives:	To prepare students to handle Functional Analysis, Fourier series an convergence, Laplace and Fourier transforms Wavelets analy. Continuous probability theory.	
Content	Faur and the	No. of Hours
Unit I	<b>Lebesgue Measure:</b> Lebesgue outer measure, Riemann integrability, Measurable sets, The structure of measurable sets, A non-measurable sets.	10
Unit II	<b>Measurable Functions:</b> Measurable functions, Extended real valued functions, Sequence of measurable functions, Approximation of measurable functions.	08
Unit III	<b>The Lebesgue Integral:</b> Simple functions, Non-negative functions, The general case, Lebesgue Dominated convergence theorem, Approximation of integrable functions.	15
Unit IV	<b>Lp Spaces:</b> The Lp -spaces for , and their completeness. Approximation of Lp-functions by simple functions, continuous functions, step functions	12
Practicals	<ul> <li>At Least 10 of the following practicals should be completed:</li> <li>1. Find the outer Lebesgue Measure of subsets formed by finite unions of intervals and countable sets.</li> <li>2. Prove the subadditivity property for finite and countable subsets of real numbers.</li> <li>3. Prove that countable union of Lebesgue measurable sets is measurable.</li> <li>4. Prove that the Cantor's set is measurable and find its measure.</li> <li>5. Prove that the given function is Lebesgue measurable.</li> <li>6. Prove that the sum and product of two measurable functions are measurable.</li> <li>7. Prove that the lub and glb of a sequence of measurable functions are measurable.</li> <li>8. Find the Lebesgue Integral of a given function.</li> <li>9. Prove that every Riemann Integrable function is Lebesgue Integrable and the two integrals coincide.</li> <li>10. Illustration of Monotone Convergence Theorem.</li> <li>11. Illustration of Fatou's Lemma.</li> </ul>	30

	Lectures, Practical, Self-Study, Assignments. Lectures should include theory
Dedeserv	
Pedagogy	and examples. Practical to be exclusively dedicated for problem
	solving/computing/proving fundamental results.
	PRINCIPAL TEXT:
	N. L. Carothers, Real Analysis, Cambridge University Press, 2006.
	REFERENCES:
	1. Charalambos D Aliprantis, Owen Burkinshaw, Principles of Real Analysis,
	Academic Press/Elsevier, 2004.
Reference/	2. G. de Bara, Measure Theory and Integration, New Age International
Reading:	Edition, 2022.
U U	3. H. L. Royden, Real Analysis, PHI, 1995.
	4. Murray R. Spiegel Ph.D., Real Variables, Lebesgue Measure and
	Integration with Applications to Fourier Series, Schaum's Outline Series,
	McGraw Hill Inc., 1990
	5. Paul Halmos, Measure Theory, Springer – Verlag, 2014.
	At the end of this course the student will be able to
	1. Recollect the basic definitions and theorems in Measure Theory.
Course	2. Explain the various proofs and concepts in the course.
Outcomes:	3. Solve the various computations problems in the course
	4. Solve problems using the concepts learnt in the course.









Name of the Progra Course Code Title of the Course Number of Credits	amme : B.Sc. Mathematics : MAT-413 : Integral Equations : 3L+1P	
Effective from AY	: 2026-27	
Pre-requisites for the Course:	A First Course in Real Analysis and Ordinary Differential Equations	
Course Objectives:	This course helps in understanding basic concepts of Integral Equations by standard method	
Content:		No. of Hours
Unit I	Integral equations definition, Classification of Integral Equations, Special kinds of kernels, Convolution type, Iterated kernels, Resolvent kernel, Eigenvalues and Eigenfunctions, Leibnitz's rule and its application for multiple integrals, Regularity conditions, Solution of Integral Equations, Converting Differential equations to Integral Equations,	9
	Fredholm Integral Equation of second kind with separable kernel, Fredholm Theorem, Fredholm Alternative theorem, Approximation Method, Iterated Kernels, Resolvent Kernel, results on iterated kernel, Neumann's series for Fredholm Integral Equation (along with proof), problems on Iterative Method for Fredholm and Volterra Integral Equations, Volterra Integral equation of First Kind and its solution.	12
Unit III	Fredholm's First Fundamental Theorem (Statement Only), Problems on Fredholm's First Fundamental Theorem, Fredholm's Second Fundamental Theorem (Statement Only), Fredholm's Third Fundamental Theorem (Statement Only) Properties of Eigenvalues and Eigenfunctions for symmetric kernel, Expansion in Eigenfunctions and Bilinear Form, Hilbert- Schmidt Theorem, Mercer's Theorem, Schmidt's Solution, Problems on Hilbert-Schmidt Theorem	12
Unit IV	Singular Integral Equation, Abel's Integral Equation, General form Abel's Integral Equation, Problems on Abel's Equation, Cauchy Principal Value of Integrals, Poincare-Bertrand transformation formula (Statement only), solution of Cauchy Type Equation (Closed contour only), Hilbert formula (without proof), Solution of Hilbert- Type Equation of Second Kind, Laplace Transform, Laplace Transform to solve Volterra Integral Equation, problems on Laplace Transform, Fourier Transform, Fourier Transform to solve Integral Equations, Hilbert Transform.	12
Practical	30 hours are to be dedicated for working with exercises and solving problems on the following:	30

<ol> <li>Solution of Integral Equations</li> <li>Converting Differential equations to Integral Equations</li> <li>Solution of Integral equation with separable kernel</li> <li>Fredholm Alternative theorem to Solve Integral equation with separable kernel</li> <li>Iterative Method (Neumann's series) for Fredholm and Volterra Integral Equations</li> </ol>	
<ol> <li>Solution of Integral equation with separable kernel</li> <li>Fredholm Alternative theorem to Solve Integral equation with separable kernel</li> <li>Iterative Method (Neumann's series) for Fredholm and Volterra Integral Equations</li> </ol>	
<ol> <li>Fredholm Alternative theorem to Solve Integral equation with separable kernel</li> <li>Iterative Method (Neumann's series) for Fredholm and Volterra Integral Equations</li> </ol>	
separable kernel 5. Iterative Method (Neumann's series) for Fredholm and Volterra Integral Equations	
<ol> <li>Iterative Method (Neumann's series) for Fredholm and Volterra Integral Equations</li> </ol>	
Volterra Integral Equations	
<ol> <li>Problems on Fredholm's First Fundamental Theorem</li> <li>Problems on Hilbert-Schmidt Theorem</li> </ol>	
8. Problems on Abel's Equation	
9. solution of Cauchy Type Equation ( <b>Closed contour only</b> )	
10. Laplace Transform to solve Volterra Integral Equation	
11. Fourier and Hilbert Transform to solve Integral Equations	
Pedagogy: Lectures/ practical/assignments/self-study. Lectures should include the	•
and examples. Practical to be exclusively dedicated for problem solvin	ng.
Principal Text:	
M. D. Raisinghania: Integral Equations and Boundary Value Problem.	s, 6th
Edition, S. Chand Publication, 2013.	
References:	n.
1. A. J. Jerri: Introduction to Integral Equations with Applications	, 2nd
Edition, Wiley Interscience, 1999.	P
Reference/ 2. A. M. Wazwaz: A First Course in Integral Equations, World Scie	ntific,
Reading 1997.	
3. F. G. Tricomi: Integral Equations, Levant Books - Kolkata, 2015	Z
4. I. G. Petrovsky, Lectures on the theory of Integral equations.	
5. K. Yoshida, Lectures on Differential and Integral Equations.	
6. R. P. Kanwal: Linear Integral Equations – Theory & Technique	, 2nd
Edition, Birkhauser Publishers, 2012	
7. Sudir K. Pundir and Rimple Pundir, Integral Equations and Bour	ndary
Value Problems. Pragati Prakasam, Meerut, 2005.	
1. Understand Basic concepts of Integral equations, Classify them,	study
and solve Integral Equations with Separable Kernels	
2. Prove important theorems in Integral Equations and establish	
Course Fredholm theory.	
<b>Outcomes:</b> 3. Apply the above theory to Ordinary Differential Equations, Initial	Value
Problems and Boundary Value Problems.	
4. Analyze and solve problems in Integral Equations and create	
appropriate arguments to justify the proofs.	



Name of the Progr Course Code	ramme : B.Sc. Mathematics : MAT-414	
Title of the Course Number of Credits	: 3L+1P	
Effective from AY Pre-requisites	: 2026-2027 A First Course in Ordinary Differential Equations and Real Analysis.	
for the Course:		
Course	This course develops the ability to solve partial differential equat	tions of
<b>Objectives</b> :	first and second order by standard methods.	
Content		No. of Hours
Unit I	<b>First Order Partial Differential Equations:</b> Surfaces and curves; Genesis of First order PDE; Classification of integrals; Linear equations of first order; Pfaffian differential equations; Compatible systems; Charpit's method; Jacobi's method; Integral surfaces through a given curve; quasi – linear equations and nonlinear P.D.E.	15+5
	Second Order Partial Differential Equations: Classification of second order semi – linear P.D.E.; Hadamard's definition of well – posedness.	4+1
	<b>One Dimensional Wave Equation:</b> D'Alembert's solution; Vibrations of a finite string; Existence and uniqueness of solution; Riemann method.	5+2
Unit III	<b>Laplace's Equation:</b> Boundary value problems; Maximum and Minimum principles; Uniqueness and continuity theorems; Dirichlet problem for a circle; Dirichlet problem for a circular annulus; Neumann problem for a circle; Theory of Green's function for Laplace's equation.	8+3
	<b>Heat Equation:</b> Heat conduction problem for an infinite rod; Heat conduction in a finite rod; Existence and uniqueness of the solution.	7+2
Unit IV	<b>Duhamel's Principle:</b> Duhamel's principle for wave and heat equations; Variable separable methods for second order linear partial differential equations.	6+2
Practical	<ul> <li>30 hours are to be dedicated for working with exercises and solving problems on the following:</li> <li>1. Find the solution of PDE using Charpit's Method.</li> <li>2. Find the solution of PDE using Jacobi's Method.</li> <li>3. Finding the integral surface for a given PDE.</li> <li>4. Solving second order PDE.</li> <li>5. Solving Wave Equations.</li> <li>6. Solving problems on Laplace's Equations</li> <li>7. Solving problems on Heat Equations</li> </ul>	30

	8. Solving problems on Duhamel's Principle.
Pedagogy:	Lectures/ practical/assignments/self-study. Lectures should include theory
	and examples. Practical to be exclusively dedicated for problem solving.
Reference/	PRINCIPAL TEXT:
Reading:	T. Amarnath: Elementary Partial Differential Equations, 2nd Edition, Narosa Publishers, 2003.
	REFERENCES:
	<ol> <li>Daniel A. Murray: Introductory Course in Differential Equations, Orient (2003).</li> </ol>
	2. H. F. Weinberger: A First Course in Partial Differential Equations with Complex Variables and Transform Methods, Wiley, 1965.
	3. I. N. Sneddon: Elements of Partial Differential Equations, Dover Publications, 2006.
	<ol> <li>J. Fritz: Partial Differential Equations, 2nd Edition, Applied Mathematical Sciences, Vol. 1, Springer – Verlag, 1978.</li> </ol>
	5. Kreyszig, Erwin: Advanced Engineering Mathematics (Ed.), United States of America: Laurie Rosatone John Wiley & Sons. (2011).
UNVER	<ol> <li>T. Myint – U, and L. Debnath: Partial Differential Equations for Scientists and Engineers, 3rd Edition, Appleton &amp; Lange Publishers, 1987.</li> </ol>
Course Outcomes:	1. Apply suitable techniques to solve a given first order/second order partial differential equations based on the type of the equation.
	2. Explain the limitations of the characteristic method that is used to solve first order PDEs and the method of separation of variables which is used to solve second order linear PDEs.
Contraction of the	3. Construct Green's function for the Laplacian with Dirichlet/Neumann
	<ul> <li>boundary conditions when the geometry of the domain is simple.</li> <li>Analyze the nature of the solutions to heat equation and the wave equations by observing phenomena like finite speed of propagation and propagation regularizing effect etc.</li> </ul>

