#### ATMANIRBHAR BHARAT' Swayampurna goa

# **Goa University**

Taleigao Plateau, Goa-403 206 Tel : +91-8669609048 Email : registrar@unigoa.ac.in Website : www.unigoa.ac.in

**गोंय विद्यापीठ** ताळगांव पठार, गोंय -४०३ २०६ फोन : +९१-८६६९६०९०४८



# (Accredited by NAAC)

GU/Acad –PG/BoS -NEP/2023/544

Date: 03/01/2024

Ref: GU/Acad –PG/BoS -NEP/2023/102/34 dated 16.06.2023

## CIRCULAR

In supersession to the above referred circular, the updated approved Syllabus of **Bachelor of Science in Electronics** Programme with following changes is enclosed.

- Minor Course ELE-111 'Analog Fundamentals EDA' from Semester I shall be also offered in Semester II in place of ELE-112 'Digital Fundamentals EDA'.
- ELE-112 'Digital Fundamentals EDA' shall now be offered in Semester III with revised Course Code ELE-212 'Digital Fundamentals EDA'.

Principals of Affiliated Colleges offering the **Bachelor of Science in Electronics** Programme are requested to take note of the above and bring the contents of this Circular to the notice of all concerned.

(Ashwin Lawande) Assistant Registrar – Academic-PG

Τo,

1. The Principals of Affiliated Colleges offering the Bachelor of Science in Electronics Programme.

Copy to:

- 1. The Director, Directorate of Higher Education, Govt. of Goa
- 2. The Dean, School of Physical and Applied Sciences, Goa University.
- 3. The Vice-Deans, School of Physical and Applied Sciences, Goa University.
- 4. The Chairperson, BoS in Electronics.
- 5. The Controller of Examinations, Goa University.
- 6. The Assistant Registrar, UG Examinations, Goa University.
- 7. Directorate of Internal Quality Assurance, Goa University for uploading the Syllabus on the University website.

| Programme Structure for Semester I to VIII Under Graduate Programme- Electronics |                                                                                                                                                                      |                                                                                               |                                                                              |     |                                                           |                                |    |    |                  |                                                                                      |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----|-----------------------------------------------------------|--------------------------------|----|----|------------------|--------------------------------------------------------------------------------------|
| Semester                                                                         | Major -Core                                                                                                                                                          | Minor                                                                                         | МС                                                                           | AEC | SEC                                                       | I                              | DV | AC | Total<br>Credits | Exit                                                                                 |
| I                                                                                | ELE-100: Electronic devices                                                                                                                                          | ELE-111: Analog<br>Fundamentals- EDA<br>(3L+1T)                                               | ELE-131: Introduction to<br>Electricity (1L+2T)                              |     | ELE-141:<br>Electronics for<br>Beginners (1L+2P)          |                                |    |    | 20               |                                                                                      |
| II                                                                               | and circuits (3L+ 1P)                                                                                                                                                |                                                                                               | ELE-132: Repair and<br>Maintenance of Domestic<br>Electrical appliances (3L) |     | ELE-142: PCB<br>Designing and<br>Fabrication (1L +<br>2P) |                                |    |    | 20               | ELE-161 : CCTV<br>Installation (2L + 2T)                                             |
| 111                                                                              | ELE-200: Basic Circuit<br>Theory and Network<br>Analysis (4)<br>ELE-201: Linear Integrated<br>Circuits(4)                                                            | ELE-211: Digital<br>Electronics(4)<br>OR<br>ELE-212: Digital<br>Fundamentals -<br>EDA (3L+1T) | ELE-231: Computer<br>troubleshooting and<br>Maintenance(3)                   |     | ELE-241: PLC and<br>HMI<br>(1L + 2P)                      |                                |    |    | 20               |                                                                                      |
| IV                                                                               | ELE-202: 8085-<br>Microprocessor(4)<br>ELE-203: Transducers and<br>Instrumentation(4)<br>ELE-204: Electronic<br>Communication(4)<br>ELE-205: Programming in C<br>(2) | ELE-221: Robotics<br>(Lab Course)(4)                                                          |                                                                              |     |                                                           |                                |    |    | 20               | ELE-261 - Repair and<br>Maintenance of Electrical<br>and Electronics<br>equipment(4) |
| v                                                                                | ELE-300: 8051-<br>Microcontroller(4)<br>ELE-301: Power<br>Electronics(4)<br>ELE-302: Operating<br>System(4)                                                          | ELE-321: Internet of<br>Things and<br>Application(4)                                          |                                                                              |     |                                                           | ELE-361:<br>Inter-<br>nship(2) |    |    | 20               |                                                                                      |

|      | ELE-303: Programming                                                                                                                                                                    |                                                  |  |  |    |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|----|--|
|      | ELE 204: Emboddod                                                                                                                                                                       |                                                  |  |  |    |  |
|      | Systems(4)                                                                                                                                                                              |                                                  |  |  |    |  |
| VI   | ELE-305: Biomedical<br>Instrumentation(4)<br>ELE-306: Computer<br>Networking and System<br>Administration(4)<br>ELE-307: Project(4)                                                     | ELE-322:<br>Programming with<br>MATLAB(4)        |  |  | 20 |  |
| VII  | ELE-400: Augmented<br>Reality and Virtual<br>Reality(4)<br>ELE-401: Artificial<br>Intelligence(4)<br>ELE-402: Fundamentals of<br>Signal Processing(4)<br>ELE-403:<br>Optoelectronics(4) | ELE-411: Mobile<br>App<br>development(4)         |  |  | 20 |  |
| VIII | ELE-404: Agro<br>Electronics(4)<br>ELE-405: Digital Image<br>Processing (4)<br>ELE-406: VLSI Design(4)<br>ELE-407: Industrial<br>Automation(4)                                          | ELE-412:<br>Pharmaceutical<br>Instrumentation(4) |  |  | 20 |  |

## Name of the Programme: BSc Electronics Course Code: ELE 100 Title of the Course: Electronics Devices and Circuits Number of Credits: 04 (3Lecture +1Practical) Effective from AY: 2023-24

| for the Course |                                                                                                           |          |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------|----------|--|--|
|                |                                                                                                           |          |  |  |
| Course         | Inis course is intended to:                                                                               |          |  |  |
| Objectives:    | Introduces basic concepts of various electronic devices.                                                  |          |  |  |
|                | • Study and analyse characteristics of various amplifiers.                                                |          |  |  |
|                | • Understand biasing and stability techniques for an amplifier.                                           |          |  |  |
|                | I o understand different types of amplifiers and oscillators.                                             |          |  |  |
| Content:       | Unit I Junction Diode and its applications:                                                               | 14 Hours |  |  |
|                | Conduction in Semiconductors, P type & N-type Semiconductor,                                              |          |  |  |
|                | PN junction diode (ideal and practical)-constructions, Formation of                                       |          |  |  |
|                | Depletion Layer, Diode Equation and I-V characteristics. Idea of                                          |          |  |  |
|                | static and dynamic resistance, dc load line analysis, Quiescent (Q)                                       |          |  |  |
|                | point. Rectifiers- Hall wave rectifier, Full wave rectifiers (centre                                      |          |  |  |
|                | ripple factor and efficiency. Filter Churt capacitor filter, its role in                                  |          |  |  |
|                | npple factor and efficiency. Filter-shuft capacitor filter, its role in                                   |          |  |  |
|                | and load regulation                                                                                       |          |  |  |
|                | Unit II Special Purpose Diede                                                                             |          |  |  |
|                | Zener and avalanche breakdown. Zener Diode, V-I Characteristics                                           | SHOUIS   |  |  |
|                | Zener diode as voltage regulator: Load and line regulation. Power                                         |          |  |  |
|                | Diode Schottky Diode Varactor Diode LASER Diode Tunnel                                                    |          |  |  |
|                | diode PIN diode                                                                                           |          |  |  |
|                | Unit III Bipolar Junction Transistor                                                                      | 12 Hours |  |  |
|                | Bipolar Junction Transistor: Construction and working. Review of                                          |          |  |  |
|                | the characteristics of transistor in CB. CC and CE configurations.                                        |          |  |  |
|                | Comparison of the characteristics of CB. CC and CE. Regions of                                            |          |  |  |
|                | operation (active, cut off and saturation), Current gains alpha( $\alpha$ )                               |          |  |  |
|                | , beta( $\beta$ ) and gamma( $\Gamma$ ). Relations between $\alpha$ , $\beta$ and $\Gamma$ . dc load line |          |  |  |
|                | and Q point, Transistor as switch, Transistor as Amplifier,                                               |          |  |  |
|                | Darlington Pair, Transistor biasing and Stabilization circuits: Fixed                                     |          |  |  |
|                | Bias, Emitter Bias and Voltage Divider Bias. Thermal runaway,                                             |          |  |  |
|                | stability and stability factor S. Power Amplifiers: Class A, Class B,                                     |          |  |  |
|                | Class AB Push Pull and Class C Amplifier operation.                                                       |          |  |  |
|                | Unit IV Cascaded Amplifiers:                                                                              |          |  |  |
|                | Two stage RC Coupled Amplifier and its Frequency Response,                                                | 2 Hours  |  |  |
|                | Direct Coupled Amplifier and its Frequency Response                                                       |          |  |  |
|                | Unit V Feedback in Amplifiers:                                                                            |          |  |  |
|                | Concept of feedback, negative and positive feedback, advantages                                           | 2 Hours  |  |  |
|                | of negative feedback (Qualitative only).                                                                  |          |  |  |
|                | Unit VI Sinusoidal Oscillators:                                                                           |          |  |  |
|                | Barkhausencriterion for sustained oscillations. Phase shift and                                           | 4 Hours  |  |  |
|                | Colpitt's oscillator. Determination of Frequency and Condition of                                         |          |  |  |
|                | oscillation.                                                                                              |          |  |  |
|                | Unit VII Unipolar Devices                                                                                 | CHANNE   |  |  |
|                | JFET Construction, working and I-V characteristics (output and                                            | 6 Hours  |  |  |
|                | transfer), JFET as Amplifier, MOSFET: DE-MOSFET and E-MOSFET,                                             |          |  |  |
|                | transfer) UIT Construction working and I-V characteristics (output and                                    |          |  |  |
|                | characteristics IIIT as Polavation Oscillator                                                             |          |  |  |
|                | טומומנופווגווג, טוו מג הפומגמנוטוו טגנווומנטר.                                                            |          |  |  |

|             | Any eight from below:                                                                  |
|-------------|----------------------------------------------------------------------------------------|
| Practical's | 1. Study of the I-V Characteristics of (a) p-n junction Diode, and (b) <b>30 Hours</b> |
|             | Zener diode.                                                                           |
|             | 2. Half wave: Ripple factor and load regulation.                                       |
|             | 3. Full wave: Ripple factor and load regulation.                                       |
|             | 4. Bridge rectifiers: Ripple factor and load regulation.                               |
|             | 5. Zener regulator on the output of FWR.                                               |
|             | 6. Fixed Bias and Voltage divider bias configuration for CE transistor.                |
|             | 7. class A amplifier, class B amplifier, class C amplifier.                            |
|             | 8. RC Phase Shift Oscillator and Colpitt's oscillator.                                 |
|             | 9. UJT as relaxation oscillator.                                                       |
| Pedagogy:   | Lectures/Tutorials/Practical's                                                         |
| References/ | 1. Floyd Thomas "Electronic Devices ", 5th Edition, Pearson Education Publication      |
| Readings:   | ,2022                                                                                  |
|             | 2. Malvino Albert Paul "Electronic Principles", 3rd Edition Tata McGraw-Hill           |
|             | Publication,1994.                                                                      |
|             | 3. Mottershead Allan "Electronic Devices & Circuits" EEE Publication, 1973.            |
| Course      | Students will,                                                                         |
| Outcomes:   | • Understand a regulated power supply using rectifiers and filters.                    |
|             | • Learn transistor biasing circuit for class A. B. AB and C amplifier.                 |
|             |                                                                                        |
|             | <ul> <li>Analyse a system as per the requirements and specifications.</li> </ul>       |

#### Name of the Programme: BSc Electronics Course Code: ELE-111 Title of the Course: Analog Fundamentals – EDA Number of Credits: 04 (3 Lectures +1 Tutorals) Effective from AY: 2023-24

| Pre-requisites  |                                                                                  |           |
|-----------------|----------------------------------------------------------------------------------|-----------|
| for the Course: |                                                                                  |           |
| Course          | This course is intended to:                                                      |           |
| Objectives:     | Understand the basic concepts of electronic devices.                             |           |
|                 | • Design and analyse characteristics of various amplifiers e.g.CB, CE a          | nd CC.    |
|                 | • Explains biasing and stability techniques for an amplifier.                    |           |
|                 | • Design various types of amplifiers and oscillators.                            |           |
| Content:        | Unit I Introduction to basic components and circuit analysis                     | 7 Hours   |
|                 | Introduction to basic circuit components like resistors, capacitors,             |           |
|                 | inductors. Circuit analysis: Concept of Voltage and Current                      |           |
|                 | Sources, Kirchhoff's Current Law, Kirchhoff's Voltage Law,                       |           |
|                 | Unit II Basic of Analog Electronics                                              |           |
|                 | Introduction to basic circuit components like diodes transistors.                | 14 Hours  |
|                 | On-Amps and Integrated Circuits (ICs) PN junction diode diode                    | 14 110015 |
|                 | as a rectifier half wave rectifier circuit Qualitative idea on                   |           |
|                 | construction of a transistor and its working. Transistor circuits                |           |
|                 | such as transistor as a switch and transistor as an amplifier (single            |           |
|                 | stage amplifier) Block diagram of an Op Amp, symbol and ideal                    |           |
|                 | stage amplifier). Block diagram of an Op-Amp, symbol and ideal                   |           |
|                 | and non-inverting emplifiers                                                     |           |
|                 | and non-inverting ampliners.                                                     | Cillaura  |
|                 | Unit III Fliters and Oscillators                                                 | 6 Hours   |
|                 | First order Low Pass Filters, first order High Pass filters. First order         |           |
|                 | Low Pass Filters using Op-Amp, first order High Pass filter using                |           |
|                 | Op-Amp. Qualitative idea on Oscillators. Basics of Phase shift                   |           |
|                 | Oscillator.                                                                      |           |
|                 | Unit IV Introduction to EDA tools                                                | 4 Hours   |
|                 | Introduction to EDA tools, Creating a New Project, Schematic                     |           |
|                 | Capture Window, zooming and panning, Visual Aids available to                    |           |
|                 | Design, Display Options, Design Overview.                                        |           |
|                 | Unit V Basic Schematic                                                           | 14 Hours  |
|                 | Selecting Parts from the Library, Placing Objects on the                         |           |
|                 | Schematic, wiring and terminal connection, power connections,                    |           |
|                 | parts labels and annotation, Multi sheet designs and connectivity,               |           |
|                 | Library parts, import devices, create new device, Graphics and                   |           |
|                 | pins, adding properties, attaching datasheets, indexing and                      |           |
|                 | library selection.                                                               |           |
|                 | Discuss and demonstrated the below listed case studies with                      | 15 Hours  |
| Totorials       | EDA:                                                                             |           |
|                 | 1. Verify the KCL and KVL.                                                       |           |
|                 | 2. Series and parallel LCR circuits.                                             |           |
|                 | 3. Half wave rectifier.                                                          |           |
|                 | 4. The working of a transistor as switch.                                        |           |
|                 | 5. Trasitor working as an amplifier.                                             |           |
|                 | 6. Analyze the inverting and non-inverting amplifier using an Op-                |           |
|                 | Amp for given gain.                                                              |           |
|                 | 7. 1 <sup>st</sup> order active low pass and high pass filters for given cut-off |           |
|                 | frequency.                                                                       |           |
|                 | 8. Phase shift oscillator for given frequency.                                   |           |
| Pedagogy:       | Lectures/Tutorials                                                               | -         |

| References/ | 1. Mottershead Allan "Electronic Devices & Circuits" EEE Publication, 1973.                                                           |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Readings:   | 2. Sudhakar A and Palli Shyammohan S "Circuits and Network Analysis and Synthesis", 5 <sup>th</sup> edition, Tata Mc Graw Hill, 2017. |
|             | 3. Gayakward Ramakant A. "Op-Amps and Linear Integrated Circuits", 4" Edition                                                         |
|             | ,2015                                                                                                                                 |
|             | 4. https://labcenter.s3.amazonaws.com/downloads/Tutorials.pdf                                                                         |
| Course      | Students will,                                                                                                                        |
| Outcomes:   | <ul> <li>Understand the basic concepts of analog circuit design.</li> </ul>                                                           |
|             | • Simulate basic analog circuits using EDA tools.                                                                                     |
|             | • Analyze the performance of analog circuits using EDA tools.                                                                         |
|             | Develop skills in using EDA tools like Proteus software.                                                                              |

#### Name of the Programme: BSc Electronics Course Code: ELE-131 Title of the Course: Introduction to Electricity Number of Credits: 03 (02Theory + 01Tutorial) Effective from AY: 2023-24

| Dro_roquisitos  | N  | il                                                                     |             |
|-----------------|----|------------------------------------------------------------------------|-------------|
| for the Course  |    | 11                                                                     |             |
| for the course. |    |                                                                        |             |
| Course          | •  | Familiarize with various electrical terms and components.              |             |
| Objectives:     | •  | Understand working principle of the electrical components, their       | ratings and |
|                 |    | uses.                                                                  |             |
|                 | •  | Develop necessary skills for house/farm wiring circuit.                |             |
|                 | •  | Develop necessary skills for indoor and outdoor lighting system.       |             |
| Content:        |    | Unit I Introduction to Electrical Components                           | 10 Hours    |
|                 |    | Electrical Devices: Resistors, Capacitors, Inductors, Transformers:    |             |
|                 |    | Symbols, specifications, working principle and their applications.     |             |
|                 |    | Electrical Sources and loads: Definition of Current, Voltage,          |             |
|                 |    | Energy, Power, power factor and measurements, Types of AC & DC         |             |
|                 |    | sources and loads, Series and Parallel connection of sources and       |             |
|                 |    | loads.                                                                 |             |
|                 |    | Batteries: Chargeable and non-chargeable batteries, Battery bank       |             |
|                 |    | installation and commissioning, Tools required for battery testing.    |             |
|                 |    | Network laws: Ohms law, Kirchhoff's laws, voltage divider and          |             |
|                 |    | current divider theorems, open and short circuits                      |             |
|                 |    | Unit II INTRODUCTION TO ELECTRICITY                                    | 10 Hours    |
|                 |    | Line Voltage: Distribution, Mains supply standards, Meaning of         |             |
|                 |    | Single phase and three phase supply, conventions followed,             |             |
|                 |    | Advantages and disadvantages of three phase supply. Star and           |             |
|                 |    | delta inter-connection of sources and loads.                           |             |
|                 |    | <b>Importance of earthing and fuse:</b> Introduction of Earthing. Need |             |
|                 |    | of earthing. Hazard. Types of earthing. Advantage of earthing.         |             |
|                 |    | working of earthing Importance of fuse types of fuse Circuit           |             |
|                 |    | Breaker and their ratings                                              |             |
|                 |    | House Wiring: Introduction of Wiring types of wiring advantage         |             |
|                 |    | of wiring wiring methods electrical nanel House wiring diagram         |             |
|                 |    | 2 and 3-wire systems selection of proper wire size and voltage         |             |
|                 |    | dron Load calculation for residential and commercial nurnose           |             |
|                 |    | Lights and Lightning: Types of lights and their power consumption      |             |
|                 |    | and luminance comparison of incandescent LED and CEL hulbs             |             |
|                 |    | Unit III Energy Consumption and Preventive Maintenance                 | 5 Hours     |
|                 |    | General safety Precautions: Danger of high voltage and currents        | Shours      |
|                 |    | bandling and maintenance for all types of electrical and electronic    |             |
|                 |    | domostic Appliances. Energy consumption                                |             |
|                 |    | Switches: Types and their ratings                                      |             |
|                 |    | Stabilizer and UDS: Types their working Dringiples (Plack level        |             |
|                 |    | stabilizer and opplications                                            |             |
|                 |    | Discuss and domonstrated the below listed case studies:                |             |
|                 | 1  | Discuss and demonstrated the below listed case studies:                | 20 Hours    |
|                 | 1. | Familiarization with various controls and use of CRU, Power            |             |
|                 |    | supply, Function Generator and Multi meter, Various Electronics        |             |
| Tutoriala       | 2  | components.                                                            |             |
| Iutoriais       | 2. | Battery fault detection and maintenance.                               |             |
|                 | 3. | Battery diagnostic and capacity testing.                               |             |
|                 | 4. | Inverter connection for residential house.                             |             |
|                 | 5. | introduction, working, Connection and Energy meter reading:            |             |
|                 | 1  | Electricity bill calculation.                                          |             |

|             | 6. Power Calculation of Load.                                                             |  |  |  |
|-------------|-------------------------------------------------------------------------------------------|--|--|--|
|             | 7. Demonstrate the single and three phase wiring (EDA).                                   |  |  |  |
| Pedagogy:   | Lectures /Tutorials                                                                       |  |  |  |
| References/ | 1. Chetan Singh Solanki, "Solar Photovoltaic technology and systems" PHI learning         |  |  |  |
| Readings:   | Private Itd. EEE, 2013.                                                                   |  |  |  |
|             | 2. Sudhakar and Shyam Mohan, "Electrical analysis and Synthesis", TMH, 2015.              |  |  |  |
|             | 3. Theraja and Theraja, Electrical Technology, Vol 1 by, PHI, 2016.                       |  |  |  |
|             | 4. Satheesh Kumar, 'Electrical wiring, An Introduction' Ane Book Pvt Ltd. 2 <sup>nd</sup> |  |  |  |
|             | Edition, 2016.                                                                            |  |  |  |
| Course      | Students will:                                                                            |  |  |  |
| Outcomes:   | Understand basics of electrical components.                                               |  |  |  |
|             | Understand electrical wiring and safety measures.                                         |  |  |  |
|             | Understand lighting and its applications                                                  |  |  |  |
|             | • Apply the knowledge and techniques to design wiring and lightning for housing           |  |  |  |
|             | and commercial setup.                                                                     |  |  |  |
|             | Get self-employed in ever growing battery industry                                        |  |  |  |

#### Name of the Programme: BSc Electronics Course Code: ELE-141 Title of the Course: Electronics For Beginners Number of Credits: 03(1Lecture +2Practical) Effective from AY: 2023-24

| Enceave non A   |                                                                                                                            |           |
|-----------------|----------------------------------------------------------------------------------------------------------------------------|-----------|
| Pre-requisites  | Nil                                                                                                                        |           |
| for the Course: |                                                                                                                            |           |
| Course          | This course is intended to:                                                                                                |           |
| Objectives:     | <ul> <li>Introduce to students the basic of electronics.</li> </ul>                                                        |           |
|                 | <ul> <li>Understand how circuit diagrams are drawn and constructed on breadboar</li> </ul>                                 | rd.       |
|                 | <ul> <li>To implement real life application based electronic circuits.</li> </ul>                                          |           |
| Content:        | Unit I Basics of Electronics                                                                                               | 2 Hours   |
|                 | Electricity, Measuring Charge and Current ,AC vs. DC, Current                                                              |           |
|                 | Flow,Voltage and Resistance,Picturing Voltage, Volts Are Relative,                                                         |           |
|                 | Relative Voltages and Ground Potential , Resistance .                                                                      |           |
|                 | Unit II Building circuit Schematics                                                                                        | 3 Hours   |
|                 | Circuit Requirements ,Basic Components(resistor , inductor, capacitor),                                                    |           |
|                 | Creating Your First Circuit, Adding Wires, Drawing Circuits, Drawing the                                                   |           |
|                 | Ground.                                                                                                                    |           |
|                 | Unit III Constructing and Testing Circuits                                                                                 | 5 Hours   |
|                 | The Solder-less Breadboard, Putting a Circuit onto a Breadboard , Using                                                    |           |
|                 | Fewer Wires , Testing Circuits with a Multi-meter , Using a Multi-meter                                                    |           |
|                 | with a Breadboard ,Measuring Current with a Multi-meter,Use of                                                             |           |
|                 | Function Generator and Oscilloscope to observe signals.                                                                    |           |
|                 | Unit IV Sensors and actuators                                                                                              |           |
|                 | Working Principles of Diode , Transistor, LED,                                                                             | 2 Hours   |
|                 | Buzzer, Switches, Sensors (PIR, Piezo-electric sensor etc.) and Actuators                                                  |           |
|                 | (Motors,Speaker etc).                                                                                                      |           |
|                 | Unit V Applications(Circuit diagram and working)                                                                           |           |
|                 | Simple touch sensor using transistor, Intruder Alarm, Water tank level                                                     | 3 Hours   |
|                 | indicator,LED chaser circuit,Rain detector,Light intensity measurement                                                     |           |
|                 | using LDR,LED flip flop,Smoke detector, Clap Switch,Door knock sensing                                                     |           |
|                 | doorbell, Motion detection using PIR sensors.                                                                              |           |
| Practical List  | 1. Simple touch sensor using transistor                                                                                    |           |
| (Any 08)        | 2. Intruder Alarm                                                                                                          |           |
|                 | 3. Water tank level indicator                                                                                              |           |
|                 | 4. LED chaser circuit                                                                                                      | 60Hours   |
|                 | 5. Rain detector                                                                                                           |           |
|                 | 6. Light intensity measurement using LDR                                                                                   |           |
|                 | 7. LED flip flop                                                                                                           |           |
|                 | 8. Smoke detector                                                                                                          |           |
|                 | 9. Clap Switch                                                                                                             |           |
|                 | 10. Door knock sensing doorbell.                                                                                           |           |
|                 | 11. Motion detection using PIR sensor.                                                                                     |           |
| Pedagogy:       | Lectures/Experiential/Practical's Learning                                                                                 |           |
| References/     | 1. Bartiett Jonathan "Electronics For Beginners_ A Practical Introdu                                                       | action To |
| Readings:       | Schematics, Circuits, And Microcontrollers' Apress ,2020.                                                                  |           |
| Course          | 2. Boysen Earl, Multi Mancy C, Electronics Projects For Dummies: Wiley,2006.                                               |           |
| Course          | Students Will,                                                                                                             |           |
| Outcomes:       | <ul> <li>Understand the basics of Electronics.</li> </ul>                                                                  | do        |
|                 | Learn to draw schematics and also the implement the circuit on breadboar<br>involvement all stranging size its a function. | as.       |
|                 | Implement electronics circuits of practical use.                                                                           |           |

# Name of the Programme: BSc Electronics Course Code: ELE-132 Title of the Course: : Repair and Maintenance of Domestic Electrical Appliances Number of Credits: 03 (Lectures) Effective from AY: 2023-24

| Pre-requisites for | Nil                                                                            |               |  |  |  |
|--------------------|--------------------------------------------------------------------------------|---------------|--|--|--|
| the Course:        |                                                                                |               |  |  |  |
| Course             | This course is intended to:                                                    |               |  |  |  |
| Objectives:        | • Develop understanding of domestic wiring and key elements of                 | of electrical |  |  |  |
|                    | appliances with basic safety practices.                                        |               |  |  |  |
|                    | • Impart knowledge to analyse and repair electrical appliances.                |               |  |  |  |
|                    | <ul> <li>Develop practice of maintenance of electrical equipment's.</li> </ul> |               |  |  |  |
|                    | <ul> <li>Students will be demonstrated the various equipment's wo</li> </ul>   | rking while   |  |  |  |
|                    | delivery of lectures.                                                          |               |  |  |  |
| Content:           | Unit I Introduction to Electricity                                             | 10 Hours      |  |  |  |
|                    | Line Voltage: Distribution, Mains supply standards, Meaning of                 |               |  |  |  |
|                    | Single phase and three phase supply, conventions followed.                     |               |  |  |  |
|                    | Importance Of Earthing and Fuse: Introduction of Earthing, need of             |               |  |  |  |
|                    | earthing, Hazard, Types of earthing, Advantage of earthing,                    |               |  |  |  |
|                    | working of earthing, Importance of fuse, types of fuses. House                 |               |  |  |  |
|                    | Wiring: Introduction of Wiring, types of wiring, advantage of                  |               |  |  |  |
|                    | wiring, wiring methods, electrical panel, House wiring diagram.                |               |  |  |  |
|                    | Unit II Energy Consumption and Preventive Maintenance                          | 07 Hours      |  |  |  |
|                    | General Precautions, nandling and maintenance for all types of                 |               |  |  |  |
|                    | Energy Motor: Introduction working Connection and Energy                       |               |  |  |  |
|                    | meter reading Power Calculation of Load Electricity Bill                       |               |  |  |  |
|                    | calculation                                                                    | 07 Hours      |  |  |  |
|                    | Unit III Heating Appliances                                                    | 07 110013     |  |  |  |
|                    | Introduction, working principle, construction, operation,                      |               |  |  |  |
|                    | Installation, Maintenance and Repair (fault-finding and removal of             |               |  |  |  |
|                    | faulty component): Electrical iron, Electric stove, Electric Toaster,          |               |  |  |  |
|                    | Immersion heater, Electric geyser, Electric Oven, Induction                    |               |  |  |  |
|                    | Cooktop, Electric Roti Maker, Electric Kettle.                                 | 07 Hours      |  |  |  |
|                    | Unit IV Motorized Appliances                                                   |               |  |  |  |
|                    | Introduction, working principle, construction, operation,                      |               |  |  |  |
|                    | Installation, Maintenance and Repair (fault-finding and removal of             |               |  |  |  |
|                    | faulty component): Electric fan (Ceiling Fan and Table Fan), Electric          |               |  |  |  |
|                    | Mixer grinder, Electric washing machine, Hairdryer, Vacuum                     |               |  |  |  |
|                    | cleaner.                                                                       | 07 Hours      |  |  |  |
|                    | Unit V Electrical and Electronic Appliances                                    |               |  |  |  |
|                    | Introduction, working principle, construction, operation,                      |               |  |  |  |
|                    | Installation, Maintenance and Repair (fault-finding and removal of             |               |  |  |  |
|                    | Emorgonov light Voltage Stabilizer (Polav based) Linear Pogulated              |               |  |  |  |
|                    | Power Supply Battery Charger Solar Voltaic cell Tube light                     | 07 Hours      |  |  |  |
|                    | Unit VI Visual Electronic Annliances                                           | 07 Hours      |  |  |  |
|                    | Introduction block diagram working principal and different                     |               |  |  |  |
|                    | sections of: Public Address System, CD/DVD player, ICD/IED                     |               |  |  |  |
|                    | Television.                                                                    |               |  |  |  |
| Pedagogy:          | Lectures/Experiential Learning                                                 | 1             |  |  |  |
| References/        | 1. Sotcher Fred "The Repair & Maintenance of Electrical Equ                    | uipment: A    |  |  |  |
| Readings:          | Complete Guide to Troubleshooting Portable Electric Tools and C                | Generators",  |  |  |  |
|                    | Miramar Publishing Company, 1980                                               |               |  |  |  |

|           | 2. Khandpur R.S." Troubleshooting Electronic Equipment: Includes Repair and |
|-----------|-----------------------------------------------------------------------------|
|           | Maintenance" Second Edition, McGraw-Hill Education TAB,2006.                |
| Course    | Students will,                                                              |
| Outcomes: | • Acquire the basic knowledge of electricity and domestic wiring.           |
|           | • Understand the working of basic electrical appliances and their safety    |
|           | precautions.                                                                |
|           | • Able to do repair and maintenance of the basic electrical appliances.     |

# Name of the Programme: BSc Electronics Course Code: ELE-142 Title of the Course: PCB Designing and Fabrication Number of Credits: 03(1Lecture +2Practical)

Effective from AY: 2023-24 Pre-requisites for Nil the Course: Course Understand the need for PCB Design and steps involved in PCB Design and **Objectives:** Fabricationprocess. Familiarize Schematic and layout design flow using Electronic Design Automation (EDA)Tools. Develop necessary skills for designing single sided and double-sided PCBs • using Electronic Design Automation (EDA) Tools. Introduction to PCB designing concepts Content: Unit I 3 Hours Introduction & Brief History:Background and History of PCB, Definition and Need/Relevance of PCB, Classification of PCBs: Single-sided PCBs, Double-sided PCBs, Multi-layer PCBs, Rigid and Flexible PCBs. Platted through holes technology and Surface mount technology, Terminology in PCB Design, Basic Electronic Components: Active vs Passive components and their symbols, Capacitor, Potentiometers, Resistors, Inductors, Diodes, Transistors, and Integrated Circuits. Unit II Layout and Artwork **3 Hours PCB Design Process** Layout Planning: Steps involved in layout design, General rules of Layout, Supply and Ground Conductors, Component Placing and Mounting, Cooling requirement, General design factor for digital and analog circuits. Artwork generation: Basic artwork approaches (manual and CAD), General Design guidelines for Artwork Preparation-Conductor orientation, Conductor routing, conductor spacing, Hole diameter and solder pad diameter, The square land pad, no conductor zones, pad conductor holes, conductor and solder joint pads. Laminates and Printed Circuit Board Production Unit III 2 Hours Techniques Types of Laminates, Properties of laminates, Photo printing, filmmaster production, reprographic camera, Basic process for single and double sided PCBs, Photo resists, Screen-printing process. Unit IV PCB Fabrication & Assembly 2 Hours Steps involved in fabrication of PCB. PCB Fabrication techniques-single, double sided and multilayer Etching: Introduction to PCB etching process, Dry Etching and Wet Etching, etching machine Post operations- stripping, black oxide coating and solder masking PCB component assembly processes: Solder connection, Solder joints, Solder alloys, soldering fluxes, Soldering & Desoldering tools. 2 Hours Unit V Transmission lines and crosstalk Transmission Line: Transmission lines and its effects, Significance of

Transmission line inBoard design, Types of Transmission lines. Crosstalk:The crosstalk in transmission lines, Crosstalk control in PCB design parts, planes, tracks, connectors,terminations, Minimization of crosstalk.Thermal issues: Thermal mapping of design.

**3** Hours

|                | Unit VI PCB designing using EDA tools                                  |                   |
|----------------|------------------------------------------------------------------------|-------------------|
|                | Different Electronic design automation (EDA) tools and                 |                   |
|                | comparison. (Proteus, OrCAD, Eagle, Kikad, etc), Selecting the         |                   |
|                | Components Footprints as per design, Making New Footprints,            |                   |
|                | Assigning Footprint to components, Netlist generation, PCB Layout      |                   |
|                | Designing, Auto routing and manual routing, assigning specific text    |                   |
|                | (silkscreen) to design, Generating (GERBER file) for design.           | 60 Hours          |
| Practical List | Part-A: Creating Artwork and Printing of single sided PCB for          |                   |
| (Any 8)        | the following circuits (any 4)                                         |                   |
|                | 1. Regulator circuit using 7805/LM317                                  |                   |
|                | 2. Adder circuit using op-amp IC 741                                   |                   |
|                | 3. Bridge Rectifier                                                    |                   |
|                | 4. LED flasher using IC555                                             |                   |
|                | 5. Twilight Switch                                                     |                   |
|                | 6. Touch plate switches – transistorized or 555 based                  |                   |
|                | 7. Clapping switch and IR switch                                       |                   |
|                | 8. Cell charger/battery charger/mobile charger                         |                   |
|                | 9. Fire/smoke/intruder alarm                                           |                   |
|                | 10. Water level controller                                             |                   |
|                | 11. Displaying decimal number on 7-segment display using BCD to        |                   |
|                | 7- segment decoder IC                                                  |                   |
|                | 12. Audio amplifier using op-amp IC 741                                |                   |
|                | Part-B: Etching and drilling of single sided PCB (Compulsory)          |                   |
|                | 13 Etching of single-side PCB for any one of the circuits              |                   |
|                | mentioned in Part-A                                                    |                   |
|                | Part-C: Fabricate single-sided PCB (Compulsory)                        |                   |
|                | 14 Fabricate and test single-side PCB for any one of the circuits      |                   |
|                | mentioned in Part-A by mounting and soldering components.              |                   |
| Pedagogy:      | Lectures/Experiential/Practical's Learning                             |                   |
| References/    | 1. Khandpur R.S. "Printed Circuit Board Design, Fabrication Asse       | embly and         |
| Readings:      | testing", TMH, 2006                                                    |                   |
|                | 2. Bosshart Walter C. "Printed circuit Board Design and technology,"   | TMH <i>,</i> 1983 |
|                | 3. Clyde F. Coombs, Jr, Happy T. Holden "Printed Circuits Handb        | ook", 6th         |
|                | edition, TMH Education, 2016.                                          |                   |
|                | 4. Kwashnak Kenneth "A Basic Introduction for Designing a Prin         | ted Circuit       |
|                | Board (PCB) with EAGLE eCAD/CAM Software " SURVICE Engine              | ering 4695        |
|                | Millennium Drive Belcamp, 2020.                                        |                   |
| Course         | Students will,                                                         |                   |
| Outcomes:      | • Explain and describe the steps involved in schematic, layout, fabric | cation, and       |
|                | assembly process of PCB design.                                        |                   |
|                | <ul> <li>Able to design a single- and double-layer PCB</li> </ul>      |                   |
|                | • Able to fabricate the single land double layer PCB.                  |                   |
|                | • Able to design and troubleshoot the circuit over PCB.                |                   |
|                | • Able to design his own circuit for any application.                  |                   |

# Name of the Programme: BSc Electronics Course Code: ELE-161 Title of the Course: CCTV Installation Number of Credits: 04 (02 Lectures + 2 Tutorials) Effective from AY: 2023-24

| Pre-requisites for | Nil                                                                                 |            |
|--------------------|-------------------------------------------------------------------------------------|------------|
| the Course:        |                                                                                     |            |
| Course             | This course is intended to:                                                         |            |
| Objectives:        | • Develop understanding of basics of Networks& CCTV Technology.                     |            |
|                    | Acquire knowledge of CCTV Camera Installation.                                      |            |
|                    | <ul> <li>Develop skills to perform trouble shooting and maintenance CCTV</li> </ul> | ' systems. |
| Content:           | Unit I Introduction to CCTV Technology (Lectures)                                   | 08 Hours   |
|                    | Introducing CCTV & Uses -Elements of a basic CCTV system: -                         |            |
|                    | Camera, monitor and digital recorder, Connectors and cables,                        |            |
|                    | Basics of Networking -Tools and Equipment, Power Supply- Types                      |            |
|                    | (UPS and DCPS), Functionality and Termination.                                      |            |
|                    | Unit II Types of CCTV Cameras (Lectures)                                            | 07 Hours   |
|                    | Dome Camera - Bullet Type Camera - C-Mount Camera - Day/Night                       |            |
|                    | Camera - Infrared/Night Vision CCTV Camera - Varifocal Cameras -                    |            |
|                    | Wireless Cameras, PTZ and Bullet, indoor and outdoor,                               |            |
|                    | monochrome, Camera specifications: - Sensitivity, signal to noise                   |            |
|                    | ratio and resolution.                                                               |            |
|                    | Unit III Cables and Connectors                                                      | 04 Hours   |
|                    | Types (Fibre & Copper), uses, limitations, preparation and testing,                 |            |
|                    | Types of Connectors, Cable Conduit, Cable Tray, Industrial                          |            |
|                    | Standard, laying Method,                                                            |            |
|                    | Unit IV Networking                                                                  | 08 Hours   |
|                    | Introduction to IP technology. Network Devices- Switches                            |            |
|                    | (configuration & installation), Routers (configuration &                            |            |
|                    | Installation, OLT and ONT, Configuration and remination: Server-                    |            |
|                    | (Normal & High cocurity)                                                            |            |
|                    | Unit V Wireless Communication                                                       |            |
|                    | Types of Antennas Radios Configuration Limitations                                  |            |
|                    | Unit VI Installation of CCTV(Tutorials)                                             | 13 Hours   |
|                    | Planning for CCTV Camera Installation - Installing the Camera -                     | 15 110013  |
|                    | Checking the Camera Functions. Connection to other security                         |            |
|                    | systems. Cable Termination method. Hard disk installation.                          |            |
|                    | Microphone configuration.                                                           |            |
|                    | Unit VI Maintenance of CCTV & Data Management (Tutorials)                           | 10 Hours   |
|                    | Trouble Shooting and maintenance: Hardware, Managing Data:                          |            |
|                    | Data Storage Devices - Cloud Storage Technology, Recording the                      |            |
|                    | footage: - Analogue and Digital video recorders. Backup and                         |            |
|                    | Archiving. Video Management Software- Adding and Deleting                           |            |
|                    | camera, recording mode, Fail Over, Logs, report,Monitoring,Client.                  |            |
|                    | Password Recovery.                                                                  |            |
|                    | Unit VII Live Stream of Video on Mobile Device( Tutorials)                          | 05 Hours   |
|                    | The Benefits of Remote Viewing - Connecting Your Recorder -                         |            |
|                    | Enabling Remote Viewing - Installing Viewing Software -                             |            |
|                    | Connecting to Your Smartphone - Using Web Services - Potential                      |            |
|                    |                                                                                     |            |
|                    | Unit VIII Evidence Creation (Tutorials)                                             | 02 Hours   |
|                    | Kole of CCTV footage - Importance of CCTV footage - Retrieve CCTV                   |            |
|                    | Tootage – Authentication- Analyze CCTV footage                                      |            |

| Pedagogy:   | Lectures/Experiential Learning                                                  |  |  |
|-------------|---------------------------------------------------------------------------------|--|--|
| References/ | 1. Hill Thomas," CCTV Handbook: Buying, Installing, Configuring, &              |  |  |
| Readings:   | Troubleshooting A User's Guide to CCTV Security ",kindle edition,2019.          |  |  |
|             | 2. AISECT Content Group Participant's Guide for CCTV Installation Technician ", |  |  |
|             | kindle edition,2018.                                                            |  |  |
| Course      | Students will,                                                                  |  |  |
| Outcomes:   | <ul> <li>Understand basics of Network &amp; CCTV Technology.</li> </ul>         |  |  |
|             | Install CCTV System                                                             |  |  |
|             | Maintain of CCTV systems.                                                       |  |  |
|             | Note: Student can take some installation under guidance of                      |  |  |
|             | lecture/entrepreneur.                                                           |  |  |