A brief description of the programme:

- **Purpose:** Plants being primary producers form the basis of the existence of all other forms of life. As they provide food, feed, shelter, medicines, etc., study of plants is fundamental to harnessing their potential. In fact environmental and ecological health of a country is indexed based on plant wealth. But at the same time, deforestation is wiping out the diversity at an alarming rate. Fortunately, new tools and technological innovations come handy in handling these problems. In the present under graduate programme of Botany, all the aspects of plant sciences, right from diversity and classification to molecular biology and genetic engineering is covered to equip young graduates to i) appreciate the enormous diversity in plant kingdom, ii) understand their ecological, economical and livelihood role, iii) understand various functioning at physiological and molecular level and iv) manipulate these organisms to harness the benefits to human community. Understanding these are pivotal to the very existence of human species, and hence training our graduates and equipping them for the future challenges is of paramount importance.

- **Prerequisites:** Higher Secondary with Biology background.

- **Papers:** Totally 16 papers will be taught in Botany spreading three years to get a degree in Botany. Those who opt for three units will take 4 papers less in Third year.

- **Number of semesters, how the courses are distributed:** Total of Six Semesters in Three years. During the First Year and Second Years two papers in each semester will be taught. In the Third Year, 4 papers in each semester will be taught.

- **Project work:** Students have to undertake a project work either singly or in groups during the Third Year.

- **Field work:** Field work forms an important and interesting component. The number of field visits and duration of field work increases as the students graduate from First year to next levels.
B. Sc. (Botany) List of Papers

Description of papers appears on the page number listed in the tables.

<table>
<thead>
<tr>
<th>Paper Number and Title</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>First year - Semester I:</td>
<td></td>
</tr>
<tr>
<td>Paper I - Diversity and Classification of Plant Kingdom-I</td>
<td>3</td>
</tr>
<tr>
<td>Paper II - Cell biology</td>
<td>4</td>
</tr>
<tr>
<td>First year - Semester II:</td>
<td></td>
</tr>
<tr>
<td>Paper III - Diversity and Classification of Plant Kingdom-II</td>
<td>5</td>
</tr>
<tr>
<td>Paper IV - Principles of Biochemistry</td>
<td>6</td>
</tr>
<tr>
<td>Second year - Semester III:</td>
<td></td>
</tr>
<tr>
<td>Paper V - Plant Physiology-I</td>
<td>9</td>
</tr>
<tr>
<td>Paper VI - Plant Ecology -I</td>
<td>10</td>
</tr>
<tr>
<td>Second year - Semester IV:</td>
<td></td>
</tr>
<tr>
<td>Paper VII - Plant Physiology-II</td>
<td>11</td>
</tr>
<tr>
<td>Paper VIII - Plant Ecology – II</td>
<td>13</td>
</tr>
<tr>
<td>Third year - Semester V:</td>
<td></td>
</tr>
<tr>
<td>Paper IX - Systematics of Angiosperms</td>
<td>15</td>
</tr>
<tr>
<td>Paper X - Genetics & Plant Breeding</td>
<td>17</td>
</tr>
<tr>
<td>Paper XI - Plant Biochemistry & Molecular Biology</td>
<td>18</td>
</tr>
<tr>
<td>Paper XII - Plant Biotechnology & Genetic Engineering</td>
<td>19</td>
</tr>
<tr>
<td>Third year - Semester VI:</td>
<td></td>
</tr>
<tr>
<td>Paper XIII - Plant Anatomy and Developmental Biology of Flowering Plants</td>
<td>21</td>
</tr>
<tr>
<td>Paper XIV - Genetics, Plant Breeding and Statistical Methods</td>
<td>23</td>
</tr>
<tr>
<td>Paper XV - Microbiology & Plant Pathology</td>
<td>25</td>
</tr>
<tr>
<td>Paper XV I - Economic & Applied Botany</td>
<td>28</td>
</tr>
<tr>
<td>Field work (all the three years)</td>
<td>30</td>
</tr>
<tr>
<td>Third year (The following papers are for 3 Unit students)</td>
<td></td>
</tr>
<tr>
<td>Semester V:</td>
<td></td>
</tr>
<tr>
<td>Paper IX - Systematics of Angiosperms</td>
<td>15</td>
</tr>
<tr>
<td>Paper X - Genetics & Plant Breeding</td>
<td>17</td>
</tr>
<tr>
<td>Semester VI:</td>
<td></td>
</tr>
<tr>
<td>Paper XIII - Plant Anatomy and Developmental Biology of Flowering Plants</td>
<td>21</td>
</tr>
<tr>
<td>Paper XV I - Economic & Applied Botany</td>
<td>28</td>
</tr>
</tbody>
</table>
F.Y. B.Sc. (Botany): (effective from 2011-12)
(Semester I):

PAPER I: DIVERSITY AND CLASSIFICATION OF THE PLANT KINGDOM - I

Theory:

Plant kingdom: Classification of kingdoms and the criteria (according to Meyer, the seven kingdoms, of living organisms); Prokaryotes and Eukaryotes; diversity in habitat, form (Habit), life span, nutrition and ecological status; origin, evolution and phylogeny of land plants; extinctions and possible causes; fossils and living fossils (a brief account). (8L)

Algae: Origin, evolution, diversity, general characters, classification of all groups and phyla (Bold & Wynne), range of thalli and reproductive structures and life cycles of all the types with minimum one example each, ecological, economic and biotechnological significance. (13L)

Fungi: Origin, evolution, diversity, general characters, nutritional modes, classification (G.C. Ainsworth), range of vegetative and reproductive structures, pleomorphism and parasexuality, important features of Mastigomycotina - Pythium.; Zygomycotina - Mucor; Ascomycotina - Saccharomyces, Peziza; Basidiomycotina - Puccinia, Agaricus; Deuteromycotina - Cercospora, general account of Lichens and Mycorrhizae; ecological, economic and biotechnological significance of fungi. (13L)

Bryophytes: Origin, evolution, diversity, general characters, classification (G.M.Smith) and comparative study of morphology, anatomy, reproduction; broad interrelationships of Hepaticae, Anthocerotae and Musci; ecological and economic importance of bryophytes. (11L)

Laboratory Exercises:

1. Study of prokaryotic organisms: bacteria (Bacillus, Staphylococcus, Streptococcus, Spirillum); Monochrome and Gram's staining; Blue green algae - Anabaena, Oscillatoria (2 P)

2. Study of eukaryotic organisms:
 a. Algae: Chlorella, Chlamydomonas, Volvox, Hydrodictyon, Spirogyra, Oedogonium, Cladophora, Chara, Sargassum, Ectocarpus, Polysiphonia. (permanent specimen can be shown and a few can be freshly prepared) (4 P)
 b. Fungi: Rhizopus, Aspergillus,Saccharomyces, Penicillum, Chaetomium, Peziza, Agaricus; lichen, mycorrhizae (4P)
 c. Study of morphology, anatomy and reproductive structures in Riccia, Marchantia, Anthoceros, Funaria. (4P)

BACK

3
PAPER 2: CELL BIOLOGY

Theory:

The Cell: Historical background; cell theory; kingdom-wise cell size and cell structure; viroids and prions; comparative account of prokaryotic and eukaryotic cell; characteristics of archaeabacteria, mycoplasma, MLO and PPLO. (5L)

Cell division and its regulation: Mitosis and meiosis -historical perspective and significance; various stages of cell division progression; cytokinesis; role of centromere, telomere, kinetochore and spindle apparatus; animal and plant cell cycle; mechanisms of cell cycle control; apoptosis. (6L)

Nucleus and Ribosomes: Ultrastructure; nuclear envelope and nuclear pore complex; nuclear matrix and nucleoplasm; DNA, RNA and histones; nucleosome and higher level of organization; ribosome structure; prokaryotic, eukaryotic and organelle ribosomes and their functional significance. (7L)

Mitochondrion and Chloroplast: Origin of organelles; organelle structure and biogenesis; organelle membranes and organization of macromolecular complexes; variation in size, shape and number; types of plastids; organelle-nuclear interactions; organelle genome organization. (8L)

Structure/function of other Sub-cellular structures: Golgi complex; endoplasmic reticulum; lysosomes; microbodies - peroxisomes and glyoxysomes; cytoskeleton and microtubules. (5L)

Cellwall and Cell membranes: Origin, ultrastructure, chemical constituents and functions of cell wall; models of cell membrane organization; role of various membrane proteins, lipids, carbohydrates and lectins; role of ion channels and pumps in cellular transport and signalling. (7L)

Techniques in Cell biology: Principles and applications of light, phase contrast, fluorescence and electron microscopy (SEM & TEM); micrometry and cell fractionation procedures (7L)

Laboratory Exercises:

1. Comparative study of cell structure in onion cells, Hydrilla and Spirogyra. Study of cyclosis in Tradescantia staminal hairs. (2P)
2. Examination of EM graphs of prokaryotic and eukaryotic cells. (1P)
3. Study of various stages of mitosis and meiosis using appropriate plant material (e.g. root tips and flower buds of onion). (3P)
4. Isolation of chloroplasts from leaf material using gradient centrifugation and visualization under microscope (1P)
5. Micrometry, camera lucida and cytometry (size measurements) (3P)
6. Study of plastid types using microscope. (2P)
7. Histo-chemical test for cellulose, lignin, chitin and suberin in sections (2P)
8. Study and working of microscopes, centrifuges, microtomes, (1P)
9. Visit to the facilities of Department of Botany, Goa University (optional) BACK
PAPER III: DIVERSITY & CLASSIFICATION OF THE PLANT KINGDOM - II

Theory:

Pteridophytes: Salient features of primary vascular plants; classification (Foster & Gifford), comparative study of morphology, anatomy, reproduction; stelar evolution; a general account of evolutionary significance of Psilopsida-, Lycopsida-, Sphenopsida- and Pteropsida-; heterospory and seed habit; economic importance. (15L)

Gymnosperms: Classification (Coulter and Chamberlain) and salient features; evolutionary significance of gymnosperms; comparative general study of morphology, anatomy and reproduction of Cycadales, Coniferales and Gnetales; economic importance. (15L)

Angiosperms: Unique features of angiosperms and diversity; identification, nomenclature and classification; comparison of systems of classification (Bentham & Hooker and Engler & Prantl); primitive and advanced features; salient features of the International code of Botanical Nomenclature; general account of morphology, anatomy, flower structure, reproduction and seed development. (15L)

Laboratory Exercises:

1. Study of morphology, anatomy and reproductive structures by sectioning (Selaginella, Equisetum, Salvinia,) and using permanent slides (Psilotum, Lycopodium, Pteris, Lepidodendron, Lepidocarpon). (4P)

2. Study of morphology, anatomy and reproductive structures in Cycas, Pinus, Gnetum (3P)

3. A study of the representative members of the following angiosperm families: Magnoliaceae, Leguminosae (Papilionoideae, Caeselpinoideae, Mimosoideae), Umbelliferae (Apiaceae), Compositae (Asteraceae), Acanthaceae, Euphorbiaceae, Liliaceae, Gramineae (Poaceae). (Bentham & Hooker’s Classification) (7P)

4. Study of tissue types (permanent slides to be shown). (1P)
PAPER IV: PRINCIPLES OF BIOCHEMISTRY

Theory:

Cellular chemistry: Bioelements and biomolecules; chemical bonds, interactions and their significance; peptide bonds, disulphide bonds, structure, properties of water and its biological significance; pH, inorganic and biological buffers and their significance (6L)

Biomolecules: Essential and non-essential elements; structure, classification and properties of amino acids, carbohydrates, lipids, proteins and Nucleic acids; primary and secondary metabolites, Isomerism (16L)

Energy flow: Laws of thermodynamics; concept of free energy; energy transfer and redox potential; ATP -the energy currency; phosphorylation / dephosphorylation of proteins (5L)

Enzyme structure, classification and functions: enzymes as biocatalysts; classification and nomenclature of enzymes; physico-chemical properties of enzymes; cofactors and coenzymes; isozymes, kinetics of enzyme action; significance of Km; mechanism of enzyme activity; factors affecting enzyme activity, e.g. temperature, pH; allosteric modification and feedback regulation (10L)

Techniques in biochemistry: Simple chemical detection techniques for biomolecules, principles of various chromatographic, electrophoretic and spectrophotometric techniques (8L)

Laboratory Exercises:

1. Preparation of chemical reagents (molar, molal and normal solutions) and buffers (3P)
2. Measurement of pH of different plant extracts (C3, C4 and CAM plants) (1P)
3. Qualitative analysis of biomolecules (amino acids, proteins and carbohydrates) (3P)
4. Chlorophyll separation and anthocyanin separation using paper chromatography. (2P)
5. Estimation of proteins by Lowry's method (1P)
6. Micro-chemical detection of reducing sugars in floral nectar using Benedict's reagent (1P)
7. Determination of pKa value of amino acids (Glycine/glutamic acid) (1P)
9. Determination of acid value of fat (1P)
10. Estimation of RNA by means of orcinol reaction (1P)
11. Visit to the facilities of Department of Botany, Goa University (Optional)
Suggested Readings (Paper I & III):

10. Gangulee and Kar, College Botany Vol.I and II.
22. Sundarajan, College Botany, Vol.I and II.

Suggested Readings (Paper II & IV):

Suggested Readings (for laboratory exercises):
SY B.Sc. (Botany): (effective from 2012-13)
(Semester III):

PAPER V. PLANT PHYSIOLOGY -I

Theory:

Plant-water relations: Water transport processes; diffusion and osmosis; water potential and chemical potential; absorption of water, water transport through tracheids and xylem (ascent of sap); transpiration and its significance; factors affecting transpiration; mechanism of stomatal movement, root pressure, guttation, imbibition, mass flow, antitranspirant. (12L)

Mineral nutrition: Criteria of essentiality of elements; macro- and micronutrients; role of essential elements; mineral deficiency symptoms and plant disorders; nutrient uptake and transport mechanisms; role of cell membrane, ion pumps and carriers. (12L)

Photosynthesis: Historical background and significance; structure of photosynthetic apparatus; photosynthetic pigments; accessory pigments and the photoprotective carotenoids; reaction center complexes; photochemical reactions; electron transport pathways in chloroplast membranes; photophosphorylation; the Calvin cycle; the C4 carbon cycle; crassulacean acid metabolism; synthesis of starch and sucrose; photorespiration; factor affecting photosynthesis. (15L)

Transport of organic substances: Transport of photosynthates; source-sink relationship; the mechanism of translocation in the phloem; assimilate partitioning. (6L)

Laboratory Exercises:
1. Measurement of Relative water content (RWC) of plant tissue. (1P)
2. To extract and separate photosynthetic pigments by paper chromatography. (1P)
3. Spectral analysis of pigment (to determine B-carotene, Chl a and chl b and other carotene bands) separated by above paper chromatography method. (2P)
4. Determination of chlorophyll a and total chlorophyll in shade and sun plants. (1P)
5. Photo-oxidation of photosynthetic pigments. (1P)
6. To determine the osmotic potential of vacuolar sap by plasmolytic method. (1P)
7. To determine the water potential of given tissue (any tuber). (1P)
8. To determine stomatal index, stomatal frequency and percentage of leaf area open through stomata. (2P)
9. Anatomical feature of C3 and C4 plants. (1P)
10. Nutrient deficiency symptoms. Hydroponically (Demonstration only). A visit to ICAR (Ela Farm) (optional) (2P)

BACK
PAPER VI: PLANT ECOLOGY I

Theory:

Introduction: Definition; holocoenotic nature of environment; limiting factors; ecological amplitude; triggering factors (soil, water, atmosphere); inter-relationships between the living world and the environment; the components and dynamism; homeostasis; relevance to man.

(5L)

Earth as a system: The biosphere, the hydrosphere, the atmosphere and the lithosphere; Gaia hypothesis; structural and functional components of systems; Biomes - parameters delimiting individual biomes.

(5L)

The environment and Ecological adaptations: Soil, water and atmosphere - general account and adaptations; the living world - biotic component of environment; types of biotic interactions; Concept, ecads, ecotypes and ecoclines; adaptive significance of photosynthetic pathways.

(9L)

Ecosystem: Concept, components (abiotic and biotic) and organization; structure and functions; homeostasis; energy flow - models; productivity; food chain and food web; trophic organization and ecological pyramids; autotrophy, heterotrophy, parasitism and saprophytism; Biogeochemical cycles - sedimentary (P), gaseous (C, N) and hydrological cycles.

(14L)

(8L)

Organismal ecology/biotic components: Introduction to individuals, species, populations and communities.

(4L)

Laboratory Exercises:

1. To determine the working and use of instruments for the measurement of temperature (soil, air, water), moisture (rainfall, relative humidity, soil moisture), wind (velocity and direction) and light intensity.

(2P)

2. To study selected soil properties by spot test: texture, pH, carbonate, nitrate, base deficiency and reductivity and water holding capacity.

(3P)

3. Titrimetric estimation of total carbonates of soil samples.

(1P)

4. Analysis of different water samples for pH, oxygen, carbon-dioxide (titrimetric estimation), turbidity and temperature.

(3P)

5. To study ecological adaptations (morphological and anatomical) in plants (hydrophytes, xerophytes, epiphytes).

(6P)
SYBSc (Botany)
(Semester IV):

Paper VII: PLANT PHYSIOLOGY II

Theory:

Respiration: Glycolysis; the TCA cycle and its regulation; electron transport in mitochondria; oxidative phosphorylation; pentose phosphate pathway; cyanide-resistant respiration; ATP synthetase.
(8L)

Nitrogen metabolism: Biological nitrogen fixation; reduction of N₂ into ammonia; *nif* genes; regulation of nitrate reductase and nitrogenase; nitrate and ammonium assimilation; Pyridoxal phosphate.
(6L)

Growth and development: General aspects - definitions, phases of growth; kinetics of growth; physiology of seed dormancy and seed germination; concept of photoperiodism; physiology of flowering; the florigen concept and its role. Photomorphogenesis; discovery of phytochromes and cryptochromes, their role and mechanism of actions. Vernalization; fruit-ripening; importance of respiratory climacteric.
(15L)

Growth Regulators: Discovery, physiological role and mechanism of action of the phytohormones - auxins, cytokinins, gibberellins, abscisic acid and ethylene.
(10L)

Plant movements: Tropic and nastic; biological clocks.
(2L)

Stress physiology: In relation to drought, salt, metals and radiations
(2L)

Secondary metabolites: Terpenes, phenols, tannins and alkaloids (biosynthesis and uses).
(3L)

Laboratory Exercises:

1. Qualitative detection of to amylase, lipase, acid phosphatase, catalase, peroxidase.
(4P)
2. Estimation of nitrate reductase.
(1P)
3. Extraction and spectral analysis of phycocyanin from BGA and spectral.
(1P)
(1P)
5. Extraction and separation of falvonoids using paper chromatography (2 P) and demonstration of 2D with the same plate.
(1P)
6. Comparative study of rate of respiration of various plant parts.
(1P)
7. Role of light in germination of photoblastic seeds, Spinach/tomato.
(1P)
(2P)
(1P)
Suggested Readings (Paper V & VII)

Suggested Readings (for laboratory exercises)
Paper VIII: PLANT ECOLOGY II

Theory:

Community: Community characteristics, Structure (vertical and horizontal), climax types and theories; niche concept, succession and types. Measurement of communities: species diversity (alpha, beta and gamma); quantitative ecology - sampling methods (quadrats, transects, bisects), frequency, density, abundance and Importance Value Index (IVI); species diversity indices; vegetation mapping. (13L)

Population: Concepts; population characteristics; density and pattern; idealized plant life history; population growth; carrying capacity; population regulation and population dynamics; r- and K-selection; population interactions. (6L)

Phytogeography: General principles; static and dynamic plant geography; continental drift, age and area hypothesis, land bridge theory; endemism - types and causes; biodiversity hotspots - Eastern Himalayas and Western Ghats; vegetation types of India; vegetation types of Goa. (10L)

Human ecology and ecological management: Human population; renewable and non-renewable natural resources and their management; conservation of biodiversity, endangered species; conventional and non-conventional energy sources. (5L)

Remote Sensing and GIS in Ecological Applications: Remote Sensing - Definition; Electromagnetic radiation and atmospheric windows; EMR and reflectance from vegetation; satellites and satellite remote sensing; application of RS in ecology, forestry, agriculture and environment; GIS - Principles; application of GIS in biodiversity, ecological, environmental spatial management. (8L)

Role of Governmental and Non-Governmental organizations in environmental management: National- Ministry of Environment and Forests, NEERI, TERI, CEE, CHIPKO, MSSRF; International - WWF, IUCN, UNEP, MAB, CITES, TRAFFIC, Green Peace (3L)

Laboratory Exercises:

1. To determine minimum area of sampling unit (quadrat) for the study of grassland community. (1P)
2. Analysis of the herbaceous vegetation for frequency, density and abundance. (2P)
3. Species diversity indices (Simpson’s & Shannon-Weiner) of herbaceous vegetation. (2P)
4. Estimation of biomass of aerial parts of herbaceous plants (fresh weight and dry weight). (2P)
5. To prepare maps of India with respect to (i) major climatic zones (ii) forest types, and (iii) biogeographical regions and to comment on it. Use of google earth (2P)
6. Visual interpretation of remotely sensed image for vegetation types (2P)
7. Soil analysis for organic content by titration. (1P)
8. Soil and water analysis for total phosphorus by spectrophotometric methods (2P)
9. Identification and density count of phytoplankton using hemocytometer. (1P)
Suggested Readings (Paper VI & VIII)

3. Benjamin/Cummings Publication Cc California.

Suggested Readings (for laboratory exercises)

BACK
T.Y. B.Sc. (Botany): (effective from 2013-14)

Semester V

PAPER IX: SYSTEMATICS OF ANGIOSPERMS

Theory:

Introduction: Aims, scope and components of systematics; introduction to identification, nomenclature, phylogeny and classification. (2L)

Systematics in practice: Importance of herbarium specimens and their preparation; role of herbaria and botanical gardens; documentation (Floras, monographs, manuals, journals, abstracts, indices and dictionaries); keys for identification of plants - single access and multi access; value of computers and databases for identification. (8L)

Taxonomic hierarchy: Taxonomic category; taxonomic groups; concepts of species, genus and family. (2L)

Botanical nomenclature: ICBN - Principles and rules; ranks and names; type method; principle of priority and its limitations; names of hybrids and cultivars. (4L)

Origin and evolution of angiosperms: A general account of the origin and evolution of angiosperms (special reference to Bennettitalean, Gnetalean, Caytonialean and herbaceous origin theories); primitive living angiosperms; evolution of flower; co-evolution of flowers and insects. (6L)

Systems of classification: Hutchinson's, Cronquist's systems of classification. (3L)

Evidence from other fields: Supporting evidences/inputs for taxonomy; evidences from Anatomy, embryology, palynology, ecology, cytology, secondary metabolites and semantides. (6L)

Numerical taxonomy and cladistics: Concepts, characters, methods, dendrograms / cladograms and their interpretation and applications. (3L)

Systematic position, diagnostic features and important species of following families: Annonaceae, Capparidaceae, Brassicaceae, Tiliaceae, Rutaceae, Myrtaceae, Cucurbitaceae, Rubiaceae, Apocynaceae, Asclepiadaceae, Solanaceae, Verbenaceae, Lamiaceae, Amaranthaceae, Moraceae, Orchidaceae, Araceae, Palmae, Zingiberaceae, Commelinaceae. (16L)

Laboratory Exercises:

1. Phytography (1P)
2. Use of taxonomic keys and construction of dichotomous keys (2P)
3. Preparation of herbarium of one terrestrial plant. (1P)
4. Identification of all the families (Bentham & Hooker’s system) studied in theory should be taught from locally available specimens (with floral diagram). (10P)
5. Taxonomic interpretation of pollen of related species (1P)
6. Raphides/Cystoliths in related sp/genera
Suggested readings:

PAPER X: GENETICS AND PLANT BREEDING

Theory:

Mendelian genetics and principles of inheritance: Mendel’s experiments; backcross and test cross; gene interactions and modified dihybrid ratios - complementary, supplementary, duplicate and epistatic factors. (7L)

Multiple allelism: Multiple alleles in *Drosophila* (eye colour), man (blood groups) and plants (self incompatibility). (5L)

Quantitative genetics: Quantitative traits and quantitative genetics; the multiple factor hypotheses. (4L)

Linkage and recombination: Coupling and repulsion phases; two and three point test cross with their significance in chromosome mapping; interference and co-efficient of coincidence. (8L)

Cytoplasmic inheritance and Maternal influence: Kappa particles in *Paramecium*; CO₂ sensitivity in *Drosophila*; Plasmids in Bacteria; cytoplasmic inheritance in yeast (mitochondria) and *Mirabilis jalapa* (plastids); chemical basis of cytoplasmic inheritance; Shell coiling in snails; eye color in flour moth. (8L)

Sex chromosomes in *Drosophila, Man and Melandrium*: Balance concept of sex determination in *Drosophila*; mechanisms of sex determination; sex-linked inheritance in *Drosophila* and man; sex-limited characters. (6L)

Plant breeding: Introduction, history, objectives, achievements and prospects; genetic variability and its role in plant breeding; centres of origin of crop plants; organizations- ICAR, ICRISAT. (7L)

Breeding for disease resistance: Physiological races and path types; genetics of pathogenicity; vertical and horizontal resistance. (2L)

Plant breeders’ rights; Phytosanitary and seed certifications. (3L)

Laboratory Exercises:

1. Determination of chromosome count from dividing pollen mother cells (meiosis) (*Allium cepa* / *Rheo bicolor*), root tip (Mitosis) in *Allium cepa*. (4P)
2. Preparation of karyotypes from dividing root tip cells. (2P)
3. Determination of interspecific variation in chromosome number from locally available taxa (*Amorphophallus/ Urginea indica*). (3P)
4. Identification of sex chromosomes and their behaviour during meiosis from grasshopper and any appropriate dioecious plant (*e.g. Coccinia*). (4P)
5. Detection of anomalies in chromosome pairing and disjunction caused by mutagens and structural alterations of chromosomes in *Rheo bicolor/ Setcretia sp.* (2P)
PAPER XI: PLANT BIOCHEMISTRY AND MOLECULAR BIOLOGY

Theory:

Carbohydrate metabolism: Introduction to glycobiology; plant lectins; biosynthesis and degradation of sucrose, cellulose and starch; bioconversion of carbohydrates to bioethanol. (6L)

Lipid metabolism: Structure and function of membrane lipids; fatty acid biosynthesis; oxidation of fatty acids; storage and mobilization of fatty acids and lipids; liposomes; PUFA. (5L)

Vitamins: Chemistry and biological functions of Vitamin A, B complex, C, D, E, P and K; occurrence in plants. (6L)

Immunology: Type of antigens, immunoglobulins and antibodies, antigen-antibody interactions, biological activities of antibodies; edible vaccines. (7L)

Nucleic acids: Composition of nucleic acids and synthesis of nucleotides; Central and revised Dogma of molecular biology. DNA structure; A,B,C,D and Z forms of DNA; denaturation and renaturation of DNA; chromatin structure; DNA replication and recombination; DNA polymerases; different forms of RNA and their role; RNA silencing. (10L)

Amino acid and protein metabolism: Essential amino acids; amino acid biosynthesis; Transamination; peptide bond and polypeptide chain; structure and function of ribosomes; protein biosynthesis and its regulation; post-translational modification of proteins; protein folding and transport; protein secretion and degradation. (9L)

Gene structure, expression and regulation: Gene organization in prokaryotes and eukaryotes; operon concept; gene regulation in prokaryotes and eukaryotes; inducible, repressible, positive and negative gene regulation; interrupted genes in eukaryotes; RNA splicing; mRNA stability. (7L)

Laboratory exercises:

1. Estimation of reducing sugars by DNSA method. (1P)
2. Estimation of total sugars using phenol-sulphuric acid method. (1P)
3. Localization of carbohydrates using I$_2$KI and PAS. (1P)
4. Localization of lipids using Sudan III. (1P)
5. To identify the amino acids in a mixture of standards by resolving through TLC. (1P)
6. Isolation and estimation of total RNA (orcinol method) from plant tissue. (2P)
7. Isolation and estimation of plant DNA using diphenyl amine method. (1P)
8. Estimation of Ascorbic Acid. (1P)
9. Separation of protein by SDS-PAGE (casting of gel, sample preparation, running of gel and development of gel) (3P)
10. Preparation of agarose gel and running of DNA (2P)
11. Estimation of vitamin A in different plant tissue (1P)
Paper XII: PLANT BIOTECHNOLOGY AND GENETIC ENGINEERING

Theory:

Plant biotechnology: Concept and scope - an overview.
(1L)

Laboratory organization and techniques in Plant Tissue Culture: Tissue culture laboratory; culture media, media preparation, aseptic transfer.
(4L)

Concept of differentiation: Cellular differentiation and totipotency; effect of growth regulators on differentiation; callus and suspension culture; somaclonal variation; meristem culture, anther and pollen culture, embryo culture, organogenesis and embryogenesis.
(9L)

Somatic hybridization: Protoplast isolation, fusion and culture; immobilization and synthetic seeds; cybrids.
(5L)

Recombinant DNA technology: Restriction endonucleases, ligases, methylases; prokaryotic and eukaryotic cloning vectors; genomic and cDNA libraries; Southern, northern and western analysis; various techniques DNA fingerprinting (RFLP, RAPD, AFLP); polymerase chain reaction; DNA isolation and sequencing.
(10L)

Genetic engineering of plants: Introduction; selectable markers and reporter genes; methods of gene delivery (*Agrobacterium and gene gun*); hairy-root culture; **Plastid transformation**, salient achievements in crop biotechnology (with suitable transgenic examples) and prospects.
(10L)

Plant genomics and bioinformatics: *Arabidopsis* and rice genome; bioinformatics: introduction; scope and application in plant genomics.
(4L)

Bio-energy and bioremediation: Composition of biomass, methods of energy production, methane, bioethanol, petroplants - *Jatropha* and biodiesel. Bioremediation of waste water and polluted soils by plants.
(6L)

Proteomics, metabolomics and functional genomics
(1L)

Laboratory exercises:
1. Preparation of tissue culture media (carrot culture), sterilization and inoculation of plant material.
(3P)
2. Morphological studies of callus (sectioning and microscopic studies)
(1P)
3. Sub culture of callus for shoot induction
(2P)
4. Sub culture for callus for root induction
(2P)
5. Embryo culture of Maize
(2P)
6. Isolation of plant protoplasts (e.g. tobacco, petunia) using enzymes available commercially and estimation of their yield.
(3P)
7. Preparation of synthetic seeds.
(1P)
8. Single cell isolation.
(1P)
Suggested Readings

SEMESTER VI

PAPER XIII: ANATOMY AND DEVELOPMENTAL BIOLOGY OF FLOWERING PLANTS

Theory:

Phanerogams, the seed bearing plants: General characteristics and types. (1L)

Meristems and development: Shoot apical meristem, root apical meristem, lateral meristems and their functions. (5L)

Secondary body of the plant: Vascular cambium; secondary xylem, wood anatomy; secondary phloem and periderm. (7L)

Organography and anatomy: leaf morphology, histology and venation; nodal anatomy; root-stem transition; general concepts of floral anatomy. (10L)

Flower: Evolution; concept of flower as a modified determinate shoot; genetic control of floral organs; functions of flower. (5L)

Structure of anther: Microsporogenesis; formation of pollen grains (male gametophyte); pollen germination; pollen tube growth. (7L)

Structure of pistil: Ovules; megasporogenesis; female gametophyte; development of embryo sac (monosporic polygonum type; bisporic allium type; tetrasporic fritillaria type). (5L)

Mechanisms and agencies of pollination: Nectaries (floral and extra floral) - structure and function; Pollen-stigma interaction; self- incompatibility. (5L)

Fertilization: Double fertilization; endosperm - types; embryogenesis - Onagrad type, Triticum type. Apomixis and Polyembryony. (5L)

Laboratory exercises:
1. Study of meristems from permanent slides. (1P)
2. Comparative anatomical structure of wood of Artocarpus, Tectona grandis, Terminalia renulata from sections (T.S., T.L.S. and R. L. S) and macerations. (3P)
3. Distinct anatomical features of leaf (Nerium, Grass, Nymphaea). (1P)
4. Study of leaf appendages, venation and stomata types. (2P)
5. Pollen studies: Chitaley’s method for analysis in Ipomoea, Ocimum, Hibiscus, Acacia auriculiformis and Grass. (1P)
6. Microsporogenesis and male gametophyte development in angiosperms through Permanent slides (1P)
7. Pollen grain germination by hanging-drop and sitting-drop techniques in Impatiens, Catharanthus roseus (= Vinca rosea) (1P)
8. Diversity in the structure of stigma, style, stigmatic papillae and transmitting tissue of style (any available material). (1P)
9. Comparison of mating types in species exhibiting heteromorphic self incompatibility Hamelia patens/Pentas. (1P)
10. Microdissection of embryo with suspensor at different stages of development to unravel relationship between the two. (1P)
11. Microdissection of endosperm with haustoria (cucurbit). (1P)
Suggested Readings:

Theory:

Alterations in the genetic make up - changes at genetic level: Spontaneous and induced mutations; mutagens - types and mode of action; transitions, transversions and frame-shift mutations; detection of mutations.
(8L)

Alterations in genetic make up - changes in chromosome structure: Origin, types and effects of duplications, deletions, inversions and translocations; meiosis in structural heterozygotes.
(8L)

Alterations in genetic make up - changes in chromosome number: Origin, types and effects of auto and allopolyploidy; origin and meiosis in nullisomics, monosomics and trisomics.
(8L)

Methods of plant improvement: Pure line and mass selection; techniques in hybridization; hybridization in self and cross-pollinated crops; introduction and acclimatization; hybrid vigour.
(12L)

Mutations and polyploidy as methods of plant improvement.
(4L)

Statistical methods: Sampling theories, data collection, processing and presentation; descriptive statistics (mean, median, mode, standard deviation, mean square value), correlation, regression, chi square, student's t-test.
(10L)

Laboratory Exercises (Genetics, Plant Breeding & Statistical Methods):

1. Preparation of chromosome maps from 3-point test cross data.
(1P)

2. Correlation of floral structure with pollination system (e.g. *Salvia, Sesamum, pea, rice, maize, Ricinus*).
(1P)

3. Field exploration for detection of male sterile plants and estimation of their pollen fertility in locally grown crop plants (e.g. chilli).
(2P)

4. Estimation of pollen ovule ratio and its bearing on pollination system.
(2P)

5. Emasculation and bagging of flowers of Brassicaceae and Malvaceae pollinating them manually and estimating fruit and seed set.
(2P)

6. Analysis of data for mean, mode, median, standard deviation and standard error using suitable plant samples.
(2P)

7. Determination of correlation and regression using examples
(2P)

8. Student ‘t’ test and Chi square analysis
(1P)

9. Colchicine based polyploidy
(1P)

10. Colchicine based mutation (shoot/root/germination/chromosomes)
(1P)
Suggested Readings (For Genetics, Pl. Breeding & Statistical Methods - Papers X & XIV):

6. Jones &Bartlett Publishers, Massachusetts, USA.
PAPER XV: MICROBIOLOGY AND PLANT PATHOLOGY

Theory:

A. Microbiology:

Discovery of microorganisms: Systematics of microorganisms in biological world; Classification of microorganisms (Bergey’s manual) (and characteristic features of different groups. (2L)

Methods in microbiology: Staining, sterilization methods; culture media and pure culture methods; methods for population estimation, growth determination. (4L)

Ultrastructure of microorganisms: Viruses: properties and classification; Characteristics of host-virus interaction; Mycoplasma, Prions, Viroids; bacteriophage T4 and TMV. Prokaryotic microorganisms: bacteria; Actinomycetes; fine structure of prokaryotic cell; Eukaryotic microorganisms; yeasts. (10L)

Genetic recombination in Prokaryotes: Conjugation, transformation and transduction; Plasmids. (1L)

Role of microorganisms in biogeochemical cycling: Nitrogen, Phosphorus and Carbon, Biological N₂ fixation; Symbiotic and asymbiotic; Mycorrhizae and their role in agriculture and forestry. (4L)

Industrial application of microorganisms: Secondary metabolites; Organic acids, bread, wine, alcohol, food processing, milk products, antibiotics, biofertilizers; Mushroom cultivation. (5L)

B. Plant Pathology:

General account of Plant Pathogens: General account of diseases caused by plant pathogens; Symptomatology. (2L)

Pathogen attack and defense mechanisms: Stages of disease establishment; Physical, physiological, biochemical and molecular aspects. (5L)

Plant disease epidemiology: Transmission and spread of plant pathogens; disease cycles, epidemics; modeling and disease forecasting. (3L)

Plant disease management: Cultural, Chemical, biological; IPM systems; development of transgenics; biopesticides; Plant disease clinics. (4L)

Genetics of resistance and susceptibility: Genes for virulence and avirulence, their application in resistance and susceptibility; induced resistance (immunization). (3L)

Molecular Plant Pathology: Molecular diagnosis; identification of genes and specific molecules in disease development; molecular manipulation of disease resistance. (4L)

Application of Information Technology in Pl. Pathology: Simulation of epidemics; programmes for diagnosis; remote sensing and image analysis for ecosystem level effects; prediction of disease control decisions. (3L)
Laboratory Exercises:

(Number of lab hours should be uniformly distributed)

A. Microbiology:

1. Determination of dimensions of microorganisms (suggested model organisms: yeast, lactobacilli, Cyanobacteria). (1P)
2. Sterilization; preparation of agar medium for Bacteria and PDA solid medium and Czapeck Dox liquid medium for fungi. (2P)
3. Isolation of microorganisms: streaking on agar plates/pour plate method (2P)
4. Turbidimetric determination of growth of a microorganism using spectrophotometer (model organism: E. coli / yeast). (1P)
5. Determination of microbial population size (model organism: yeast; use of haemocytometer, serial dilution technique, relationship between dilution and cell count, determination of standard error, reliability in cell counts). (1P)
7. Isolation and inoculation of bacterial and fungal pathogens. (2P)
8. Anatomical observations of fungal infected plants (rust, blight, rots). (1P)

B. Plant Pathology:

1. Study of symptoms, morphology and anatomy of important locally available plant diseases symptoms and host-parasite relationship (one viral, bacterial and fungal). (1P)
2. Isolation and culture of plant pathogens (e.g. Colletotrichum/Fusarium/Alternaria) and establishment of Koch's postulates and their pathogenicity. (2P)

Suggested reading materials:

11. And any other latest books on the subject
Suggested Readings (for laboratory exercises):

Journals/Series

1. Methods in Microbiology; Methods in Enzymology; Methods in Biochemistry
2. Indian Journal of Mycology & Plant Pathology, Jodhpur
3. Mycorrhiza News Letter, TERI, New Delhi
4. Indian Journal of Microbiology.
PAPER XVI: ECONOMIC AND APPLIED BOTANY

Theory:

Ethnobotany: Introduction to indigenous knowledge and ethnobotany; ethnobotanical knowledge in bioprospecting. (2L)

Medicinal plants: A brief account of plant drugs and their chief constituents used in indigenous and allopathic systems of medicine with regard to Rauwolfia serpentina, Hemidesmus indicus, Garcinia indica, Hololorrhena antidysenterica, Andrographis paniculata, Catharanthus roseus, Aloe vera, Tinospora cordifolia, Adhatoda vasica, Boerhaavia diffusa. (4L)

Floriculture: Scope and present status in India; basic aspects of cultivation of Orchids, Anthuriums, Gerbera, Crossandra, Carnation, Jasminum. (3L)

Horticulture: Concept & application, Landscape gardening, Kitchen gardening, Rock gardening, Lawn making, Bonsai, Horticultural crops of Goa. (6L)

Vegetative Propagation (4L)

Concepts & Applications of Sericulture & Apiculture. (2L)

Forestry: Silviculture, Agroforestry & Social Forestry. (4L)

Laboratory Exercises:

1. Identification (botanical name and family), description and utilization of plants and/or plant parts studied in theory, under each group, including floriculture plants. (8P)

2. Chemical tests for oil: Sesame/groundnut T.S. of Eucalyptus leaf to study oil glands. (1P)

3. Properties of plant fibres: Cotton, Jute and coir. (1P)

4. Study of plants (live or from herbarium specimens) used as sources of drugs: (Rauwolfia serpentina, Adhatoda vasica, Tinospora cordifolia, Terminalia bellirica, Hololorrhena antidysenterica, Garcinia indica, Andrographis paniculata, Catharanthus roseus, Hemidesmus indicus, Boerhaavia diffusa and Aloe vera. (3P)

5. Extraction of plant pigments in water, ethanol and n-hexane of any two: e.g. Curcuma longa (turmeric), Bixa orellana (annato), Lawsonia inermis (mehndi), Garcinia indica (Kokum). (1P)

6. Vegetative propagation techniques (1P)

7. Preparation of a list of trees and shrubs used as ornamentals along with their popular and scientific names. Seasons of flowering and brief description. Calendar of seasonals grown as bed plants, potted plants, houseplants, and flowers used for worship or ornamentation. This may be illustrated and presented as a term paper at the time of examination.
Suggested Readings:

3. Hill Economic Botany
FIELD WORK

In addition to the requisite number of lectures and practicals, a student of Botany at F.Y./ S. Y./ T. Y. B. Sc. course is required to undertake field work / study tour to acquaint with the practical aspects of the subject as well as learn the recent developments in the subject by visiting research institutes / Universities under the guidance of a teacher as per the details shown below:

<table>
<thead>
<tr>
<th>Course</th>
<th>Field trips / study tours</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.Y. B. Sc.</td>
<td>Two local field trips (one in each semester)</td>
</tr>
<tr>
<td>(Semester I & II together)</td>
<td></td>
</tr>
<tr>
<td>S.Y. B. Sc.</td>
<td>Two local field trips in semester III</td>
</tr>
<tr>
<td>(Semester III & IV together)</td>
<td>Short tour of not less than four days outside Goa in semester IV.</td>
</tr>
<tr>
<td>T.Y. B.Sc.</td>
<td>Three local field trips in semester V and one long study tour outside the state of Goa of not less than 10 days in semester VI.</td>
</tr>
<tr>
<td>(Semester V & VI)</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Total duration of each local field trip should not be less than eight hours.

2: The teacher student ratio for the purpose of field trip / study tour be same as that for practicals.

3. The students are required to maintain a field record to be submitted at the time of practical examination.

4. Field trips / study tours should be to the places other than the ones mentioned in the practicals.

5. As per the circular No. GU/V/Gen. Appt./30/97/3754 dated 26.6.1997 following will be the work load for field work/study tour in Botany.
 - F.Y. B.Sc. - One period/week/batch
 - S. Y. B.Sc. - Two periods/week/batch
 - T.Y. B.Sc. - Five periods/week/batch

The syllabus to be implemented in phased manner from 2011-12
Approved by B.O.S. in Botany dated 19th April 2011

Chairman, BOS in Botany
Goa University
