ANNEXURE-IV (Bridge Course)

Programme: M.Sc. Chemistry

Course Code: CHCB-401 (for Part-I students)

Title of the course: Bridge Course in mathematical concepts for chemistry

Number of Credits: 01 Total Hours: 15 Effective from AY: 2022-23

Prerequisites for the course.	Should have studied B. Sc. (Chemistry)		
Course	To introduce mathematical concepts to the students of MSc Part-I		
Objective:	(Chemistry).		
Course	Students will be able to solve problems based on matrices, determina	ints	
Outcome:	and, differential and integral calculus in MSc Chemistry.		
	Content	Hrs	
1. Calculus fo	r thermodynamics and kinetics	08	
i. Introduction	to Differentiation: Notation, Differentiating various functions,		
Differentiating	Differentiating a Sum, Product Rule, Quotient Rule, Chain Rule, Partial		
Differentiation: exact and inexact differentials.			
ii. Introduction to Integration: Notation, Rules for Integrals, Integrating various			
functions, Def	inite and indefinite Integrals.		
2. Matrices, Determinants and vector algebra:		07	
i. Types of Matrices: Identity, reflection, rotation, inversion, distance matrix, Matrix			
Algebra, Matrix similarity transformation.			
ii. The Determinant, Minors and Cofactors, Inverse of a Matrix, Character of a			
matrix, Linear algebra.			
iii. Vectors and molecular structure.			
Pedagogy	Mainly lectures and tutorials. Seminars/assignments/presentations/self	-	
	study or a combination of some of these can be used. ICT mode should	d be	
	preferred. Sessions should be interactive to enable peer group learning		
Text Books/	1. Robert G. Mortimer, Mathematics for Physical Chemistry, Elsevier,	,	
References /	2013, 4 th Ed.		
Readings	2. James R. Barrante, Applied Mathematics for Physical Chemistry,		
	Prentice-Hall, 1998, 3 rd Ed.		